Machine Learning Theory 2023 Lecture 3

Tim van Erven

Download these slides now from elo.mastermath.nl!

Focus on binary classification:

- Review
- Shattering and VC-dimension
- The Fundamental Theorem of PAC-Learning
- VC-dimension of Linear Predictors

(Agnostic) PAC Learning

 \mathcal{H} is agnostically PAC-learnable:

Exist learner (selecting $h_S \in \mathcal{H}$) that achieves, for finite $m_{\mathcal{H}}(\epsilon, \delta)$,

 $L_{\mathcal{D}}(h_{\mathcal{S}}) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$ with probability $\geq 1 - \delta$,

whenever $m \geq m_{\mathcal{H}}(\epsilon, \delta)$,

for all $\mathcal{D}, \epsilon, \delta$.

(Agnostic) PAC Learning

 ${\cal H}$ is agnostically PAC-learnable:

Exist learner (selecting $h_S \in \mathcal{H}$) that achieves, for finite $m_{\mathcal{H}}(\epsilon, \delta)$,

 $L_{\mathcal{D}}(h_{\mathcal{S}}) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$ with probability $\geq 1 - \delta$,

whenever $m \geq m_{\mathcal{H}}(\epsilon, \delta)$,

for all $\mathcal{D}, \epsilon, \delta$.

 \mathcal{H} is **PAC-learnable** (only for binary classification):

Same, except only for \mathcal{D} for which realizability holds w.r.t. \mathcal{H} .

▶ Realizability: exists perfect classifier $h^* \in \mathcal{H}$

What We Know So Far About Learnability

Theorem (Finite Hypothesis Classes)

Suppose loss range is [0,1]. Finite hypothesis classes \mathcal{H} are agnostically PAC-learnable with ERM.

What We Know So Far About Learnability

Theorem (Finite Hypothesis Classes)

Suppose loss range is [0,1]. Finite hypothesis classes \mathcal{H} are agnostically PAC-learnable with ERM.

▶ Does not cover e.g. linear predictors $\mathcal{H} = \{h_{w,b}(X) = \operatorname{sign}(b + \langle w, X \rangle) \mid w \in \mathbb{R}^d, b \in \mathbb{R}\}$

What We Know So Far About Learnability

Theorem (Finite Hypothesis Classes)

Suppose loss range is [0,1]. Finite hypothesis classes \mathcal{H} are agnostically PAC-learnable with ERM.

▶ Does not cover e.g. linear predictors

$$\mathcal{H} = \{h_{w,b}(\mathbf{X}) = \operatorname{sign}(b + \langle w, \mathbf{X} \rangle) \mid w \in \mathbb{R}^d, b \in \mathbb{R}\}$$

Let $\mathcal{H}_{\mathsf{all}} = \mathsf{all}$ (measurable) functions from \mathcal{X} to $\{-1,+1\}$

Theorem (No-Free-Lunch)

Consider binary classification. For any $\epsilon < 1/8$, $\delta < 1/7$, sample size $m \leq |\mathcal{X}|/2$ is not enough to PAC-learn \mathcal{H}_{all} :

$$m_{\mathcal{H}_{all}}(\epsilon,\delta) > rac{|\mathcal{X}|}{2}.$$

Rest of today's lecture: focus on binary classification!

Shattering and VC-Dimension

▶ VC-dimension of *H* characterizes if *H* is (agnostic) PAC-learnable!

Consequences of No-Free-Lunch

No-Free-Lunch Theorem has consequences even if $\mathcal{H} \neq \mathcal{H}_{all}$:

Definition (Restriction of \mathcal{H} to \mathcal{C})

For finite $C = \{c_1, \ldots, c_k\} \subset \mathcal{X}$, let $\mathcal{H}_C = \{(h(c_1), \ldots, h(c_k)) \mid h \in \mathcal{H}\}.$

• Obtain $\mathcal{H}_{\mathcal{C}}$ by evaluating hypotheses in \mathcal{H} only on inputs in \mathcal{C} .

Consequences of No-Free-Lunch

No-Free-Lunch Theorem has consequences even if $\mathcal{H} \neq \mathcal{H}_{all}$:

Definition (Restriction of \mathcal{H} to \mathcal{C})

For finite $C = \{c_1, \ldots, c_k\} \subset \mathcal{X}$, let $\mathcal{H}_C = \{(h(c_1), \ldots, h(c_k)) \mid h \in \mathcal{H}\}.$

• Obtain $\mathcal{H}_{\mathcal{C}}$ by evaluating hypotheses in \mathcal{H} only on inputs in \mathcal{C} .

