Nederlands

N&O seminar: Cristobal Guzman (PUC-Chile)

Everyone is invited to attend the N&O seminar by Cristobal Guzman with the title 'Lower Bounds for Parallel and Randomized Convex Optimization'.

When
10 Jul 2019 from 11 a.m. to 10 Jul 2019 noon CEST (GMT+0200)
Where
Room L016 at CWI, Science Park 123 in Amsterdam
Web
Add

Everyone is invited to attend the N&O seminar by Cristobal Guzman with the title 'Lower Bounds for Parallel and Randomized Convex Optimization'.

Abstract: We study the question of whether parallelization in the exploration of the feasible set can be used to speed up convex optimization, in the local oracle model of computation. We show that the answer is negative for both deterministic and randomized algorithms applied to essentially any of the interesting geometries and nonsmooth, weakly-smooth, or smooth objective functions. In particular, we show that it is not possible to obtain a polylogarithmic (in the sequential complexity of the problem) number of parallel rounds with a polynomial (in the dimension) number of queries per round. In the majority of these settings and when the dimension of the space is polynomial in the inverse target accuracy, our lower bounds match the oracle complexity of sequential convex optimization, up to at most a logarithmic factor in the dimension, which makes them (nearly) tight. Prior to our work, lower bounds for parallel convex optimization algorithms were only known in a small fraction of the settings considered in this paper, mainly applying to Euclidean (ℓ2) and ℓ∞ spaces. Our work provides a more general approach for proving lower bounds in the setting of parallel convex optimization.