Information Theory Exercise Sheet #3

University of Amsterdam, Master of Logic, Fall 2014
Lecturer: Christian Schaffner
TA: Philip Schulz
Out: Wednesday, 12 November 2014
(due: Wednesday, 19 November 2014, 13:00)

Previous Exam Questions

At this point in the course, you should be able to solve the following exercises which were exam questions in previous editions of the course:

1. Let X, Y, Z be binary random variables such that $I(X; Y) = 0$ and $I(X; Z) = 0$.

 (a) $\left\lceil \frac{1}{2} \right\rceil$ points] Does it follow that $I(X; Y, Z) = 0$? If yes, prove it. If no, give a counterexample.

 (b) $\left\lceil \frac{1}{2} \right\rceil$ points] Does it follow that $I(Y; Z) = 0$? If yes, prove it. If no, give a counterexample.

2. Let A, B, C be random variables over alphabet $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$ for some integer $n \geq 2$. Let us assume that

 \begin{align*}
 A &= B + C \mod n, \\
 H(B) &= \log(n), \\
 I(A; B) &= 0.
 \end{align*}

 Show that $I(A; C) = 0$.

3. Let A, B, C be random variables such that

 \begin{align*}
 I(A; B) &= 0, \\
 I(A; C|B) &= I(A; B|C), \\
 H(A|BC) &= 0.
 \end{align*}

 What is the relation between the quantities $H(A)$ and $H(C)$?
To be solved in Class

1. For the Markov chain $X \leftrightarrow Y \leftrightarrow \hat{X}$, show that $H(X|\hat{X}) \geq H(X|Y)$.

2. [Cover-Thomas 2.32]. We are given the following joint distribution of $X \in \{1, 2, 3\}$ and $Y \in \{a, b, c\}$:

 \[
 P_{XY}(1,a) = P_{XY}(2,b) = P_{XY}(3,c) = 1/6
 \]

 \[
 P_{XY}(1,b) = P_{XY}(1,c) = P_{XY}(2,a) = P_{XY}(2,c) = P_{XY}(3,a) = P_{XY}(3,b) = 1/12.
 \]

Let $\hat{X}(Y)$ be an estimator for X (based on Y) and let $p_e = P(\hat{X} \neq X)$.

(a) Find an estimator $\hat{X}(Y)$ for which the probability of error p_e is as small as possible.

(b) Evaluate Fano’s inequality for this problem and compare.

3. The mean of a random variable X is $\mu = E[X]$. The variance of X is defined as $Var[X] = E[(X - \mu)^2]$.

(a) Show that $Var[X] = E[X^2] - (E[X])^2$.

(b) Show that for any real $a > 0$, it holds that $Var[aX] = a^2 Var[X]$, and $Var[X + a] = Var[X]$.

(c) Show that for independent random variables X, Y, we have $Var[X + Y] = Var[X] + Var[Y]$.

(d) Let X be a random variable with Bernoulli distribution $P_X(1) = p$ and $P_X(0) = 1 - p$. Compute $E[X]$ and $Var[X]$.

(e) Let Y be a random variable with binomial distribution $P_Y(y) = \binom{n}{y} p^y (1 - p)^{n-y}$. Compute $E[Y]$ and $Var[Y]$.

Homework

1. Deriving the weak law of large numbers.

 (a) [3 points] (Markov’s inequality.) For any real non-negative random variable X and any $t > 0$, show that

 \[
 P_X(X \geq t) \leq \frac{E[X]}{t}.
 \]

 Exhibit a random variable (which can depend on t) that achieves this inequality with equality.

 (b) [2 points] (Chebyshev’s inequality.) Let Y be a random variable with mean μ and variance σ^2.

 By letting $X = (Y - \mu)^2$, show that for any $\varepsilon > 0$,

 \[
 P(|Y - \mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2}.
 \]

 (c) [2 points] (The weak law of large numbers.) Let Z_1, Z_2, \ldots, Z_n be a sequence of iid random variables with mean μ and variance σ^2. Let $\overline{Z_n} = \frac{1}{n} \sum_{i=1}^n Z_i$ be the sample mean. Show that

 \[
 P(|\overline{Z_n} - \mu| \geq \varepsilon) \leq \frac{\sigma^2}{n\varepsilon^2}.
 \]

 Thus, $P(|\overline{Z_n} - \mu| > \varepsilon) \rightarrow 0$ as $n \rightarrow \infty$. This is known as the weak law of large numbers.
2. **AEP and source coding.** A discrete memoryless source emits a sequence of statistically independent binary digits with probabilities $P_X(1) = 0.005$ and $P_X(0) = 0.995$. The digits are taken 100 at a time and a binary codeword is provided for every sequence of 100 digits containing three or fewer 1’s.

 (a) [2 points] Assuming that all codewords are the same length, find the minimum length required to provide codewords for all sequences with three or fewer 1’s.

 (b) [2 points] Calculate the probability of observing a source sequence for which no codeword has been assigned.

 (c) [3 points] Use Chebychev’s inequality to bound the probability of observing a source sequence for which no codeword has been assigned. Compare this bound with the actual probability computed in part (b).

3. **Calculation of typical set.** To clarify the notion of a typical set $A_{\varepsilon}^{(n)}$ and the smallest set of high probability $B_{\delta}^{(n)}$, we will calculate these sets for a simple example. Consider a sequence of iid binary random variables X_1, X_2, \ldots, X_n, where the probability that $P_X(1) = 0.6$ and $P_X(0) = 0.4$.

 (a) [1 point] Calculate $H(X)$.

 (b) [3 points] With $n = 25$ and $\varepsilon = 0.1$, which sequences fall in the typical set $A_{\varepsilon}^{(n)}$? What is the probability of the typical set? How many elements are there in the typical set? (This involves computation of a table of probabilities for sequences with k 1’s, $0 \leq k \leq 25$, and finding those sequences that are in the typical set.)

 Hint: Here is the table: http://goo.gl/sQCPM0

 (c) [2 points] How many elements are there in the smallest set that has probability 0.9? In other words, what is $|B_{\delta}^{(n)}|$ for $n = 25$ and $\delta = 0.1$?

 (d) [2 points] How many elements are there in the intersection $|A_{\varepsilon}^{(n)} \cap B_{\delta}^{(n)}|$ of the sets computed in parts (b) and (c)? What is the probability of this intersection?