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Abstract

Neural adaptation underlies the ability of neurons to maximize encoded informa-
tion over a wide dynamic range of input stimuli. While adaptation is an intrinsic
feature of neuronal models like the Hodgkin-Huxley model, the challenge is to in-
tegrate adaptation in models of neural computation. Recent computational models
like the Adaptive Spike Response Model implement adaptation as spike-based
addition of fixed-size fast spike-triggered threshold dynamics and slow spike-
triggered currents. Such adaptation has been shown to accurately model neural
spiking behavior over a limited dynamic range. Taking a cue from kinetic models
of adaptation, we propose a multiplicative Adaptive Spike Response Model where
the spike-triggered adaptation dynamics are scaled multiplicatively by the adap-
tation state at the time of spiking. We show that unlike the additive adaptation
model, the firing rate in the multiplicative adaptation model saturates to a maxi-
mum spike-rate. When simulating variance switching experiments, the model also
quantitatively fits the experimental data over a wide dynamic range. Furthermore,
dynamic threshold models of adaptation suggest a straightforward interpretation
of neural activity in terms of dynamic signal encoding with shifted and weighted
exponential kernels. We show that when thus encoding rectified filtered stimulus
signals, the multiplicative Adaptive Spike Response Model achieves a high coding
efficiency and maintains this efficiency over changes in the dynamic signal range
of several orders of magnitude, without changing model parameters.

1 Introduction

The ability of neurons to adapt their responses to greatly varying sensory signal statistics is central
to efficient neural coding [1, 2, 3, 4, 5, 6, 7]. Consequently, accurate models for the underlying
mechanisms can provide insight into the nature of neural coding itself. For this, models of neural
computation have to account for adaptation in a manner consistent with both experimental findings
and notions of efficient neural coding.

Neural computation is often reduced to a linear-nonlinear-poisson (LNP) model: input signals are
filtered, followed by a thresholding function that determines the firing probability of the neuron.
In the Generalized Linear Model (GLM) [8] a refractory response in the form of a post-spike filter
is added (figure 1a). Measured against such LNP models, adaptation is found to adjust both the
effective gain in the thresholding function and the linear filtering function [9, 10], where the gain
can be adapted on the timescale of tens of milliseconds [5].

Computationally, neural adaptation responds primarily to changes in local stimulus contrast or,
equivalently, to the local detection threshold [11, 12], and a number of theoretical studies account for
adaptation from the perspective of optimal contrast estimation [12, 13]. Recent work by Ozuysal &



ACCEPTED FOR NIPS2012: DRAFT VERSION

Linear �lter SpikingNonlinearity

post-spike

+

�l
te

r

ou
tp

ut

delay input

g(t)
s(t) u(t) {t  }i

Linear �lter KineticsNonlinearity

�l
te

r

ou
tp

ut
delay input

g(t)s(t) u(t) r(t)
R A

I

I2

1

u x k

u x k

a

fr �

sr si

k k

k

(a)

(b)

Figure 1: (a) Generalized Linear Model (GLM) of neural computation (b) Linear-Nonlinear Kinetics
(LNK) model.

Baccus [14] suggests that in a Linear-Nonlinear first-order Kinetics model (LNK), the gain linearly
relates to the local contrast of the filtered and rectified input signal. The gain then responds to both
changes in contrast due to changes in the mean output and changes in the variance.

Here, we combine the multiplicative gain-modulation in the LNK model with spike-based neural
adaptation models. With substantial spike-rate adaptation occurring on a time scale of just tens
of milliseconds [4, 5], adapting neurons necessarily generate at most tens of spikes in that period.
Spike-based models are thus desirable to account for adaptation in terms of input currents and output
spikes in individual neurons. In a variation of adaptive integrate-and-fire neurons [15, 16], adaptation
can be incorporated as a combination of two mechanisms: spike-triggered adaptation currents and a
dynamical action-potential threshold. In such a model, the adaptation mechanisms together increase
the distance between the reversal potential and the threshold, effectively increasing the gain of the
neuron. Such adaptive models, like the Adaptive Spike Response Model [16], have been shown to
be highly effective for modeling neural behavior in response to input currents with limited dynamic
range [16]. On longer timescales, spike-triggered adaptation currents fit a power-law decay rather
than an exponential decay, linking to observations of long-range power-law rate-adaptation [17,
18, 19, 20, 16]. In spite of its success, the additive model of adaptation in Adaptive Spike Response
Model effectively changes neural gain with at most a fixed step-size, and thus cannot respond quickly
to changes in signal variance that are large compared to this step-size.

Here, we augment the Adaptive Spike Response Model with multiplicative adaptation dynamics
similar to those proposed in the LNK model of Ozuysal & Baccus in [14]. We show that such a
multiplicative Adaptive Spike Response Model quantitatively matches neural responses in variance
switching experiments and optimizes information transfer. Furthermore, we demonstrate that the
model’s effective gain responds to changes in either mean or variance of the filtered signal, similar
to the kinetic model in [14].

