Machine Learning Theory 2023 Lecture 4

Tim van Erven

Download these slides now from elo.mastermath.nl!

Focus on binary classification:

- Review
- Fundamental theorem: quantitative version
- VC-dimension controls growth function

The Fundamental Theorem of PAC-Learning

Theorem

For binary classification, the following are equivalent:

- 1. \mathcal{H} has the uniform convergence property.
- 2. Any **ERM** rule is a successful agnostic PAC-learner for \mathcal{H} .
- 3. \mathcal{H} is agnostic PAC-learnable.
- 4. \mathcal{H} is PAC-learnable.
- 5. Any **ERM** rule is a successful PAC-learner for \mathcal{H} .
- 6. \mathcal{H} has finite VC-dimension.

VC-dimension characterizes (agnostic) PAC-learnability and uniform convergence!

• Still to prove: $6 \rightarrow 1$

Uniform Convergence

 ${\cal H}$ has the uniform convergence property:

For finite $m_{\mathcal{H}}^{\mathrm{UC}}(\epsilon, \delta)$, $\sup_{h \in \mathcal{H}} |L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| \leq \epsilon$ with probability $\geq 1 - \delta$, whenever $m \geq m_{\mathcal{H}}^{\mathrm{UC}}(\epsilon, \delta)$, for all $\mathcal{D}, \epsilon, \delta$.

Shattering and VC-Dimension

Definition (Restriction of \mathcal{H} to \mathcal{C})

For finite $\mathcal{C} = \{x_1, \dots, x_k\} \subset \mathcal{X}$, let $\mathcal{H}_{\mathcal{C}} = \{(h(x_1), \dots, h(x_k)) \mid h \in \mathcal{H}\}.$

Obtain H_C by evaluating hypotheses in H only on inputs in C.

Shattering and VC-Dimension

Definition (Restriction of \mathcal{H} to \mathcal{C})

For finite $\mathcal{C} = \{x_1, \dots, x_k\} \subset \mathcal{X}$, let $\mathcal{H}_{\mathcal{C}} = \{(h(x_1), \dots, h(x_k)) \mid h \in \mathcal{H}\}.$

• Obtain $\mathcal{H}_{\mathcal{C}}$ by evaluating hypotheses in \mathcal{H} only on inputs in \mathcal{C} .

Definition (Shattering)

 \mathcal{H} shatters a finite set $\mathcal{C} \subset \mathcal{X}$ if \mathcal{H} can classify the elements of \mathcal{C} in all possible ways, i.e. $|\mathcal{H}_{\mathcal{C}}| = 2^{|\mathcal{C}|}$.

Shattering and VC-Dimension

Definition (Restriction of \mathcal{H} to \mathcal{C})

For finite $\mathcal{C} = \{x_1, \dots, x_k\} \subset \mathcal{X}$, let $\mathcal{H}_{\mathcal{C}} = \{(h(x_1), \dots, h(x_k)) \mid h \in \mathcal{H}\}.$

• Obtain $\mathcal{H}_{\mathcal{C}}$ by evaluating hypotheses in \mathcal{H} only on inputs in \mathcal{C} .

Definition (Shattering)

 \mathcal{H} shatters a finite set $\mathcal{C} \subset \mathcal{X}$ if \mathcal{H} can classify the elements of \mathcal{C} in all possible ways, i.e. $|\mathcal{H}_{\mathcal{C}}| = 2^{|\mathcal{C}|}$.

Definition (Vapnik-Chervonenkis (VC) Dimension)

- ▶ VCdim(\mathcal{H}) = maximum size of finite set $\mathcal{C} \subset \mathcal{X}$ shattered by \mathcal{H}
- VCdim(H) = ∞ if there is no maximum

Fundamental Theorem: Quantitative Version

Fundamental Theorem: Quantitative Version

Does the VC-dimension also characterize the sample complexity of PAC-learning? Yes!

Fundamental Theorem: Quantitative Version

Does the VC-dimension also characterize the sample complexity of PAC-learning? Yes!

