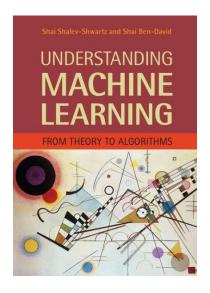
Machine Learning Theory 2023 Lecture 1

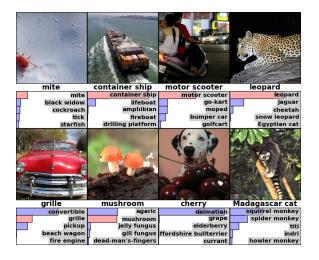
Tim van Erven

- Intro
- Statistical Decision Theory
- Empirical Risk Minimization and Overfitting
- ▶ PAC-Learnability for finite classes, realizable case

Book: Shai² (for First Half of the Course)



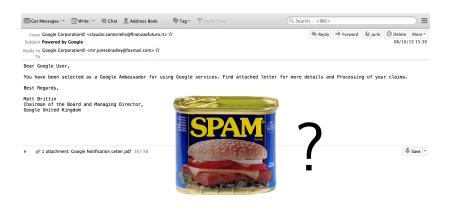
Multiclass Classification Example: Images



Y = image class, X = vector with pixel values

Krizhevsky, Sutskever, Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NeurIPS 2012

Binary Classification Example: Spam Detection

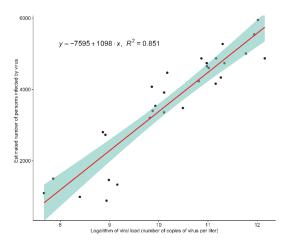


Y = ham/spam $X = (X_1, ..., X_{50\,000})$: X_i is word count for i-th word from dictionary

Spam image by Qwertyxp2000 from https://commons.wikimedia.org/wiki/File:Spam_can.png

Regression Example: Covid Cases from Wastewater

Y =Active number of Covid-19 cases



 $X = X_1 =$ Log-viral load in wastewater

Vallejo et al., Highly predictive regression model of active cases of COVID-19 in a population by screening wastewater viral load, medRxiv preprint, 2020

Regression Example: Prostate Cancer

Goal: Predict level of prostate specific antigen (PSA) for men with prostate cancer

```
Y = \log \text{ of PSA}
```

 $X = (X_1, \dots, X_{97})$: 97 clinical measures, including

- log cancer volume
- log prostate weight
- ► Gleason score
- **.**...

Example from Hastie, Tibshirani, Freedman, Elements of Statistical Learning, 2nd edition, 2009

Scope of the Course I: Supervised vs Unsupervised

In the Course:

Supervised Machine Learning: Learn to predict response Y for input X based on examples of desired responses. E.g.

- ▶ Image classification: X = image, Y = class
- ▶ Spam classification: X = e-mail, Y = ham/spam
- ightharpoonup Covid regression: X = viral load, Y is nr. of active cases
- ightharpoonup Cancer regression: X= clinical measures, Y= antigen amount

Not in the Course:

Unsupervised Machine Learning: Identify structure in inputs X. E.g.

- Group data into clusters
- ► Dimensionality reduction

Scope of the Course II: Batch and Online

We cover two learning models:

Part I, Batch Learning:

- Data is obtained as one big batch
- ► Then learn a predictor
- Deploy predictor once, to be used unchanged on new data

Part II, Online Learning:

- Data arrives sequentially over time
- Continuously make predictions for incoming data
- Use new data to keep improving predictor

Scope of this Course III: Foundations vs Practice

What is Missing:

- ▶ Not: programming, real data, getting rich and famous quickly...
- By itself this course is too theoretical!

... But We Make Up for It:

- Deep understanding via beautiful concepts and proofs
- ▶ When is learning possible and what are the fundamental limitations?
- Close connections to statistics, game theory, information theory, optimization, . . .

Supervised Learning

Sample of training data:
$$S = \begin{pmatrix} Y_1 \\ X_1 \end{pmatrix}, \cdots, \begin{pmatrix} Y_m \\ X_m \end{pmatrix}$$
 (teacher shows us desired response Y_i for input X_i)

 Y_i : class/response variable $X_i \in \mathbb{R}^d$: feature vectors

Goal: Learn function $h_S: \mathcal{X} \to \mathcal{Y}$ from hypothesis class $\mathcal{H} =$ some set of functions

Supervised Learning

Sample of training data:
$$S = \begin{pmatrix} Y_1 \\ X_1 \end{pmatrix}, \cdots, \begin{pmatrix} Y_m \\ X_m \end{pmatrix}$$
 (teal despite the sample of training data)

