Entropy Rate of a Stochastic Process

Timo Mulder Jorn Peters

Universiteit van Amsterdam

January 2015
Overview

1. Stochastic Processes
 Markov Process

2. Entropy Rate of Stochastic Processes

3. Finally...
Stochastic Process \(\{X_i\} \)

Definition (Stochastic Process)

A discrete stochastic process is a sequence of RVs:

\[... , X_{-3}, X_{-2}, X_{-1}, X_0, X_1, X_2, ... \]
Stochastic Process $\{X_i\}$

Definition (Stochastic Process)

A discrete stochastic process is a sequence of RVs:

$$\ldots, X_{-3}, X_{-2}, X_{-1}, X_0, X_1, X_2, \ldots$$

- Characterized by its joint probability mass function:
 $$P_{X_1, X_2, \ldots, X_n}(x_1, x_2, \ldots, x_n)$$

- Arbitrary dependence between RVs
Markov Process $\{X_i\}$

Stochastic process with the Markov property

Definition (Markov Process)

A stochastic process is a Markov process if for $n = 1, 2, \ldots$

$$P(X_{n+1} = x_{n+1} \mid X_n = x_n, \ldots, X_1 = x_1) = P(X_{n+1} = x_{n+1} \mid X_n = x_n)$$

For all $x_1, x_2, \ldots, x_n, x_{n+1} \in X$.
Markov Process $\{X_i\}$

Stochastic process with the Markov property

Definition (Markov Process)

A stochastic process is a Markov process if for $n = 1, 2, \ldots$

$$P(X_{n+1} = x_{n+1} \mid X_n = x_n, \ldots, X_1 = x_1)$$

$$= P(X_{n+1} = x_{n+1} \mid X_n = x_n)$$

For all $x_1, x_2, \ldots, x_n, x_{n+1} \in \mathcal{X}$.

Random variable only depends on its direct predecessor.
Time Invariant Markov Process I

Definition (Time Invariance)

A Markov process is time invariant if for $n = 1, 2, \ldots$,

$$P(X_{n+1} = a \mid X_n = b) = P(X_2 = a \mid X_1 = b)$$

for all $a, b \in \mathcal{X}$.

Defined by:

1. It’s initial state
2. A probability transition matrix P
 - $P = [P_{ij}], i, j \in \{1, 2, 3, \ldots, m\}$
 - Where $P_{ij} = Pr\{X_{n+1} = j \mid X_n = i\}$
Time Invariant Markov Process II

Example

\[P(X_{n+1} = b | X_n = a) = P(X_2 = b | X_1 = a) = P(X_9 = b | X_8 = a) \]

etc.
Stationary Distribution

Given $P_{X_t}(\cdot)$ the probability mass function at time $t + 1$ is defined as

$$P_{X_{t+1}}(\alpha) = \sum_{k=1}^{n} P(x_k)P(X_{t+1} = \alpha | X_t = x_k)$$

$$= \sum_{k=1}^{n} P(x_k)P_{x_k}\alpha$$
Stationary Distribution

Given $P_{X_t}(\cdot)$ the probability mass function at time $t + 1$ is defined as

$$P_{X_{t+1}}(\alpha) = \sum_{k=1}^{n} P(x_k)P(X_{t+1} = \alpha | X_t = x_k)$$

$$= \sum_{k=1}^{n} P(x_k)P_{X_k}\alpha$$

If the probability mass at time t and time $t + 1$ are the same then the process is a stationary process. In that case μ is the stationary distribution where $\mu_i = P_X(i)$.
Stationary Stochastic Process

More precise:

Definition

A stochastic process is stationary if the joint distribution of any subset of the sequence of RVs is invariant of shifts in the time index.
Stationary Stochastic Process

More precise:

Definition

A stochastic process is stationary if the joint distribution of any subset of the sequence of RVs is invariant of shifts in the time index. That is,

\[
\Pr\{X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n\} = \Pr\{X_{1+l} = x_1, X_{2+l} = x_2, \ldots, X_{n+l} = x_n\}
\]

for every \(n\) and every shift \(l\) and for all \(x_1, x_2, \ldots, x_n \in \mathcal{X}\).
Stationary Stochastic Process

In particular this means that for any stationary stochastic process we have

\[P(X_n = a) = P(X_1 = a), \quad \forall n, a. \]
Stationary Distribution I

• In our example we can find the stationary distribution by solving

\[\mu^T P = \mu^T \]

• Thus the stationary distribution is related to a left eigenvector of the probability transition matrix \(P \) where the eigenvalue equals 1.
Irreducible and aperiodic Markov process

Figure: Taken from Moser, 2013
Irreducible and aperiodic Markov process

Given a time invariant Markov process \(\{X_i\} \) that is irreducible and aperiodic.