Theorem

Consider binary classification. Suppose $VCdim(\mathcal{H}) = v < \infty$. Then there exist absolute constants $C_1, C_2 > 0$ such that

1. Uniform convergence:

$$C_1 rac{
u + \ln(1/\delta)}{\epsilon^2} \leq m_{\mathcal{H}}^{UC}(\epsilon, \delta) \leq C_2 rac{
u + \ln(1/\delta)}{\epsilon^2}$$

2. Agnostic PAC-learning:

$$C_1 rac{ extsf{v} + \ln(1/\delta) }{ \epsilon^2 } \leq m_{\mathcal{H}}(\epsilon, \delta) \leq C_2 rac{ extsf{v} + \ln(1/\delta) }{ \epsilon^2 }$$

3. PAC-learning:

$$C_1 rac{
u + \ln(1/\delta)}{\epsilon} \leq m_{\mathcal{H}}(\epsilon, \delta) \leq C_2 rac{
u \ln(1/\epsilon) + \ln(1/\delta)}{\epsilon}$$

Uniform Convergence Upper Bound

Upper bound from previous slide that we want to prove:

Theorem

Consider binary classification. Suppose $VCdim(\mathcal{H}) \leq v < \infty$. Then there exists an absolute constant C > 0 such that

$$\sup_{h \in \mathcal{H}} |L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| \le \epsilon \qquad \text{with probability} \ge 1 - \delta,$$

whenever

$$m \ge C rac{\mathbf{v} + \ln(1/\delta)}{\epsilon^2}.$$

Uniform Convergence Upper Bound

Upper bound from previous slide that we want to prove:

Theorem

Consider binary classification. Suppose $VCdim(\mathcal{H}) \leq v < \infty$. Then there exists an absolute constant C > 0 such that

$$\sup_{h\in\mathcal{H}} |\mathcal{L}_{\mathcal{S}}(h) - \mathcal{L}_{\mathcal{D}}(h)| \leq \epsilon \qquad ext{with probability} \geq 1 - \delta,$$

whenever

$$m \geq C rac{v \ln(1/\epsilon) + \ln(1/\delta) + 1}{\epsilon^2}.$$

Extra factor $\ln(1/\epsilon)$ is only logarithmic

 It could be avoided with a more involved argument (using a technique called chaining)

Uniform Convergence Upper Bound

Upper bound from previous slide that we want to prove:

Theorem

Consider binary classification. Suppose $VCdim(\mathcal{H}) \leq v < \infty$. Then there exists an absolute constant C > 0 such that

$$\sup_{h\in\mathcal{H}} |\mathcal{L}_{\mathcal{S}}(h) - \mathcal{L}_{\mathcal{D}}(h)| \leq \epsilon \qquad ext{with probability} \geq 1 - \delta,$$

whenever

$$m \geq C rac{v \ln(1/\epsilon) + \ln(1/\delta) + 1}{\epsilon^2}.$$

- Extra factor $\ln(1/\epsilon)$ is only logarithmic
- It could be avoided with a more involved argument (using a technique called chaining)

• $v = 0 \Rightarrow |\mathcal{H}| = 1$ is trivial, so can assume v > 0 w.l.o.g.

Proof Approach

Will define growth function $\tau_{\mathcal{H}}(m)$. Then

Part I: Growth function controls uniform convergence:

 $\sup_{h\in\mathcal{H}} |L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| \leq c\sqrt{\frac{\ln\tau_{\mathcal{H}}(m)}{m}} + c\sqrt{\frac{\ln(2/\delta)}{m}} \qquad \text{with probability} \geq 1 - \delta,$

Part II: VC-dimension controls growth function:

$$\ln \tau_{\mathcal{H}}(m) \leq v \ln \left(\frac{em}{v}\right)$$
 for $m > v$.

Finish: combine Parts I and II, and find lower bound on m s.t. sup_{h∈H} |L_S(h) − L_D(h)| ≤ ε.

Proof Part II: VC-dimension Controls Growth Function

Growth Function

 \blacktriangleright Finite ${\cal H}$ have the uniform convergence property.

▶ How do we measure the size of infinite *H*?

Growth function: effective size of \mathcal{H} at sample size *m*:

$$\tau_{\mathcal{H}}(m) = \max_{\mathcal{C} \subset \mathcal{X}: |\mathcal{C}|=m} |\mathcal{H}_{\mathcal{C}}|$$

Interpretation: How many truly different hypotheses are there when we only observe *m* inputs C = {x₁,..., x_m}?

