Homework

1. Exercise 3.9 from [KL]. “Present a construction of a variable output-length pseudorandom generator from any pseudorandom function. Prove that your construction satisfies Definition 3.17 (variable output-length pseudorandom generator”).

2. Exercise 3.15 from [KL]. “Let F be a pseudorandom function, and G a pseudorandom generator with ...” **Clarification of (a):** In this exercise, $k + 1$ for $k \in \{0, 1\}^n$ should be interpreted as flipping the last bit of k, i.e. $k + 1 := k \oplus 0^{n-1}1$. **Hint for (a):** Let $G' : \{0, 1\}^{n-1} \rightarrow \{0, 1\}^{\ell(n)}$ be a PRG. Construct from G' a $G : \{0, 1\}^n \rightarrow \{0, 1\}^{\ell(n)}$ such that $G(k) = G(k \oplus 0^{n-1}1)$ for every $k \in \{0, 1\}^n$ and show that G is a PRG. Use that PRG G to show that the proposed scheme is not secure.

3. Exercise 3.21 from [KL]. “Let Π_1 and Π_2 be two encryption schemes for which it is known that at least one is CPA-secure ...”. Use the hint!

4. Show that one has to be very careful with modifications of CBC-MAC, small modifications can be disastrous. Exercises 4.9 and 4.8 of [KL].

5. Exercise 3.22 from [KL]. “Show that the CBC, OFB, and counter modes of encryption do not yield CCA-secure encryption schemes (regardless of F).”

6. Insecurity of Encrypt-and-Authenticate: Exercise 4.19 of [KL]. “Show that if any message authentication code having unique tags is used in the encrypt-and-authenticate approach, the resulting combination is not CPA-secure.”

![Image credit: Larry Ewing, The GIMP, wikimedia.org](https://via.placeholder.com/350)

more on the back side
7. **Different security goals should always use independent keys!** We derive an example what can go wrong if the same key is used in the Encrypt-then-Authenticate approach (which yields CCA-security if independent keys are used!).

Let F be a strong pseudorandom permutation according to Definition 3.28 in [KL]. Let the key $k \leftarrow \{0,1\}^n$ be picked uniformly at random by Gen. Define $\text{Enc}_k(m) = F_k(m||r)$ for $m \in \{0,1\}^{n/2}$ and a random $r \leftarrow \{0,1\}^{n/2}$, and define $\text{Mac}_k(c) = F_k^{-1}(c)$.

(a) Define the corresponding decryption function $\text{Dec}_k(\cdot)$ and prove that this encryption scheme $(\text{Gen}, \text{Enc}, \text{Dec})$ is CPA-secure.

(b) Prove that the authentication code is a secure MAC.

(c) Conclude that the combination of the two schemes in the Encrypt-then-Authenticate approach *using the same key* k is completely insecure.