Machine Learning Theory 2023 Lecture 2

Tim van Erven

Download these slides from elo.mastermath.nl!

Review

- (Agnostic) PAC learning
- Agnostic PAC-learnability for finite classes
- Uniform convergence
- No-Free-Lunch Theorem (without proof)

Formal Setup Review

$$S = \begin{pmatrix} Y_1 \\ X_1 \end{pmatrix}, \cdots, \begin{pmatrix} Y_m \\ X_m \end{pmatrix} \sim \mathcal{D}$$

Risk:
$$L_{\mathcal{D}}(h) = \mathbb{E}[\ell(h, X, Y)]$$
for $(X, Y) \sim \mathcal{D}$ Empirical Risk: $L_{\mathcal{S}}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, X_i, Y_i)$ for (X_i, Y_i) in S

Classification (0/1-loss counts mistakes):

$$\ell(h, X, Y) = \mathbf{1}\{h(X) \neq Y\} = \begin{cases} 0 & \text{if } h(X) = Y \\ 1 & \text{if } h(X) \neq Y \end{cases}$$

Regression (Squared Error):

$$\ell(h, \boldsymbol{X}, \boldsymbol{Y}) = (\boldsymbol{Y} - h(\boldsymbol{X}))^2$$

No Overfitting for (Multiclass) Classification

Realizability assumption: Exists perfect predictor $h^* \in \mathcal{H}$, i.e. $Pr(h^*(X) = Y) = 1$.

Theorem (First Example of PAC-Learning)

Assume \mathcal{H} is finite, realizability holds. Choose any $\delta \in (0, 1)$, $\epsilon > 0$. Then, for all $m \geq \frac{\ln(|\mathcal{H}|/\delta)}{\epsilon}$, ERM over \mathcal{H} guarantees

$$L_{\mathcal{D}}(h_S) \leq \epsilon$$
 with probability $\geq 1 - \delta$.

NB Lower bound on *m* does not depend on \mathcal{D} or on h^* !

PAC learning: probably approximately correct

(Agnostic) PAC Learning

- PAC learning (always for binary classification)
- Agnostic PAC learning for binary classification
- Agnostic PAC learning in general
- Improper Agnostic PAC learning in general

Definition: PAC Learning (Binary Classification)

A hypothesis class ${\mathcal H}$ is PAC-learnable if there exist

▶ a function $m_{\mathcal{H}} : (0,1)^2 \to \mathbb{N}$

▶ and learning algorithm that outputs $h_S \in \mathcal{H}$

such that for all

▶ distributions D for which realizability holds w.r.t. H
 ▶ and all ε, δ ∈ (0, 1)

 $L_{\mathcal{D}}(h_{\mathcal{S}}) \leq \epsilon$ with probability $\geq 1 - \delta$, whenever $m \geq m_{\mathcal{H}}(\epsilon, \delta)$.

Definition: PAC Learning (Binary Classification)

A hypothesis class ${\mathcal H}$ is PAC-learnable if there exist

▶ a function $m_{\mathcal{H}} : (0,1)^2 \to \mathbb{N}$

▶ and learning algorithm that outputs $h_S \in \mathcal{H}$

such that for all

▶ distributions D for which realizability holds w.r.t. H
 ▶ and all €, δ ∈ (0, 1)

 $L_{\mathcal{D}}(h_{\mathcal{S}}) \leq \epsilon$ with probability $\geq 1 - \delta$, whenever $m \geq m_{\mathcal{H}}(\epsilon, \delta)$.

Sample complexity:

The function $m_{\mathcal{H}}$ such that $m_{\mathcal{H}}(\epsilon, \delta)$ is smallest possible for all ϵ, δ

No Overfitting for (Multiclass) Classification

Theorem (First Example of PAC-Learning)

Assume \mathcal{H} is finite, realizability holds. Choose any $\delta \in (0, 1)$, $\epsilon > 0$. Then, for all $m \geq \frac{\ln(|\mathcal{H}|/\delta)}{\epsilon}$, ERM over \mathcal{H} guarantees

 $L_{\mathcal{D}}(h_S) \leq \epsilon$

with probability at least $1 - \delta$.

For binary classification this is equivalent to:

Theorem

Every finite hypothesis class $\mathcal H$ is PAC-learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon,\delta) \leq \left\lceil rac{\ln(|\mathcal{H}|/\delta)}{\epsilon}
ight
ceil$$

and learning algorithm ERM.

