Machine Learning Theory 2023 Lecture 4

Tim van Erven

Download these slides now from elo.mastermath.nl!

Focus on binary classification:

- Review
- Fundamental theorem: quantitative version
- VC-dimension controls growth function

The Fundamental Theorem of PAC-Learning

Theorem

For binary classification, the following are equivalent:

1. \mathcal{H} has the uniform convergence property.
2. Any ERM rule is a successful agnostic PAC-learner for \mathcal{H}.
3. \mathcal{H} is agnostic PAC-learnable.
4. \mathcal{H} is PAC-learnable.
5. Any ERM rule is a successful PAC-learner for \mathcal{H}.
6. \mathcal{H} has finite VC-dimension.

> VC-dimension characterizes (agnostic) PAC-learnability and uniform convergence!

- Still to prove: $6 \rightarrow 1$

Uniform Convergence

\mathcal{H} has the uniform convergence property:

> For finite $m_{\mathcal{H}}^{\mathrm{UC}}(\epsilon, \delta)$, $\sup _{h \in \mathcal{H}}\left|L_{S}(h)-L_{\mathcal{D}}(h)\right| \leq \epsilon \quad$ with probability $\geq 1-\delta$, whenever $m \geq m_{\mathcal{H}}^{\mathrm{UC}}(\epsilon, \delta)$
for all $\mathcal{D}, \epsilon, \delta$.

Shattering and VC-Dimension

Definition (Restriction of \mathcal{H} to \mathcal{C})

For finite $\mathcal{C}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\} \subset \mathcal{X}$, let $\mathcal{H}_{\mathcal{C}}=\left\{\left(h\left(\boldsymbol{x}_{1}\right), \ldots, h\left(\boldsymbol{x}_{k}\right)\right) \mid h \in \mathcal{H}\right\}$.

- Obtain $\mathcal{H}_{\mathcal{C}}$ by evaluating hypotheses in \mathcal{H} only on inputs in \mathcal{C}.

Shattering and VC-Dimension

Definition (Restriction of \mathcal{H} to \mathcal{C})

For finite $\mathcal{C}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\} \subset \mathcal{X}$, let $\mathcal{H}_{\mathcal{C}}=\left\{\left(h\left(\boldsymbol{x}_{1}\right), \ldots, h\left(\boldsymbol{x}_{k}\right)\right) \mid h \in \mathcal{H}\right\}$.

- Obtain $\mathcal{H}_{\mathcal{C}}$ by evaluating hypotheses in \mathcal{H} only on inputs in \mathcal{C}.

Definition (Shattering)

\mathcal{H} shatters a finite set $\mathcal{C} \subset \mathcal{X}$ if \mathcal{H} can classify the elements of \mathcal{C} in all possible ways, i.e. $\left|\mathcal{H}_{\mathcal{C}}\right|=2^{|\mathcal{C}|}$.

Shattering and VC-Dimension

Definition (Restriction of \mathcal{H} to \mathcal{C})

For finite $\mathcal{C}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\} \subset \mathcal{X}$, let $\mathcal{H}_{\mathcal{C}}=\left\{\left(h\left(\boldsymbol{x}_{1}\right), \ldots, h\left(\boldsymbol{x}_{k}\right)\right) \mid h \in \mathcal{H}\right\}$.

- Obtain $\mathcal{H}_{\mathcal{C}}$ by evaluating hypotheses in \mathcal{H} only on inputs in \mathcal{C}.

Definition (Shattering)

\mathcal{H} shatters a finite set $\mathcal{C} \subset \mathcal{X}$ if \mathcal{H} can classify the elements of \mathcal{C} in all possible ways, i.e. $\left|\mathcal{H}_{\mathcal{C}}\right|=2^{|\mathcal{C}|}$.

Definition (Vapnik-Chervonenkis (VC) Dimension)

- $\operatorname{VCdim}(\mathcal{H})=$ maximum size of finite set $\mathcal{C} \subset \mathcal{X}$ shattered by \mathcal{H}
- $\operatorname{VCdim}(\mathcal{H})=\infty$ if there is no maximum

Fundamental Theorem: Quantitative Version

Fundamental Theorem: Quantitative Version

Does the VC-dimension also characterize the sample complexity of PAC-learning? Yes!