In the Adaptive Spike Response Model, gain modulation derives from the difference between the
adapted reversal potential and the dynamic threshold. This suggests a straightforward interpretation
of spike-trains in terms of threshold-based detection of discernible signal levels in the rectified fil-
tered input signal. We show how non-linear signal encoding with a multiplicative Adaptive Spike
Response Model maintains a high coding efficiency for stimuli that vary in magnitude over several
orders of magnitude, unlike the additive version of the Adaptive Spike Response Model. The coding
efficiency is further comparable to the additive Adaptive Spike Response Model when the adaptation
step-size in the latter is optimized for the local dynamic range.
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2 Spike-rate Adaptation in the Spike Response Model

We follow Naud et al [16] in modeling adaptation in an augmented Spike-Response Model [21].
In the adaptive Spike Response Model (aSRM), the dynamics of the membrane-potential V (t) are
described as a sum of integrated input current I(t) and spike-triggered currents η(t):

V (t)− El =

∫
φ(t− s)I(s)ds+

∫
φ(t− s)

∑
{ti}

η(s− ti)ds,

where El is the reversal potential, {ti} denotes the set of past emitted spikes, and the kernel φ(t) is
a fast exponential low-pass filter on membrane currents:

φ(t) = φ0 exp

(
−t
τm

)
,

with τm is determined by the membrane capacitance and conductance and typically of order several
milliseconds [21, 16] .

The dynamical threshold is computed as the sum of a resting threshold and spike-triggered threshold
dynamics γ(t):

VT (t) = V0 +
∑
{ti}

γ(t− ti).

Spikes are generated either deterministically when V (t)−VT (t) becomes positive, or stochastically
following an inhomogeneous point process with conditional firing rate:

λ(t|V (t), VT (t)) = λ0 exp

(
V (t)− VT (t)

∆V

)
, (1)

where ∆V determines the slope of the exponential function; small values of ∆V approximate a
neuron with a deterministic threshold. Naud et al [16] report that the threshold kernel γ(t) is best
fitted with an exponentially decaying function, whereas the shape of the spike-triggered current η(t)
depends on the type of neuron, and furthermore for longer timescales best fits a decaying power-law:
η(t− ti) ∝ (t− ti)−β for t >> ti, with β ≈ 1.

We can denote effective adaptation in the by ϑ(t):

ϑ(t) = ϑ0 +
∑
{ti}

[
γ(t− ti) +

∫
φ(t− s)η(s− ti)ds

]
, (2)

where ϑ0 denotes the effective threshold for an inactive neuron. As the adaptation dynamics in this
model are strictly additive, we will refer to it further as the additive aSRM.

As the effective adaptation shows, we can interpret the effective neural gain g in the Adaptive Spike
Response Model as the distance between the dynamic threshold, VT (t), and the reversal potential
minus the (filtered) spike-triggered current: g ∝ VT (t) − [El −

∫
φ(t − s)

∑
{ti} η(s − ti)ds].

Such an interpretation shows that in the additive aSRM, the maximum gain magnitude is limited
by the maximum number of spikes that can be generated within the short time-window reported for
variance adaptation. Effectively, the refractory period determines the upper bound for the adaptation
step-size, and adaptation speed is upper-bounded by this value times the generated spikes.

2.1 Multiplicative Dynamic Adaptation

We propose a modification of the additive aSRM where the effective spike-triggered adaptation is
not a fixed quantity but depends on the effective adaptation at the time of spiking. Such a modifica-
tion captures an essential ingredient of the LNK adaptation model recently proposed by Ozuysal &
Baccus [14]. This model includes a first-order kinematic model to account for gain modulation, and
accurately captures the membrane potential variations of a variety of adapting neurons.

Briefly, the LNK model (Figure 1b) applies Linear-Nonlinear filtering to the stimulus signal x(t);
the output of the Linear-Nonlinear block, u(t), is then passed through the kinetic block to obtain the
model’s output r(t). Two inactive states, I1 and I2, control fast and slow adaptation dynamics in the
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kinetics block. The LN-output u(t) couples to the kinetic block by scaling two rate-constants. The
output of the model, r(t), is the active state A(t):

R′(t) = −R(t)u(t)ka + kfrI1

A′(t) = kau(t)R(t)− kfiA(t)

I ′1(t) = kfiA(t)− (kfr + ksi)I1 + ksiI2

I ′2(t) = ksiI1 − ksru(t)I2,

where I1 and I2 are the inactive states, and where the constants k are the rates of activation (ka),
fast inactivation (kfi), fast recovery (kfr), slow inactivation (ksi) and slow recovery (ksr).