Remark

\(\{X_i\} \) has a unique stationary distribution.
Irreducible and aperiodic Markov process

Given a time invariant Markov process \(\{X_i\} \) that is irreducible and aperiodic.

Remark

\(\{X_i\} \) has a unique stationary distribution.

Remark

Independent of the starting distribution \(P_{X_1}(\cdot) \). \(P_{X_k}(\cdot) \) will converge to the stationary distribution \(\mu \) as \(k \to \infty \).
Stationary Distribution II

Example

Let us show that in the example \(\mu = \left[\frac{3}{5}, \frac{2}{5} \right] \)

<table>
<thead>
<tr>
<th>(P_{X_k}(\cdot))</th>
<th>(k = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{X_k}(S))</td>
<td>1</td>
</tr>
<tr>
<td>(P_{X_k}(R))</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(P_{X_k}(\cdot))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{X_k}(S))</td>
</tr>
<tr>
<td>(P_{X_k}(R))</td>
</tr>
</tbody>
</table>

Table: Convergence to stationary distribution when \(k \to \infty \).
(Taken from Moser, 2013)
Stationary Distribution II

Example

Let us show that in the example \(\mu = \left[\frac{3}{5}, \frac{2}{5} \right] \)

<table>
<thead>
<tr>
<th>(P_{X_k}(\cdot))</th>
<th>(k = 1)</th>
<th>(k = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{X_k}(S))</td>
<td>1</td>
<td>(\frac{1}{2} = 0.5)</td>
</tr>
<tr>
<td>(P_{X_k}(R))</td>
<td>0</td>
<td>(\frac{1}{2} = 0.5)</td>
</tr>
</tbody>
</table>

\(P_{X_k}(\cdot) \)

<table>
<thead>
<tr>
<th>(P_{X_k}(S))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{X_k}(R))</td>
</tr>
</tbody>
</table>

Table: Convergence to stationary distribution when \(k \to \infty \).

(Taken from Moser, 2013)
Stationary Distribution II

Example

Let us show that in the example \(\mu = \left[\frac{3}{5}, \frac{2}{5} \right] \)

<table>
<thead>
<tr>
<th>(P_{X_k}(\cdot))</th>
<th>(k = 1)</th>
<th>(k = 2)</th>
<th>(k = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{X_k}(S))</td>
<td>1</td>
<td>(\frac{1}{2} = 0.5)</td>
<td>(\frac{5}{8} = 0.625)</td>
</tr>
<tr>
<td>(P_{X_k}(R))</td>
<td>0</td>
<td>(\frac{1}{2} = 0.5)</td>
<td>(\frac{3}{8} = 0.375)</td>
</tr>
</tbody>
</table>

Table: Convergence to stationary distribution when \(k \to \infty \).
(Taken from Moser, 2013)
Stationary Distribution II

Example

Let us show that in the example $\mu = \begin{bmatrix} \frac{3}{5} \\ \frac{2}{5} \end{bmatrix}$

<table>
<thead>
<tr>
<th>$P_{X_k}(\cdot)$</th>
<th>$k = 1$</th>
<th>$k = 2$</th>
<th>$k = 3$</th>
<th>$k = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{X_k}(S)$</td>
<td>1</td>
<td>$\frac{1}{2} = 0.5$</td>
<td>$\frac{5}{8} = 0.625$</td>
<td>$\frac{19}{32} = 0.59375$</td>
</tr>
<tr>
<td>$P_{X_k}(R)$</td>
<td>0</td>
<td>$\frac{1}{2} = 0.5$</td>
<td>$\frac{3}{8} = 0.375$</td>
<td>$\frac{13}{32} = 0.40625$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$P_{X_k}(\cdot)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{X_k}(S)$</td>
</tr>
<tr>
<td>$P_{X_k}(R)$</td>
</tr>
</tbody>
</table>

Table: Convergence to stationary distribution when $k \to \infty$.
(Taken from Moser, 2013)
Stationary Distribution II