Fundamental Theorem: Quantitative Version

Does the VC-dimension also characterize the sample complexity of PAC-learning? Yes!

Theorem

Consider binary classification. Suppose VCdim $(\mathcal{H})=v<\infty$. Then there exist absolute constants $C_{1}, C_{2}>0$ such that

1. Uniform convergence:

$$
C_{1} \frac{v+\ln (1 / \delta)}{\epsilon^{2}} \leq m_{\mathcal{H}}^{U C}(\epsilon, \delta) \leq C_{2} \frac{v+\ln (1 / \delta)}{\epsilon^{2}}
$$

2. Agnostic PAC-learning:

$$
C_{1} \frac{v+\ln (1 / \delta)}{\epsilon^{2}} \leq m_{\mathcal{H}}(\epsilon, \delta) \leq C_{2} \frac{v+\ln (1 / \delta)}{\epsilon^{2}}
$$

3. PAC-learning:

$$
C_{1} \frac{v+\ln (1 / \delta)}{\epsilon} \leq m_{\mathcal{H}}(\epsilon, \delta) \leq C_{2} \frac{v \ln (1 / \epsilon)+\ln (1 / \delta)}{\epsilon}
$$

Uniform Convergence Upper Bound

Upper bound from previous slide that we want to prove:

Theorem

Consider binary classification. Suppose $V \operatorname{Cdim}(\mathcal{H}) \leq v<\infty$. Then there exists an absolute constant $C>0$ such that

$$
\sup _{h \in \mathcal{H}}\left|L_{S}(h)-L_{\mathcal{D}}(h)\right| \leq \epsilon \quad \text { with probability } \geq 1-\delta
$$

whenever

$$
m \geq C \frac{v+\ln (1 / \delta)}{\epsilon^{2}}
$$

Uniform Convergence Upper Bound

Upper bound from previous slide that we want to prove:

Theorem

Consider binary classification. Suppose $V \operatorname{Cdim}(\mathcal{H}) \leq v<\infty$. Then there exists an absolute constant $C>0$ such that

$$
\sup _{h \in \mathcal{H}}\left|L_{S}(h)-L_{\mathcal{D}}(h)\right| \leq \epsilon \quad \text { with probability } \geq 1-\delta
$$

whenever

$$
m \geq C \frac{v \ln (1 / \epsilon)+\ln (1 / \delta)+1}{\epsilon^{2}}
$$

- Extra factor $\ln (1 / \epsilon)$ is only logarithmic
- It could be avoided with a more involved argument (using a technique called chaining)

Uniform Convergence Upper Bound

Upper bound from previous slide that we want to prove:

Theorem

Consider binary classification. Suppose $V \operatorname{Cdim}(\mathcal{H}) \leq v<\infty$. Then there exists an absolute constant $C>0$ such that

$$
\sup _{h \in \mathcal{H}}\left|L_{S}(h)-L_{\mathcal{D}}(h)\right| \leq \epsilon \quad \text { with probability } \geq 1-\delta
$$

whenever

$$
m \geq C \frac{v \ln (1 / \epsilon)+\ln (1 / \delta)+1}{\epsilon^{2}}
$$

- Extra factor $\ln (1 / \epsilon)$ is only logarithmic
- It could be avoided with a more involved argument (using a technique called chaining)
- $v=0 \Rightarrow|\mathcal{H}|=1$ is trivial, so can assume $v>0$ w.l.o.g.

Proof Approach

Will define growth function $\tau_{\mathcal{H}}(m)$. Then

Part I: Growth function controls uniform convergence:
$\sup _{h \in \mathcal{H}}\left|L_{S}(h)-L_{\mathcal{D}}(h)\right| \leq c \sqrt{\frac{\ln \tau_{\mathcal{H}}(m)}{m}}+c \sqrt{\frac{\ln (2 / \delta)}{m}} \quad$ with probability $\geq 1-\delta$,
Part II: VC-dimension controls growth function:

$$
\ln \tau_{\mathcal{H}}(m) \leq v \ln \left(\frac{e m}{v}\right) \quad \text { for } m>v .
$$

- Finish: combine Parts I and II, and find lower bound on m s.t. $\sup _{h \in \mathcal{H}}\left|L_{s}(h)-L_{\mathcal{D}}(h)\right| \leq \epsilon$.