(teacher shows us desired response Y_i for input X_i)

 Y_i : class/response variable $X_i \in \mathbb{R}^d$: feature vectors

Goal: Learn function $h_S: \mathcal{X} \to \mathcal{Y}$ from hypothesis class $\mathcal{H} =$ some set of functions

Evaluate h_S on **test data**:

- New X from same source
- Predict corresponding Y by $\hat{Y} = h_S(X)$

Assume $inom{Y_i}{oldsymbol{X}_i}$ independent samples from same probability distribution \mathcal{D}

Avoid further assumptions on \mathcal{D} ! (So \mathcal{D} can be very complicated)

Supervised Learning: Regression

$$S = \begin{pmatrix} Y_1 \\ X_1 \end{pmatrix}, \cdots, \begin{pmatrix} Y_m \\ X_m \end{pmatrix}$$

 $Y \in \mathbb{R}$ is a continuous variable. E.g.

Y = Covid-19 cases $X = (X_1, X_2)$: $X_1 = \text{viral load}$, $X_2 = \text{population size}$

Linear Regression ($\mathcal{H} = \text{affine functions}$):

$$h_{w,b}(X) = b + \langle w, X \rangle = b + \sum_{i=1}^d w_i X_i$$

Can assume b = 0 w.l.o.g. to simplify notation, because:

$$w' = (b, w_1, \dots, w_d)$$
 $X' = (1, X_1, \dots, X_d)$ $h_{w'}(X') = \langle w', X' \rangle = h_{w,b}(X)$

Supervised Learning: Classification

$$S = \begin{pmatrix} Y_1 \\ X_1 \end{pmatrix}, \cdots, \begin{pmatrix} Y_m \\ X_m \end{pmatrix}$$

Y is a categorical variable

▶ E.g. $Y \in \{\mathsf{Ham}, \mathsf{Spam}\}\ \mathsf{or}\ Y \in \{\mathsf{Mite}, \mathsf{Leopard}, \mathsf{Mushroom}\}$

Binary Classification (with two classes):

- ightharpoonup Can e.g. map "Ham" $\mapsto -1$, "Spam" $\mapsto +1$
- So assume $Y \in \{-1, +1\}$ or sometimes $Y \in \{0, 1\}$ without loss of generality (w.l.o.g.)

Halfspaces ($\mathcal{H} = \text{Linear Predictors}$):

$$h_{\boldsymbol{w},b}(\boldsymbol{X}) = \operatorname{sign}(b + \langle \boldsymbol{w}, \boldsymbol{X} \rangle) \in \{-1, +1\}$$

Overfitting (why machine learning is non-trivial)

The #1 Beginner's Mistake:

- ► Try many machine learning methods and fine-tune their settings until the number of mistakes on the training data *S* is small
- ► What can go wrong?

Poll:

- 1. Trying many methods and settings can take a very long time.
- 2. Few mistakes on S does not guarantee good learning.
- 3. You should only use methods taught in this course.

Overfitting (why machine learning is non-trivial)

The #1 Beginner's Mistake:

- ► Try many machine learning methods and fine-tune their settings until the number of mistakes on the training data *S* is small
- What can go wrong?

Poll:

- 1. Trying many methods and settings can take a very long time.
- 2. Few mistakes on S does not guarantee good learning!
- 3. You should only use methods taught in this course.

Overfitting (why machine learning is non-trivial)

The #1 Beginner's Mistake:

- ► Try many machine learning methods and fine-tune their settings until the number of mistakes on the training data *S* is small
- ► What can go wrong?

- ▶ Suppose X is uniformly distributed in $[-1, +1]^2$
- ightharpoonup Y=+1 if $X_1\geq 0$; Y=-1 otherwise.

$$h_S(X) = \begin{cases} Y_i & \text{for smallest } i \in \{1, \dots, m\} \text{ such that } X = X_i \\ -1 & \text{if no such } i \text{ exists} \end{cases}$$

Perfect on training data *S*,

but probability of mistake = 1/2 on new (X, Y) from \mathcal{D} ! No better than random guessing!