Corollary (Difficult Subsets of \mathcal{H})

If exists finite $C \subset \mathcal{X}$ s.t. \mathcal{H}_{C} contains all functions from C to $\{-1, +1\}$, then sample size $m \leq |\mathcal{C}|/2$ is not enough to PAC-learn \mathcal{H} .

Proof: Restrict attention to \mathcal{D} supported on \mathcal{C} and apply no-free-lunch.

Shattering

 $\mathcal{H}_\mathcal{C} {:}$ evaluate hypotheses in \mathcal{H} only on inputs in \mathcal{C}

Definition (Shattering)

 $\begin{array}{l} \mathcal{H} \text{ shatters a finite set } \mathcal{C} \subset \mathcal{X} \text{ if } \mathcal{H}_{\mathcal{C}} = \text{all functions from } \mathcal{C} \text{ to } \{-1,+1\},\\ \text{i.e. } |\mathcal{H}_{\mathcal{C}}| = 2^{|\mathcal{C}|}. \end{array} \end{array}$

Shattering

$\mathcal{H}_\mathcal{C} {:}$ evaluate hypotheses in \mathcal{H} only on inputs in \mathcal{C}

Definition (Shattering)

 $\begin{array}{l} \mathcal{H} \text{ shatters a finite set } \mathcal{C} \subset \mathcal{X} \text{ if } \mathcal{H}_{\mathcal{C}} = \text{all functions from } \mathcal{C} \text{ to } \{-1,+1\},\\ \text{i.e. } |\mathcal{H}_{\mathcal{C}}| = 2^{|\mathcal{C}|}. \end{array} \end{array}$

Example (Axis-aligned Rectangles)

$$\mathcal{H}_{rec}^{2} = \{h_{(a_{1},b_{1},a_{2},b_{2})} \mid a_{1} \leq b_{1}, a_{2} \leq b_{2}\}, \text{ where}$$

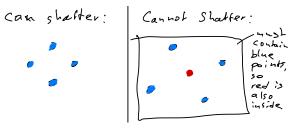
$$h_{(a_{1},b_{1},a_{2},b_{2})}(x_{1},x_{2}) = \begin{cases} +1 & \text{if } a_{1} \leq x_{1} \leq b_{1} \text{ and } a_{2} \leq x_{2} \leq b_{2} \\ -1 & \text{otherwise} \end{cases}$$

Exists a C of size 4 that is shattered by \mathcal{H}^2_{rec} , but not of size 5.

Proof (Handwritten)

Need to show:

- 1. Exists $\ensuremath{\mathcal{C}}$ of size 4 that is shattered
- 2. No \mathcal{C} of size 5 is shattered



Proof not size 5: if left-most, right-most, top-most and bottom-most point +1, then remaining point also +1

VC-Dimension

Definition (Shattering)

 ${\mathcal H} \text{ shatters}$ a finite set ${\mathcal C} \subset {\mathcal X}$ if ${\mathcal H}_{\mathcal C} =$ all functions.

Definition (Vapnik-Chervonenkis (VC) Dimension)

- ▶ VCdim(\mathcal{H}) = maximum size of finite set $\mathcal{C} \subset \mathcal{X}$ shattered by \mathcal{H}
- VCdim $(\mathcal{H}) = \infty$ if there is no maximum

VC-Dimension

Definition (Shattering)

 $\mathcal H$ shatters a finite set $\mathcal C\subset \mathcal X$ if $\mathcal H_\mathcal C=$ all functions.

Definition (Vapnik-Chervonenkis (VC) Dimension)

- ▶ VCdim(\mathcal{H}) = maximum size of finite set $\mathcal{C} \subset \mathcal{X}$ shattered by \mathcal{H}
- VCdim $(\mathcal{H}) = \infty$ if there is no maximum

Corollary (Difficult Subsets of \mathcal{H})

If exists finite $C \subset X$ such that H shatters C, then sample size $m \leq |C|/2$ is not enough to PAC-learn H.

VC-Dimension

Definition (Shattering)

 ${\mathcal H} \text{ shatters}$ a finite set ${\mathcal C} \subset {\mathcal X}$ if ${\mathcal H}_{\mathcal C} =$ all functions.

Definition (Vapnik-Chervonenkis (VC) Dimension)

- ▶ VCdim(\mathcal{H}) = maximum size of finite set $\mathcal{C} \subset \mathcal{X}$ shattered by \mathcal{H}
- VCdim $(\mathcal{H}) = \infty$ if there is no maximum

Corollary (Difficult Subsets of \mathcal{H})

If exists finite $C \subset X$ such that H shatters C, then sample size $m \leq |C|/2$ is not enough to PAC-learn H.