Proof Part II:
 VC-dimension Controls Growth Function

Growth Function

- Finite \mathcal{H} have the uniform convergence property.
- How do we measure the size of infinite \mathcal{H} ?

Growth function: effective size of \mathcal{H} at sample size m :

$$
\tau_{\mathcal{H}}(m)=\max _{\mathcal{C} \subset \mathcal{X}:|\mathcal{C}|=m}\left|\mathcal{H}_{\mathcal{C}}\right|
$$

- Interpretation: How many truly different hypotheses are there when we only observe m inputs $\mathcal{C}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\}$?
- If \mathcal{H} is finite, then $\tau_{\mathcal{H}}(m) \leq|\mathcal{H}|$

Sauer's Lemma

Growth function: $\tau_{\mathcal{H}}(m)=\max _{|\mathcal{C}|=m}\left|\mathcal{H}_{\mathcal{C}}\right|$

Lemma (Sauer-Shelah-Perles)

Suppose VCdim $(\mathcal{H}) \leq v<\infty$. Then the growth function is bounded by

$$
\tau_{\mathcal{H}}(m) \leq \sum_{i=0}^{v}\binom{m}{i} \leq \begin{cases}2^{m} & \text { if } m \leq v \\ \left(\frac{e m}{v}\right)^{v} & \text { if } m>v\end{cases}
$$

- VC-dimension v determines switch from exponential to polynomial growth in m.
- Case $m>v$ is what we need to show for Part II.

Saner's Lemma For all H and all m

$$
\tau_{31}(m) \leq \sum_{i=0}^{v}\binom{m}{i}
$$

where $\tau_{H}(m)=\max _{1 \mathrm{Cl}=\mathrm{m}}\left|\mathcal{H}_{c}\right|$
Proof: H and
Nil show: For any $\forall C$ of size $\mid C 1=m$

$$
\begin{aligned}
& \left|H_{C}\right| \stackrel{(1)}{\leq} \mid\{B \leq C: H \text { shatters } B\} \mid \\
& \quad \left\lvert\, \begin{array}{l}
(2) \\
\leq \\
i=0 \\
V
\end{array}\binom{m}{i}\right.
\end{aligned}
$$

(2): H shatters $B \Rightarrow|B| \leq V$
nr of sets $B \leq C$ with $|\beta|=i$ is $\binom{m}{i}$ summing over $i=0, \cdots, v$ implies (2).
(1) $\left|H_{C}\right| \leq \mid\{B \leq C$: H shares $B\} \mid$

$$
\begin{aligned}
& \text { for any } \\
& |C|=m
\end{aligned}
$$ By induction in m :

$|c|=m$
$m=1$:

$$
\begin{aligned}
H H_{C} \mid=1 & \Rightarrow C \text { is not shattered by } H \\
& \Rightarrow \text { only } B=\varnothing \text { is shattered by } H \\
& \Rightarrow \text { r.h.s is } 1 \\
\left|H_{C}\right|=2 & \Rightarrow C \text { is shattered and } B=\phi \text { is } \\
& \Rightarrow \text { shattered }
\end{aligned}
$$

$m \geqslant 2$: Suppose (1) holds for all $m<k$.
To shou!(1) holds for $n=k$.
Let $c=\left\{x_{1}, \ldots, x_{h}\right\}$ be arbitrary.

Vaunt to apply inductive assumption, so
define

$$
\left.c^{\prime}=\xi x_{2}, \ldots, x_{k}\right\}
$$

Let $y_{0}=H_{c}=\xi\left(y_{2}, \ldots, y_{k}\right) \mid \exists y_{1}$ s.t.

$$
\left.\left(y_{1}, y_{2}, \ldots, y_{k}\right) \in H_{c}\right\}
$$

Then $\left|Y_{0}\right| \leqslant\left|H_{c}\right|$ under counts $\left|H_{c}\right|$, be cause $y_{1}=-1$ and $y_{1}=+1$ may both satisfy
So let's count how of ten this happens:

$$
y_{1}=\left\{\left(y_{2}, \ldots, y_{k}\right) \mid \forall y_{1} \text { sit. }\left(y_{1}, y_{2}, \ldots, y_{k}\right) \leqslant H_{k}\right\}
$$

