Information Theory Exercise Sheet #2

University of Amsterdam, Master of Logic, Spring 2014
Lecturer: Christian Schaffner
TA: Hoang Cuong
Out: Thu, 13 February 2014
Due: Thu, 20 February 2014, 11:00

To be solved in Class

1. *Disprove the teacher.* Let \(n = \log(|\mathcal{X}|) \).

 (a) Give a joint distribution \(P_{XY} \) where \(H(X) = n \), and \(X \) and \(Y \) are dependent.

 (b) Prove that \(H(X|Y) = n \) implies that \(X \) and \(Y \) are independent.

2. [Cover-Thomas 2.32]. We are given the following joint distribution of \(X \in \{1, 2, 3\} \) and \(Y \in \{a, b, c\} \):

 \[
 \begin{align*}
 P_{XY}(1, a) &= P_{XY}(2, b) = P_{XY}(3, c) = 1/6 \\
 P_{XY}(1, b) &= P_{XY}(1, c) = P_{XY}(2, a) = P_{XY}(2, c) = P_{XY}(3, a) = P_{XY}(3, b) = 1/12.
 \end{align*}
 \]

 Let \(\hat{X}(Y) \) be an estimator for \(X \) (based on \(Y \)) and let \(p_e = P(\hat{X} \neq X) \).

 (a) Find an estimator \(\hat{X}(Y) \) for which the probability of error \(p_e \) is as small as possible.

 (b) Evaluate Fano’s inequality for this problem and compare.

Homework

1. [3 points] Show that the value

\[
R(X; Y; Z) = I(X; Y) - I(X; Y|Z)
\]

is invariant under permutations of its arguments.

2. [6 points] Let \(X, Y, Z \) be arbitrary random variables, and let \(f \) be any deterministic function acting on \(Y \). In the following, replace “?” by “\(\geq \)” or “\(\leq \)” to obtain the correct inequalities, and reason each time with the help of an entropy diagram. **Hint:** \(H(f(Y)|Y) = 0. \)

 (a) \(H(f(Y)) \) ? \(H(Y) \)

 (b) \(H(X|f(Y)) \) ? \(H(X|Y) \)

 (c) \(I(X; Z|Y) = 0 \) implies \(I(X; Z) \) ? \(I(X; Y) \) and \(I(X; Z) \) ? \(I(Y; Z) \).

3. [6 points] For each statement below, specify a joint distribution \(P_{XYZ} \) of random variables \(X, Y \) and \(Z \) (\(P_{XY} \) of \(X \) and \(Y \) in (a)) such that the inequalities hold.

 (a) There exists a \(y \), such that \(H(X|Y = y) > H(X) \)

 (b) \(I(X; Y) > I(X; Y|Z) \)

 (c) \(I(X; Y) < I(X; Y|Z) \)
Note that the distributions have to be different from the ones seen as examples during the lecture.

4. **Bottleneck.** Suppose a Markov chain starts in one of \(n \) states, necks down to \(k < n \) states, and then fans back to \(m > k \) states. Thus \(X_1 \rightarrow X_2 \rightarrow X_3 \), i.e.,

\[
P_{X_1,X_2,X_3}(x_1,x_2,x_3) = P_{X_1}(x_1) \cdot P_{X_2|X_1}(x_2|x_1) \cdot P_{X_3|X_2}(x_3|x_2)
\]

for all \(x_1 \in \{1,2,\ldots,n\}, x_2 \in \{1,2,\ldots,k\}, x_3 \in \{1,2,\ldots,m\} \).

(a) [3 points] Show that the dependence of \(X_1 \) and \(X_3 \) is limited by the bottleneck by proving that

\[
I(X_1;X_3) \leq \log k.
\]

(b) [1 point] Evaluate \(I(X_1;X_3) \) for \(k = 1 \), and conclude that no dependence can survive such a bottleneck.

5. [4 points] **Conditional mutual information.** Consider a sequence of \(n \) binary random variables \(X_1, X_2, \ldots, X_n \). Each sequence with an even number of 1’s has probability \(2^{-(n-1)} \) and each sequence with an odd number of 1’s has probability 0. Find the mutual informations

\[
I(X_1;X_2), \quad I(X_2;X_3|X_1), \quad \ldots, \quad I(X_{n-1};X_n|X_1,\ldots,X_{n-2})
\]

6. [6 points] **Run-length coding.** Let \(X_1, X_2, \ldots, X_n \) be (possibly dependent) binary random variables. Suppose one calculates the run lengths \(R = (R_1,R_2,\ldots) \) of this sequence (in order as they occur). For example, the sequence \(X = 0001100100 \) yields run lengths \(R = (3,2,2,1,2) \). Compare \(H(X_1,X_2,\ldots,X_n), H(R) \) and \(H(X_n,R) \). Show all equalities and inequalities, and bound all the differences.