- Sample size $m \leq VCdim(\mathcal{H})/2$ is not enough to PAC-learn \mathcal{H} .
- If $VCdim(\mathcal{H}) = \infty$, then \mathcal{H} is not PAC-learnable.

VC-Dimension: Examples

Definition (Vapnik-Chervonenkis (VC) Dimension)

- ▶ VCdim(\mathcal{H}) = maximum size of finite set $\mathcal{C} \subset \mathcal{X}$ shattered by \mathcal{H}
- VCdim $(\mathcal{H}) = \infty$ if there is no maximum

Example (Axis-Aligned Rectangles) VCdim(\mathcal{H}^2_{rect}) = 4

VC-Dimension: Examples

Definition (Vapnik-Chervonenkis (VC) Dimension)

- ▶ VCdim(\mathcal{H}) = maximum size of finite set $\mathcal{C} \subset \mathcal{X}$ shattered by \mathcal{H}
- VCdim $(\mathcal{H}) = \infty$ if there is no maximum

Example (Axis-Aligned Rectangles) VCdim(\mathcal{H}^2_{rect}) = 4

$$\begin{split} & \text{Example (Finite Hypothesis Classes)} \\ & \text{VCdim}(\mathcal{H}) \leq \log_2(|\mathcal{H}|) \end{split}$$

The Fundamental Theorem of PAC-Learning

Theorem

For binary classification, the following are equivalent:

- 1. \mathcal{H} has the uniform convergence property.
- 2. Any **ERM** rule is a successful agnostic PAC-learner for \mathcal{H} .
- 3. \mathcal{H} is agnostic PAC-learnable.
- 4. \mathcal{H} is **PAC-learnable**.
- 5. Any **ERM** rule is a successful PAC-learner for \mathcal{H} .
- 6. ${\cal H}$ has finite VC-dimension.

The Fundamental Theorem of PAC-Learning

Theorem

For binary classification, the following are equivalent:

- 1. \mathcal{H} has the uniform convergence property.
- 2. Any **ERM** rule is a successful agnostic PAC-learner for \mathcal{H} .
- 3. \mathcal{H} is agnostic PAC-learnable.
- 4. \mathcal{H} is PAC-learnable.
- 5. Any **ERM** rule is a successful PAC-learner for \mathcal{H} .
- 6. \mathcal{H} has finite VC-dimension.

Main Points:

- PAC-learnability and agnostic PAC-learnability are equivalent
- VC-dimension characterizes both!

The Fundamental Theorem of PAC-Learning

Theorem

For binary classification, the following are equivalent:

- 1. \mathcal{H} has the uniform convergence property.
- 2. Any **ERM** rule is a successful agnostic PAC-learner for \mathcal{H} .
- 3. \mathcal{H} is agnostic PAC-learnable.
- 4. \mathcal{H} is **PAC-learnable**.
- 5. Any **ERM** rule is a successful PAC-learner for \mathcal{H} .
- 6. ${\cal H}$ has finite VC-dimension.

Main Points:

- PAC-learnability and agnostic PAC-learnability are equivalent
- VC-dimension characterizes both!

Other Observations:

- Finite VC-dimension is equivalent to uniform convergence
- ERM always works for (agnostic) PAC-learning

VC-Dimension of Linear Predictors (Halfspaces)

$$\mathcal{H}^d_{\mathsf{lin}} = \{h_{oldsymbol{w}, b} \mid oldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}\},$$

where

$$h_{oldsymbol{w},b}(oldsymbol{X}) = egin{cases} +1 & ext{if } b + \langle oldsymbol{w},oldsymbol{X}
angle \geq 0 \ -1 & ext{otherwise} \end{cases}$$
 for $oldsymbol{X} \in \mathbb{R}^d$

Theorem

 $\mathsf{VCdim}(\mathcal{H}^d_{\mathit{lin}}) = d+1$

 For many (but not all!) hypothesis classes VC-dimension equals number of parameters

Now take
$$b = \frac{y_0}{2}$$
, $w = (y_{11}, \dots, y_{d})$
Then $b + \langle w_1 \rangle = \frac{y_0}{2}$ forms t
 $b + \langle w_1 \rangle = \frac{y_0}{2} + y_1$ sign.
II. UC-dim $\leq d+2$.
To show: If $\zeta \in \mathbb{R}^d$ of size $|C|=d+2$,

Let
$$C = \frac{5}{2} \frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{2}$$