Thus

$$
\left|H_{c}\right|=\left|y_{0}\right|+\left|y_{1}\right|
$$

will show:
i) $\left|y_{0}\right| \leq \mid \xi B \leq C: x_{1} \notin B, H$ shatters $B 3 \mid$
ii) $\left|y_{I}\right| \leq \mid\left\{B \leq C: x_{1} \in B, H\right.$ shatters $\left.B\right\} \mid$

So together:

$$
\left|H_{c}\right|=\left|y_{0}\right|+|Y,|\leq|\{B \leq C: H \text { shatters } B\}| \text {, }
$$

which is to be shown.
i) Recall that

$$
\begin{aligned}
& c^{\prime}=\left\{x_{2}, \ldots, x_{k}\right\}, \quad y_{0}=H_{c}^{\prime} \\
& \text { (induadion) } \\
& \left|y_{0}\right|=\left|H_{C^{\prime}}\right| \leq \mid\left\{B \leq C^{\prime}: H \text { shatters } B 3 \mid\right. \\
& =\mid \Sigma B \leq C: X, \notin B, H \text { charters } B 3 \mid
\end{aligned}
$$

ii) $\left|y_{1}\right| \leq \mid \xi B \leq C: x_{1} \in B, H$ shatters $B 3 \mid$

Define $H^{\prime}=\left\{h \in H \mid \exists h^{\prime} \in H\right.$ sot.

$$
h^{\prime}\left(x_{i}\right)=h\left(x_{i}\right) \text { for } i=2, \ldots, k
$$

but $\left.h^{\prime}\left(x_{1}\right) \neq h\left(x_{1}\right)\right\}$
observe:
$* H^{\prime}$ shatters $B \leq C^{\prime} \Longleftrightarrow H^{\prime}$ shatters $B \cup\left\{x_{1}\right\}$

$$
\begin{aligned}
& * y_{1}=H_{C^{\prime}}^{\prime} \text { (induction) } \\
& \begin{aligned}
\left|y_{1}\right|=\left|H_{C^{\prime}}^{\prime}\right| & \left.\leq \mid \xi B \leq C^{\prime}: H^{\prime} \text { shatters } B\right\} \mid \\
& =\mid \xi B \leq C^{\prime}: H^{\prime} \text { shatters } B \cup\{x, 3\} \mid \\
& =\mid\left\{B \leq C: x, \in B, H^{\prime} \text { shatters } B 3 \mid\right. \\
& \leq \mid \xi B \leq C: x \in B, \nmid \text { shatters } B 3 \mid
\end{aligned}
\end{aligned}
$$

The Final Inequality (Handwritten)

Lemma

$$
\sum_{i=0}^{v}\binom{m}{i} \leq \begin{cases}2^{m} & \text { if } m \leq v \\ \left(\frac{e m}{v}\right)^{v} & \text { if } m>v\end{cases}
$$

Proof: Will use binomial theorem: $(x+y)^{m}=\sum_{i=0}^{m}\binom{m}{i} x^{i} y^{m-i}$. $m \leq v:\binom{m}{i}=0$ for $i>m$, so $\sum_{i=0}^{v}\binom{m}{i}=\sum_{i=0}^{m}\binom{m}{i}$. Then apply binomial theorem with $x=y=1$.
$m>v$: [Simpler proof from Anthony and Bartlett, Neural Network Learning: Theoretical Foundations, 1999]

$$
\begin{aligned}
\sum_{i=0}^{v}\binom{m}{i} & \leq\left(\frac{m}{v}\right)^{v} \sum_{i=0}^{v}\binom{m}{i}\left(\frac{v}{m}\right)^{i} \leq\left(\frac{m}{v}\right)^{v} \sum_{i=0}^{m}\binom{m}{i}\left(\frac{v}{m}\right)^{i} \\
& =\left(\frac{m}{v}\right)^{v}\left(1+\frac{v}{m}\right)^{m} \leq\left(\frac{m}{v}\right)^{v}\left(e^{v / m}\right)^{m}=\left(\frac{e m}{v}\right)^{v}
\end{aligned}
$$

(First equality follows from binomial theorem with $x=1, y=\frac{v}{m}$.)