Definition: PAC Learning (Binary Classification)

A hypothesis class \mathcal{H} is PAC-learnable if there exist

▶ a function $m_{\mathcal{H}} : (0,1)^2 \to \mathbb{N}$

▶ and learning algorithm that outputs $h_S \in \mathcal{H}$

such that for all

▶ distributions D for which realizability holds w.r.t. H
 ▶ and all ε, δ ∈ (0, 1)

 $L_{\mathcal{D}}(h_{\mathcal{S}}) \leq \epsilon$ with probability $\geq 1 - \delta$, whenever $m \geq m_{\mathcal{H}}(\epsilon, \delta)$.

Definition: Agnostic PAC Learning (Binary Classification)

A hypothesis class \mathcal{H} is **Agnostic PAC-learnable** if there exist

- ▶ a function $m_{\mathcal{H}} : (0,1)^2 \to \mathbb{N}$
- ▶ and learning algorithm that outputs $h_S \in \mathcal{H}$

such that for all

▶ distributions D for which realizability holds w.r.t. H
 ▶ and all \(\epsilon, \delta \) ∈ (0, 1)

Definition: Agnostic PAC Learning (Binary Classification) (In General)

A hypothesis class \mathcal{H} is **Agnostic PAC-learnable** if there exist

- ▶ a function $m_{\mathcal{H}} : (0,1)^2 \to \mathbb{N}$
- ▶ and learning algorithm that outputs $h_S \in \mathcal{H}$

such that for all

▶ distributions D for which realizability holds w.r.t. H
 ▶ and all ε, δ ∈ (0, 1)

Definition: Agnostic PAC Learning (In General)

A hypothesis class \mathcal{H} is Agnostic PAC-learnable if there exist

▶ a function $m_{\mathcal{H}} : (0,1)^2 \to \mathbb{N}$

▶ and learning algorithm that outputs $h_S \in \mathcal{H}$

such that for all

distributions D

▶ and all $\epsilon, \delta \in (0, 1)$

Definition: Improper Agnostic PAC Learning (In General)

A hypothesis class ${\mathcal H}$ is Improperly Agnostic PAC-learnable if there exist

▶ a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$

▶ and learning algorithm that outputs $h_S \in \mathcal{H}$

such that for all

- distributions \mathcal{D}
- ▶ and all $\epsilon, \delta \in (0, 1)$

Agnostic PAC-Learnability for Finite Classes via Uniform Convergence

Agnostic PAC-Learnability for Finite Classes

Theorem (Bounded Loss, Finite Class)

Suppose $\ell : \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \rightarrow [0, 1]$. Then every finite hypothesis class \mathcal{H} is agnostically PAC-learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon,\delta) \leq \left\lceil rac{2\ln(2|\mathcal{H}|/\delta)}{\epsilon^2}
ight
ceil$$

and learning algorithm ERM.

Agnostic PAC-Learnability for Finite Classes

Theorem (Bounded Loss, Finite Class)

Suppose $\ell : \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \rightarrow [0, 1]$. Then every finite hypothesis class \mathcal{H} is agnostically PAC-learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon,\delta) \leq \left\lceil rac{2\ln(2|\mathcal{H}|/\delta)}{\epsilon^2}
ight
ceil$$

and learning algorithm ERM.

► Worse dependence on ϵ compared to $m_{\mathcal{H}}(\epsilon, \delta) \leq \left\lceil \frac{\ln(|\mathcal{H}|/\delta)}{\epsilon} \right\rceil$ for PAC-learnability

Agnostic PAC-Learnability for Finite Classes

Theorem (Bounded Loss, Finite Class)

Suppose $\ell : \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \rightarrow [0, 1]$. Then every finite hypothesis class \mathcal{H} is agnostically PAC-learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon,\delta) \leq \left\lceil rac{2\ln(2|\mathcal{H}|/\delta)}{\epsilon^2}
ight
ceil$$

and learning algorithm ERM.

- ► Worse dependence on ϵ compared to $m_{\mathcal{H}}(\epsilon, \delta) \leq \left\lceil \frac{\ln(|\mathcal{H}|/\delta)}{\epsilon} \right\rceil$ for PAC-learnability
- ► Losses with different range [a, b] can be reduced to [0, 1] range by subtracting a and dividing by (b a).