Example

Let us show that in the example $\mu = \left[\frac{3}{5}, \frac{2}{5} \right]$

<table>
<thead>
<tr>
<th>$P_{X_k}(\cdot)$</th>
<th>$k = 1$</th>
<th>$k = 2$</th>
<th>$k = 3$</th>
<th>$k = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{X_k}(S)$</td>
<td>1</td>
<td>$\frac{1}{2} = 0.5$</td>
<td>$\frac{5}{8} = 0.625$</td>
<td>$\frac{19}{32} = 0.59375$</td>
</tr>
<tr>
<td>$P_{X_k}(R)$</td>
<td>0</td>
<td>$\frac{1}{2} = 0.5$</td>
<td>$\frac{3}{8} = 0.375$</td>
<td>$\frac{13}{32} = 0.40625$</td>
</tr>
</tbody>
</table>

$P_{X_k}(\cdot)$ for $k = 5$

| $P_{X_k}(S)$ | $\frac{77}{128} = 0.6015625$ |
| $P_{X_k}(R)$ | $\frac{51}{128} = 0.3984375$ |

Table: Convergence to stationary distribution when $k \to \infty$.
(Taken from Moser, 2013)
Stationary Distribution II

Example

Let us show that in the example $\mu = \left[\frac{3}{5}, \frac{2}{5}\right]$.

<table>
<thead>
<tr>
<th>$P_{X_k}(\cdot)$</th>
<th>$k = 1$</th>
<th>$k = 2$</th>
<th>$k = 3$</th>
<th>$k = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{X_k}(S)$</td>
<td>1</td>
<td>$\frac{1}{2} = 0.5$</td>
<td>$\frac{5}{8} = 0.625$</td>
<td>$\frac{19}{32} = 0.59375$</td>
</tr>
<tr>
<td>$P_{X_k}(R)$</td>
<td>0</td>
<td>$\frac{1}{2} = 0.5$</td>
<td>$\frac{3}{8} = 0.375$</td>
<td>$\frac{13}{32} = 0.40625$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$P_{X_k}(\cdot)$</th>
<th>$k = 5$</th>
<th>\ldots</th>
<th>$k = \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{X_k}(S)$</td>
<td>$\frac{77}{128} = 0.6015625$</td>
<td>\ldots</td>
<td>$\frac{3}{5} = 0.6$</td>
</tr>
<tr>
<td>$P_{X_k}(R)$</td>
<td>$\frac{51}{128} = 0.3984375$</td>
<td>\ldots</td>
<td>$\frac{2}{5} = 0.4$</td>
</tr>
</tbody>
</table>

Table: Convergence to stationary distribution when $k \to \infty$.
(Taken from Moser, 2013)
Entropy Rate

The entropy rate of a state in the example is

\[H(X_t) = H\left(\frac{\alpha}{\alpha + \beta}, \frac{\beta}{\alpha + \beta}\right) = h\left(\frac{\alpha}{\alpha + \beta}\right) \]
Entropy Rate

The entropy rate of a state in the example is
\[H(X_t) = H(\frac{\alpha}{\alpha+\beta}, \frac{\beta}{\alpha+\beta}) = h(\frac{\alpha}{\alpha+\beta}) \]

This is not the entropy of the stochastic process.
Entropy Rate

The entropy rate of a state in the example is
\[H(X_t) = H\left(\frac{\alpha}{\alpha+\beta}, \frac{\beta}{\alpha+\beta}\right) = h\left(\frac{\alpha}{\alpha+\beta}\right) \]

This is not the entropy at the stochastic process.

So what is the entropy of a stochastic process?
Entropy Rate: Some Intuition

If \(\{X_i\} \) is i.i.d. it makes sense to say that \(H(\{X_i\}) = H(X_1) \).

\[\rightarrow \text{Entropy is average bits per symbol.} \]
Entropy Rate: Some Intuition

If \(\{X_i\} \) is i.i.d. it makes sense to say that \(H(\{X_i\}) = H(X_1) \).
→ Entropy is average bits per symbol.

However,

Example

\(\{Y_i\} \) is a source with memory such that \(P_{Y_1}(0) = P_{Y_1}(1) = \frac{1}{2} \).
Furthermore assume that

\[
P_{Y_2|Y_1}(0 \mid 0) = 0, \quad P_{Y_2|Y_1}(1 \mid 0) = 1
\]
\[
P_{Y_2|Y_1}(0 \mid 1) = 0, \quad P_{Y_2|Y_1}(1 \mid 1) = 1
\]

Then \(P_{Y_2}(1) = 1 \) which means that \(H(Y_2) = 0, H(Y_2 \mid Y_1) = 0, H(Y_{n+1} \mid Y_n) = 0 \) and \(H(Y_1, \ldots, Y_n) = 1 \).
Entropy Rate: Some Intuition

If \(\{X_i\} \) is i.i.d. it makes sense to say that \(H(\{X_i\}) = H(X_1) \).

