N&O seminar: David Kempe (USC)

Everyone is welcome to attend the N&O seminar of David Kempe with the title 'Security Games: Quasi-Regular Sequences, and a new version of TSP'.
  • What Networks & Optimization English Seminars
  • When 10-10-2019 from 13:30 to 14:30 (Europe/Amsterdam / UTC200)
  • Where Room L016 at CWI, Science Park 123 in Amsterdam
  • Add event to calendar iCal

Everyone is welcome to attend the N&O seminar of David Kempe with the title 'Security Games: Quasi-Regular Sequences, and a new version of TSP'.

Abstract:
In security games, a defender commits to a mixed strategy for protecting a set of n targets of values v_i; an attacker, knowing the defender's strategy, chooses which target to attack and for how long. We study a natural version in which the attacker's utility grows linearly with the time he spends at the target, but drops to 0 if he is caught. The defender's goal is to minimize the attacker's utility. The defender's strategy consists of a schedule for visiting the targets; a metric space determines how long it takes to travel between targets. Such games naturally model a number of real-world scenarios, including protecting computer networks from intruders, animals from poachers, etc.

We study this problem in two scenarios:
1. When all the distances between targets are the same, then optimal and near-optimal strategies naturally correspond to sequences in which each character occupies a prescribed fraction p_i of the sequence, and appears "close to evenly spread."
We formalize these notions, and give efficient algorithms for finding sequences whose properties are strong enough to provide optimal or near-optimal strategies in the corresponding security game.
2. When distances between targets are arbitrary, the problem subsumes the well-known Traveling Salesman Problem (TSP), but generalizes it in novel and interesting ways.
We give a polynomial-time O(log n) approximation algorithm for finding the best strategy for the defender.

Joint work with Leonard J. Schulman and Omer Tamuz (SODA 2018) and with Mark Klein (submitted).