Technical Tool: Uniform Convergence

A hypothesis class ${\cal H}$ has the $\underset{exists}{\textit{uniform convergence}}$ property if there

▶ a function $m_{\mathcal{H}}^{\mathbf{UC}}: (0,1)^2 \to \mathbb{N}$

such that for all

- $\blacktriangleright \ \text{distributions} \ \mathcal{D}$
- ▶ and all $\epsilon, \delta \in (0, 1)$

$$\begin{split} \sup_{h\in\mathcal{H}} |L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| &\leq \epsilon \quad \text{ with probability} \geq 1 - \delta, \\ \text{ whenever } m \geq m_{\mathcal{H}}^{\mathrm{UC}}(\epsilon, \delta). \end{split}$$

Uniform Convergence \rightarrow Agnostic PAC-Learnability

Uniform convergence implies agnostic PAC-learnability:

Lemma

If \mathcal{H} has the uniform convergence property, then it is agnostic **PAC-learnable** with

$$m_{\mathcal{H}}(\epsilon,\delta) \leq m_{\mathcal{H}}^{UC}\left(rac{\epsilon}{2},\delta
ight)$$

and learning algorithm ERM.

Uniform Convergence \rightarrow Agnostic PAC-Learnability

Uniform convergence implies agnostic PAC-learnability:

Lemma

If \mathcal{H} has the uniform convergence property, then it is agnostic **PAC-learnable** with

$$m_{\mathcal{H}}(\epsilon,\delta) \leq m_{\mathcal{H}}^{UC}\left(rac{\epsilon}{2},\delta
ight)$$

and learning algorithm ERM.

• We will prove uniform convergence for finite \mathcal{H} and loss range [0,1]

Then the desired agnostic PAC-learnability follows

Proof (Handwritten)

To show, for h_S ERM hypothesis:

 $L_{\mathcal{D}}(h_{\mathcal{S}}) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$ with probability $\geq 1 - \delta$, whenever $m \geq m_{\mathcal{H}}^{\mathrm{UC}}\left(\frac{\epsilon}{2}, \delta\right)$.

Assuming uniform convergence, applied for $\epsilon/2$:

 $\sup_{h \in \mathcal{H}} |\mathcal{L}_{\mathcal{D}}(h) - \mathcal{L}_{\mathcal{D}}(h)| \leq \frac{\epsilon}{2} \quad \text{with probability} \geq 1 - \delta,$

whenever $m \geq m_{\mathcal{H}}^{\mathrm{UC}}\left(\frac{\epsilon}{2},\delta\right)$.

Proof: On the event that $|L_S(h) - L_D(h)| \le \frac{\epsilon}{2}$ for all $h \in \mathcal{H}$, we have for all $h' \in \mathcal{H}$

$$L_{\mathcal{D}}(h_{\mathcal{S}}) \leq L_{\mathcal{S}}(h_{\mathcal{S}}) + \frac{\epsilon}{2} \leq L_{\mathcal{S}}(h') + \frac{\epsilon}{2} \leq L_{\mathcal{D}}(h') + \epsilon.$$

Then take the infimum over h'.

Uniform Convergence for Finite Classes

Lemma (Bounded Loss, Finite Class)

Suppose $\ell : \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \rightarrow [0, 1]$. Then every finite hypothesis class \mathcal{H} has the uniform convergence property with

$$m_{\mathcal{H}}^{UC}(\epsilon,\delta) \leq \left\lceil rac{\ln(2|\mathcal{H}|/\delta)}{2\epsilon^2}
ight
ceil.$$

To show:

$$\Pr\left(\sup_{h \in \mathcal{H}} |L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| \le \epsilon\right) \ge 1 - \delta$$

whenever $m \ge \frac{\ln(2|\mathcal{H}|/\delta)}{2\epsilon^2}$

Proof (Handwritten)

$$\Pr\left(\sup_{h \in \mathcal{H}} |L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| \le \epsilon\right) \stackrel{?}{\ge} 1 - \delta$$
$$\Pr\left(\sup_{h \in \mathcal{H}} |L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| > \epsilon\right) \stackrel{?}{\le} \delta$$
$$\Pr\left(\text{exists } h \in \mathcal{H} : |L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| > \epsilon\right) \stackrel{?}{\le} \delta$$

Part I (union bound):

$$\Pr\left(\text{exists } h \in \mathcal{H} : |L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| > \epsilon\right) \leq \sum_{h \in \mathcal{H}} \Pr\left(|L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| > \epsilon\right)$$

Part II (Hoeffding's inequality): Let $Z_i = \ell(h, X_i, Y_i) \in [0, 1]$.

$$\Pr\left(|L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| > \epsilon\right) = \Pr\left(\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i} - \mathbb{E}[Z]\right| > \epsilon\right) \stackrel{Hoeffding}{\leq} 2e^{-2m\epsilon^{2}}$$

Proof Continued (Handwritten)