\(\rightarrow \) Entropy is average bits per symbol.

However,

Example

\(\{Y_i\} \) is a source with memory such that \(P_{Y_1}(0) = P_{Y_1}(1) = \frac{1}{2} \).

Furthermore assume that

\[
\begin{align*}
P_{Y_2|Y_1}(0 \mid 0) &= 0, & P_{Y_2|Y_1}(1 \mid 0) &= 1 \\
P_{Y_2|Y_1}(0 \mid 1) &= 0, & P_{Y_2|Y_1}(1 \mid 1) &= 1
\end{align*}
\]

Then \(P_{Y_2}(1) = 1 \) which means that \(H(Y_2) = 0 \), \(H(Y_2 \mid Y_1) = 0 \), \(H(Y_{n+1} \mid Y_n) = 0 \) and \(H(Y_1, \ldots, Y_n) = 1 \). **This is not the entropy of the process.**
Entropy Rate: Definition

The entropy rate of a stochastic process strongly depends on the memory.

Definition (Entropy Rate of \(\{X_i\} \))

The entropy rate (the entropy per source symbol) of any stochastic process \(\{X_i\} \) is defined as

\[
H(\{X_i\}) := \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \ldots, X_n)
\]

if the limit exists.
Entropy Rate: More Intuition

Example

Given a stochastic process \(\{X_i\} \). Assume that \(\{X_i\} \) is i.i.d. Then the entropy rate of \(\{X_i\} \) is

\[
H(\{X_i\}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, \ldots, H_n) = \lim_{n \to \infty} \frac{1}{n} n H(X_1) = H(X_1)
\]
Entropy Rate: More Intuition

Example

Given a stochastic process \(\{X_i\} \). Assume that \(\{X_i\} \) is i.i.d. Then the entropy rate of \(\{X_i\} \) is

\[
H(\{X_i\}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, \ldots, X_n) = \lim_{n \to \infty} \frac{1}{n} n H(X_1) = H(X_1)
\]

Example

Given the stochastic process \(\{Y_i\} \). Then the entropy rate of \(\{Y_i\} \) is

\[
H(\{Y_i\}) = \lim_{n \to \infty} \frac{1}{n} H(Y_1, \ldots, Y_n) = \lim_{n \to \infty} \frac{1}{n} = 0
\]
Entropy Rate: A Related Quantity

We can also define a related quantity for entropy rate:

\[H'(\{X_i\}) = \lim_{n \to \infty} H(X_n \mid X_{n-1}, X_{n-2}, \ldots, X_1) \]
Entropy Rate: A Related Quantity

We can also define a related quantity for entropy rate:

\[H'({X_i}) = \lim_{n \to \infty} H(X_n \mid X_{n-1}, X_{n-2}, \ldots, X_1) \]

\(H({X_1}) \) is the entropy rate per source symbol of \(n \) random variables and \(H'({X_i}) \) is the entropy rate of the last random variable given the past.
Theorem

For a stationary stochastic process the entropy rate $H(\{X_i\})$ always exists and is identical to $H'(\{X_i\})$:

$$H(\{X_i\}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, \ldots, X_n) = \lim_{n \to \infty} H(X_n | X_{n-1}, \ldots, X_1) = H'(\{X_i\})$$

Furthermore,

1. $H(X_n | X_{n-1}, \ldots, X_1)$ is nonincreasing in n;
2. $\frac{1}{n} H(X_1, \ldots, X_n)$ is nonincreasing in n;
3. $H(X_n | X_{n-1}, \ldots, X_1) \leq \frac{1}{n} H(X_1, \ldots, X_n)$, $\forall n \geq 1$.
Entropy Rate: Markov Chains

For a stationary Markov chain, the entropy rate is easy to calculate:

\[
H(\{X_i\}) = H'(\{X_i\}) \\
= \lim_{{n \to \infty}} H(X_n \mid X_{n-1}, \ldots, X_1) \\
= \lim_{{n \to \infty}} H(X_n \mid X_{n-1}) \\
= H(X_2 \mid X_1)
\]
Finally...

• Method to compute the entropy rate of a stochastic process;
• Using this a typical set for ‘ergodic sets’ can be constructed which has uses in compression/encoding.
• Also stochastic processes are widely used in modeling in for example AI and the entropy can be used to find optimal models.