Statistical Decision Theory I: Loss

Measure error by loss function: $\ell(h, X, Y)$

Classification (0/1-loss counts mistakes):

$$\ell(h, X, Y) = \begin{cases} 0 & \text{if } h(X) = Y \\ 1 & \text{if } h(X) \neq Y \end{cases}$$

Regression (Squared Error):

$$\ell(h, X, Y) = (Y - h(X))^2$$

Other choices possible! (Depends on what is important in your application)

Statistical Decision Theory II: Risk

Risk:
$$L_{\mathcal{D}}(h) = \mathbb{E}[\ell(h, X, Y)]$$
 for $(X, Y) \sim \mathcal{D}$

Empirical Risk:
$$L_S(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, X_i, Y_i)$$

Bayes Optimal Predictor: $f_{\mathcal{D}} \in \operatorname{arg\,min}_f L_{\mathcal{D}}(f)$

- ► Unknown, because risk depends on D
- ▶ No learning alg can do better (by definition)

Examples for Classification:

- $L_{\mathcal{D}}(h) = \Pr(h(X) \neq Y)$
- $ightharpoonup L_S(h) =$ fraction of mistakes on the training data S
- $f_{\mathcal{D}}(X) = \operatorname{arg\,max}_{V} \Pr(Y = y \mid X)$ is most likely class

Statistical Decision Theory II: Risk

Risk:
$$L_{\mathcal{D}}(h) = \mathbb{E}[\ell(h, X, Y)]$$
 for $(X, Y) \sim \mathcal{D}$

Empirical Risk:
$$L_S(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, X_i, Y_i)$$

Bayes Optimal Predictor: $f_{\mathcal{D}} \in \operatorname{arg\,min}_f L_{\mathcal{D}}(f)$

- ► Unknown, because risk depends on D
- ▶ No learning alg can do better (by definition)

Empirical Risk Minimization (ERM): $f_s \in \arg\min_{h \in \mathcal{H}} L_S(h)$

- ► Minimize empirical risk (known) instead of risk (unknown)
- ightharpoonup Restrict to hypothesis class \mathcal{H} to prevent overfitting

Choice of \mathcal{H} is a **modeling decision**, made before seeing the data!

No Overfitting for (Multiclass) Classification

Definition (Realizability assumption)

Exists $h^* \in \mathcal{H}$ that perfectly predicts Y (with probability 1): $Pr(h^*(X) = Y) = 1$.

Huge simplification:

- $Y = h^*(X)$ without any noise
- ▶ We were lucky enough to include h^* in \mathcal{H}

No Overfitting for (Multiclass) Classification

Definition (Realizability assumption)

Exists $h^* \in \mathcal{H}$ that perfectly predicts Y (with probability 1): $Pr(h^*(X) = Y) = 1$.

Huge simplification:

- $ightharpoonup Y = h^*(X)$ without any noise
- ▶ We were lucky enough to include h^* in \mathcal{H}

Theorem (First Example of PAC-Learning)

Assume $\mathcal H$ is finite, realizability holds. Choose any $\delta \in (0,1)$, $\epsilon > 0$. Then, for all $m \geq \frac{\ln(|\mathcal H|/\delta)}{\epsilon}$, ERM over $\mathcal H$ guarantees

$$L_{\mathcal{D}}(h_{\mathcal{S}}) \leq \epsilon$$

with probability at least $1 - \delta$.

NB Lower bound on m does not depend on \mathcal{D} or on h^* !

PAC learning: probably approximately correct

Proof (handwritten)

Recall that $L_D(h) = \Pr(h(X) \neq Y)$

'Bad" hypotheses: $\mathcal{H}_B = \{ h \in \mathcal{H} : \Pr(h(X) \neq Y) > \epsilon \}$

ERM only selects a bad hypothesis h if $L_S(h) = 0$.

So sufficient to show that

$$\Pr(\text{exists } h \in \mathcal{H}_B : L_S(h) = 0) \leq \delta.$$

Lemma (Union Bound)

For any two events A and B, $Pr(A \text{ or } B) \leq Pr(A) + Pr(B)$.

Hence

$$\begin{split} \Pr(\text{exists } h \in \mathcal{H}_B : L_S(h) = 0) &\leq \sum_{h \in \mathcal{H}_B} \Pr(L_S(h) = 0) \\ &\leq \sum_{h \in \mathcal{H}_B} (1 - \epsilon)^m \leq |\mathcal{H}| (1 - \epsilon)^m \leq |\mathcal{H}| e^{-\epsilon m} \end{split}$$

This is guaranteed to be at most δ if $m \geq \frac{\ln(|\mathcal{H}|/\delta)}{\epsilon}$.

Close Relation to Statistics, But...

Stats:

- Estimate true parameters, with uncertainty quantification
- ► Follow rigorous procedures or results are nonsense

Machine Learning:

- ► Estimate parameters that predict well
 - Possible under weaker assumptions/more complicated models!
- Can always estimate risk on a test set, even for crazy learning algorithm → cowboy mentality can work!
- ► (Fast!) algorithms

ML vs Stats (Handwritten)