Part I+II:

$$\begin{aligned} \mathsf{Pr}\left(\mathsf{exists}\ h \in \mathcal{H}: |L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| > \epsilon\right) &\leq \sum_{h \in \mathcal{H}} \mathsf{Pr}\left(|L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| > \epsilon\right) \\ &\leq |\mathcal{H}| 2e^{-2m\epsilon^2} \stackrel{?}{\leq} \delta \end{aligned}$$

Yes, for $m \geq rac{\ln rac{2|\mathcal{H}|}{\delta}}{2\epsilon^2}$

Putting Everything Together

Theorem (Bounded Loss, Finite Class)

Suppose $\ell : \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \rightarrow [0, 1]$. Then every finite hypothesis class \mathcal{H} has the uniform convergence property with

$$m_{\mathcal{H}}^{UC}(\epsilon,\delta) \leq \left\lceil rac{\ln(2|\mathcal{H}|/\delta)}{2\epsilon^2}
ight
ceil,$$

and is therefore agnostically PAC-learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon,\delta) \leq m_{\mathcal{H}}^{UC}ig(rac{\epsilon}{2},\deltaig) \leq igg[rac{2\ln(2|\mathcal{H}|/\delta)}{\epsilon^2}igg]$$

and learning algorithm ERM.

No-Free-Lunch Theorem

No-Free-Lunch Theorem (Binary Classification)

Is there a learner that works on all learning tasks? No!

Theorem (No-Free-Lunch)

Let A be any learning algorithm for binary classification. If $m \leq |\mathcal{X}|/2$, then there exists a distribution \mathcal{D} such that

- 1. There exists a perfect predictor f with $L_{\mathcal{D}}(f) = 0$.
- 2. $\Pr\left(L_{\mathcal{D}}(\mathcal{A}(S)) \geq 1/8\right) \geq 1/7$ for $S \sim \mathcal{D}^m$.

No-Free-Lunch Theorem (Binary Classification)

Is there a learner that works on all learning tasks? No!

Theorem (No-Free-Lunch)

Let A be any learning algorithm for binary classification. If $m \leq |\mathcal{X}|/2$, then there exists a distribution \mathcal{D} such that

1. There exists a perfect predictor f with $L_{\mathcal{D}}(f) = 0$.

2.
$$\Pr\left(L_{\mathcal{D}}(A(S)) \ge 1/8\right) \ge 1/7$$
 for $S \sim \mathcal{D}^m$.

Interpretation:

- \mathcal{H}_{all} = all functions from \mathcal{X} to $\{-1, +1\}$
- $\blacktriangleright \ m_{\mathcal{H}_{\mathsf{all}}}(\epsilon,\delta) > |\mathcal{X}|/2 \text{ for any } \epsilon < 1/8, \ \delta < 1/7$

No-Free-Lunch Theorem (Binary Classification)

Is there a learner that works on all learning tasks? No!

Theorem (No-Free-Lunch)

Let A be any learning algorithm for binary classification. If $m \leq |\mathcal{X}|/2$, then there exists a distribution \mathcal{D} such that

1. There exists a perfect predictor f with $L_{\mathcal{D}}(f) = 0$.

2.
$$\Pr\left(L_{\mathcal{D}}(\mathcal{A}(S)) \geq 1/8\right) \geq 1/7$$
 for $S \sim \mathcal{D}^m$.

Interpretation:

- $\mathcal{H}_{all} = all \text{ functions from } \mathcal{X} \text{ to } \{-1, +1\}$
- $\blacktriangleright \ m_{\mathcal{H}_{\mathsf{all}}}(\epsilon,\delta) > |\mathcal{X}|/2 \text{ for any } \epsilon < 1/8, \ \delta < 1/7$

Corollary

Suppose $|\mathcal{X}| = \infty$. Then \mathcal{H}_{all} is not PAC-learnable.

No-Free-Lunch Theorem (Binary Classification)

Is there a learner that works on all learning tasks? No!

Theorem (No-Free-Lunch)

Let A be any learning algorithm for binary classification. If $m \leq |\mathcal{X}|/2$, then there exists a distribution \mathcal{D} such that

1. There exists a perfect predictor f with $L_{\mathcal{D}}(f) = 0$.

2.
$$\Pr\left(L_{\mathcal{D}}(\mathcal{A}(S)) \geq 1/8\right) \geq 1/7$$
 for $S \sim \mathcal{D}^m$.

Proof Intuition:

- Suppose D is uniform on 2m points in X, and Y = f(X) for some unknown function f.
- From S we only know f(X) for m observed points.
- Without any assumptions about f, learner cannot do better than random guessing on m unobserved points.