CPA-security for Padded RSA

Tingxiang Zou
Recap: Padded RSA

Let l be a function with $l(n) \leq 2n - 2$:

- **Gen**: on input 1^n, output public key (N, e) and secret key (N, d).
- **Enc**: on message $m \in \{0, 1\}^{l(n)}$, $\text{Enc}_{(N,e)} = [(r||m)^e \mod N]$, where $r \leftarrow \{0, 1\}^{\|N\| - l(n) - 1}$.
- **Dec**: on ciphertext $c \in \mathbb{Z}_N^*$, $\text{Dec}_{(N,d)} = \text{the } l(n) \text{ low-order bits of } \lfloor c^d \mod N \rfloor$

- For $l(n) = 2n - O(\log n)$, not CPA-secure;
- For $l(n) = O(\log n)$, CPA-secure under the RSA assumption.

RSA assumption: there is no efficient algorithm, which given N, e and a random y, can find x with non-negligible probability, such that $y = [x^e \mod N]$.
We say that the RSA least significant-bit is unpredictable if there is no efficient algorithm, which given \(N, e \) and a randomly chosen \(y \), can find the least significant bit of \(x \) with non-negligible probability over \(\frac{1}{2} \), such that \(y = [x^e \mod N] \).

Theorem: The RSA least significant-bit is unpredictable under the RSA assumption.

Corollary: Padded RSA with \(l(n) = 1 \) is CPA-secure under the RSA assumption.

This result can be generalised to the \(j \)-least significant bits, for \(j = O(\log n) \).
A Reduction Proof

Lemma

If there is a PPT \mathcal{A}, that given N, e and a random y can find the least significant bit of x with non-negligible probability over $\frac{1}{2}$, such that $y = [x^e \mod N]$, then there is a PPT \mathcal{A}', which can find x with non-negligible probability.

Two important techniques:

- Improve the performance of \mathcal{A} on the RSA lsb by executing independent measurements and taking the majority vote.

- Invert the RSA encoding function by a gcd algorithm (Brent-Kung gcd procedure) in the presence of a reliable adversary for RSA lsb.
Independent measurements and the majority vote

- Suppose you want to answer a yes-or-no question \(Q \) by asking some consultant \(O \).
- Suppose each time you ask, the probability you get the right answer is \(\frac{2}{3} \).
- Ask it independently for 3 times, and give the majority answer. Now the probability that your answer is wrong is:
 \[
 Pr[3 \text{ wrong answers}] + Pr[2 \text{ wrong answers}]
 = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} + \left(\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} + \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} + \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \right) = \frac{7}{27} < \frac{1}{3}.
 \]
- If you ask it 5 times independently, then you can do even better.
- For PPT \(\mathcal{A} \) which can guess the RSA lsb with
 \[
 Pr[Succ(n)] = \frac{1}{2} + \frac{1}{n^c},
 \]
 polynomial many independent runs will give
 \[
 Pr[Succ(n)] \approx 1 - \frac{1}{n}.
 \]
Brent-Kung gcd Procedure

Compute \(\gcd(10, 15) \):

\[(10, 15) \longrightarrow \text{Only one of them is even, 2 cannot be a common divisor.}\]

It won’t hurt to replace 10 with 5.

\[(5, 15) \longrightarrow \text{They are all odd.}\]

They have the same common divisors as \(\left(\frac{15 + 5}{2}, \frac{15 - 5}{2} \right) \).

\[(10, 5) \longrightarrow \text{Only 10 is even, replace it with } \frac{10}{2}.\]

\[(5, 5) \longrightarrow 5 \text{ must be the greatest common divisor.}\]

- We only need to know the parity of \(r, s \) (which is the lsb), and be able to do the linear combination.
Inverting RSA encryption function

- Convention: Let \([x]_N\) denote \([x \mod N]\).

- If \(A\) can guess the RSA lsb with probability almost 1, then given \(N, e, y\) with \(y = [x^e]_N\), he knows almost for sure the parity of any \([ax]_N\) and \([bx]_N\). He also can calculate \([((2^{-1}(ax \pm bx))^e]_N\), hence knows the parity of \([2^{-1}(a \pm b)x]_N\).

- If \([ax]_N\) and \([bx]_N\) are coprime, then applying the Brent-Kung gcd procedure for \(([ax]_N,[bx]_N)\), \(A\) can efficiently get a \(c\), such that \([cx]_N = 1\). Then \(x = [c^{-1} \mod N]\), which is efficiently computable.

- Theorem (Dirichlet 1849): The probability that two random integers in \([1, N]\) are coprime converges to \(\frac{6}{\pi^2} \approx 0.608\) as \(N\) tends to \(+\infty\).

Hence, take two randomly chosen \(a, b \in \mathbb{Z}_N\), \([ax]_N\) and \([bx]_N\) are coprime with high probability.
Main result: in RSA, determining the least-significant bit of the plaintext is as hard as inverting the RSA encryption function (i.e., knowing the whole plaintext.)

We see two useful techniques:

1. Independent measurements + the majority vote;
2. Brent-Kung gcd procedure.

Thank You!