Introduction to Modern Cryptography, Exercise # 10

University of Amsterdam, Master of Logic
Lecturer: Christian Schaffner
TA: Joachim Schipper
15 November 2011
(to be handed in by Tuesday, 22 November 2011, 9:00)

1. Hybrid Encryption

(a) **Computational Indistinguishability:** Show that computational indistinguishability of probability ensembles (as defined in Definition 6.34 of [KL]) is transitive. Show that if both \(X \equiv Y \) and \(Y \equiv Z \) hold, we also have \(X \equiv Z \).

(b) **Reduction:** Using the notation from the lecture, show that \((pk, \text{Enc}_{pk}(k), \widetilde{\text{Enc}}_{k}(m_0)) \equiv (pk, \text{Enc}_{pk}(0^n), \widetilde{\text{Enc}}_{k}(m_0))\). Consider a distinguisher \(D \) which distinguishes the above ensembles with probability \(\varepsilon_D(n) \), i.e.

\[
\varepsilon_D(n) = \left| \Pr[D(pk, \text{Enc}_{pk}(k), \widetilde{\text{Enc}}_{k}(m_0)) = 1] - \Pr[D(pk, \text{Enc}_{pk}(0^n), \widetilde{\text{Enc}}_{k}(m_0)) = 1] \right|
\]

In order to show that \(\varepsilon_D(n) \leq \text{negl}(n) \), construct a CPA-attacker \(A \) on \(\Pi \) which uses \(D \) as a subroutine. **Hint:** Look at the proof of Theorem 10.13 in [KL]. Note that the solution must be in your own words.

2. Impossibility Of Public-Key Encryption that is

(a) **perfectly-secure:** Exercise 10.1 in [KL]

(b) **deterministic and secure:** Exercise 10.2 in [KL]

3. Factoring RSA Moduli: Let \(N = pq \) be a RSA-modulus and let \((N,e,d) \leftarrow \text{GenRSA}\). In this exercise, you show that for the special case of \(e = 3 \), computing \(d \) is equivalent to factoring \(N \). Show the following.

(a) The ability of efficiently factoring \(N \) allows to compute \(d \) efficiently. This shows one implication.

(b) Given \(\phi(N) \) and \(N \), show how to compute \(p \) and \(q \). **Hint:** Derive a quadratic equation (over the integers) in the unknown \(p \).

(c) Assume we know \(e = 3 \) and \(d \in \{1, 2, \ldots, \phi(N) - 1\} \) such that \(ed \equiv 1 \mod \phi(N) \). Show how to efficiently compute \(p \) and \(q \). **Hint:** Obtain a small list of possibilities for \(\phi(N) \) and use (b).

(d) Given \(e = 3 \), \(d = 29'531 \) and \(N = 44'719 \), factor \(N \) using the method above.
4. **RSA-Padding and CCA-Security**: Exercise 10.14 in [KL]. **Hint**: Use messages m_0, m_1 whose ciphertexts you can transform into different valid ciphertexts if the most significant bit of the random part r of the padding is 0.

Left: The PubK$^{cca}_{A,H}(n)$ experiment, right: Optimal Asymmetric Encryption Padding (OAEP)

[Image credit: wikimedia.org]

Adi Shamir, Ron Rivest, and Len Adleman as MIT-students and in 2003