▶ If \mathcal{H} is finite, then $\tau_{\mathcal{H}}(m) \leq |\mathcal{H}|$

Sauer's Lemma

Growth function:
$$\tau_{\mathcal{H}}(m) = \max_{|\mathcal{C}|=m} |\mathcal{H}_{\mathcal{C}}|$$

Lemma (Sauer-Shelah-Perles)

Suppose $VCdim(\mathcal{H}) \leq v < \infty$. Then the growth function is bounded by

$$\tau_{\mathcal{H}}(m) \leq \sum_{i=0}^{\nu} \binom{m}{i} \leq \begin{cases} 2^{m} & \text{if } m \leq \nu \\ \left(\frac{em}{\nu}\right)^{\nu} & \text{if } m > \nu. \end{cases}$$

- VC-dimension v determines switch from exponential to polynomial growth in m.
- Case m > v is what we need to show for Part II.

Saver's Lemma For all Hand all m $t_{31}(m) = 2^{V} {\binom{m}{i}},$ where ty(m) = max |He| Prodi U; || Show: For any VC of size |C|=m IHc| = |SB = C: H s(uthers B3) $\leq \sum_{i} (\frac{1}{i})$ (2): H shallers B => 1BI SV nr of sets BEC with IBI= i is (m) summing over iso, ..., V implies (2).

(1) 1Hc1 ≤ 13 B⊆C: H shelters B3 | for any 101=m By induction in m: and any H m-1: 14(1=1=) (is not shall be the so only B= Ø is shall de rad by H => r.h.s is 1 (Hc) = 2 => c is shallered and B= d is shaltened => r.h.s. = 2. m ? 2: Suppose (1) holds for all m = k. To show: (1) holds for m=k. Let C= Sx1, ..., Xh 7 be arbitiary.

Vant to apply inductive assumption, so define C = 3x2, ..., xKS Let yo = Hy = 3 (42, ..., yk) (By, s.E. (y1, y2, ..., yk) +Hcz Then yol < 1 Hc under county 1 Hcl, because y = - 1 and y = + 1 may bodh satisfy ~ So let's count how often this happens: y1 = 3(y21.1.14k) + by1 s.t. (y1, y2, ..., yk) + 23 Thus 1H1 = 190/+1921

Will show. ;) 1901 = 13B = C: X1 & B, H shatters B31 ii) | 41 = (38=c: x, EB, H shallers B3) So together . |H_| = 190 | + 14, 1 ≤ | SB ≤ C ! X shadters B} . which is to be shown i) Recall that c'= 3x2, ..., xk3, Yo= He (induction) 1401 = 1 Hc1 = 13 BEC': H shadters B31 = 12B < < : X, & B, H shald = > B3(

ii) 14,1 = 13B = C : x, EB, H shelfers B3) Define H = ShEH) = h'EH s.t. handling rec h'(x;) = h(x;) for i= 2, ..., k but h'(x1) \$ h(x1) } Observe! * H' shallers BSC' => H' shallers Busx13 * Y, = H'c' (induction) 17,1 = 1 H/1 = 13 B=c': H' shatters B31 = 12B = c': H' sharfers BU \$x,33/ - ISB=C: X, EB, H' shalfers B3/ < (3B = C: x, EB, H shafters B3)

The Final Inequality (Handwritten)

Lemma

$$\sum_{i=0}^{\nu} \binom{m}{i} \leq \begin{cases} 2^m & \text{if } m \leq v \\ \left(\frac{em}{v}\right)^{\nu} & \text{if } m > v \end{cases}$$

Proof: Will use binomial theorem: $(x + y)^m = \sum_{i=0}^m {m \choose i} x^i y^{m-i}$.

- $m \leq v$: $\binom{m}{i} = 0$ for i > m, so $\sum_{i=0}^{v} \binom{m}{i} = \sum_{i=0}^{m} \binom{m}{i}$. Then apply binomial theorem with x = y = 1.
- m > v: [Simpler proof from Anthony and Bartlett, Neural Network Learning: Theoretical Foundations, 1999]

$$\sum_{i=0}^{\nu} \binom{m}{i} \leq \left(\frac{m}{\nu}\right)^{\nu} \sum_{i=0}^{\nu} \binom{m}{i} \left(\frac{\nu}{m}\right)^{i} \leq \left(\frac{m}{\nu}\right)^{\nu} \sum_{i=0}^{m} \binom{m}{i} \left(\frac{\nu}{m}\right)^{i}$$
$$= \left(\frac{m}{\nu}\right)^{\nu} \left(1 + \frac{\nu}{m}\right)^{m} \leq \left(\frac{m}{\nu}\right)^{\nu} (e^{\nu/m})^{m} = \left(\frac{em}{\nu}\right)^{\nu}$$

(First equality follows from binomial theorem with $x = 1, y = \frac{v}{m}$.)