We relate the kinematic model presented by Ozuysal & Baccus [14] to the Spike Response Model
by noting that “gain” in the active state A - the relationship to u(t) - is multiplicative in the resting
state R. This state is controlled by the fast adaptation state I1, which in turn is controlled by the
slow adaptation state I2. The latter state is also controlled multiplicatively the LN-signal u(t).

We include the multiplicative interaction between activation A and LN-signal u(t) in the aSRM by
scaling the adaptation response kernels γ(t) and η(t) with the current adaptation value. Replacing
the effective adaptation (2), we define a multiplicative aSRM where each spike-triggered adaptive
contribution is scaled by a factor proportional to the effective adaptation at the time of spiking:

ϑ(t) = ϑ0 +
∑
{ti}

ϑ(ti)

[
γ(t− ti) +

∫
φ(t− s)η(s− ti)ds

]
. (3)

For sparse spiking and adaptation response kernels that decay fairly rapidly to zero, such multiplica-
tive adaptive dynamics are approximately similar to the adaptation dynamics in (2). For rapid signal
variance transitions however, the multiplicative dynamics ensure that the effective adaptation can
reach multiple orders of magnitude.

The key difference in adaptation dynamics for the two aSRM models is shown in Figure 2. The
difference in effective adaptation magnitude is illustrated in Figure 2a, and the response to different
levels of step-size current injections are shown in Figure 2b. We see in there that the additive aSRM
responds to an increasing input current with a firing rate that is essentially only bounded by the
refractory response; the firing rate in the aSRM with multiplicative adaptation saturates at a much
lower value as the effective gain catches up with the magnitude of the injected current.
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Figure 2: Multiplicative and Additive Adaptation Dynamics. (a) Effective adaptation as a sum
of threshold dynamics (solid lines) and spike-triggered currents (dashed lines) given an input spike-
train (black dots). Red lines correspond to additive adaptation dynamics, blue lines to multiplicative.
(b) Firing rate as a function of signal strength. Red solid line is response for (stochastic) additive
aSRM, blue solid line for the stochastic multiplicative aSRM; dotted blue line corresponds to a
deterministic version of the multiplicative aSRM.
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2.2 Adaptive Spike-Coding

The interpretation of spike-triggered adaptation as dynamic neural gain in the Spike Response Model
suggests a straightforward application to a spike-based neural coding model. Spike-rate adaptation
has been extensively studied from the point of view of optimal contrast estimation or signal threshold
detection[13, 12]. In particular the notion of signal threshold detection suggests a simple model
where individual spikes signal that the neuron has detected that its internally computed value has
reached a level distinguishable from the local noise level [11].

Taking the standard Linear-Non-Linear model of neural computation, we follow Ozuysal & Baccus
[14] in assuming that it is the rectified filtered version of the stimulus signal, u(t), that is encoded
by the neuron. If the signal exceeds a threshold value ϑ(ti) at time ti, a spike is generated commu-
nicating a response kernel κti(t − ti) to downstream neurons. We set individual response kernels
κti(t − ti) to equal the current detection threshold times a normalized fixed response kernel κ(t):
κti(t − ti) = ϑ(ti)κ(t − ti). Then, the computed signal u(t) is approximated as a sum of shifted
and weighted response kernels:

û(t) =
∑
ti<t

ϑ(ti)κ(t− ti).

To take advantage of temporal correlations, we model κ(t) as an exponentially decaying kernel with
time-constant τκ similar to the (average) correlation time of u(t), κ(t) = exp(−t/τκ) [22].

When each spiking event subtracts the response kernel κti(t − ti) from the computed signal u(t),
the neuron effectively computes whether the difference between computed signal u(t) and com-
municated signal û(t) exceeds the current detection threshold. One straightforward implementation
identifies the response kernel κti(t− ti) with the dynamic threshold in the aSRM, and the dynamic
effective signal threshold with the spike-triggered current.

If we define the gain as the ratio between the effective adapted threshold ϑ(t) and the “resting
threshold” ϑ0, each spike communicates a signal magnitude of size gain × ϑ0. In particular for
signal ranges where the firing rate saturates, this measure grows linearly with the signal size, with
increasingly large steps of size gain. This is depicted in figure 3, for a neuron with a stochastic
threshold (large ∆V in (1); figure 3a) and for a neuron with a deterministic threshold (small ∆V in
(1); figure 3b). Plotted is the neural behavior in response to a range of step-size increases in the signal
u(t). The average firing rate shows the traditional saturation of neural response with increasing
signal size. However, the effective gain increases linearly with signal size, and the measure gain ×
ϑ0 parallels the u = u signal identity.
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deterministic multiplicative aSRM.
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3 Results

We demonstrate how the multiplicative aSRM quantitatively fits with key findings on adaptation in
experimental data.
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Figure 4: Variance switching. (a) variance of sensory input is switched with a fixed cycle time.
(b) The aSRM neuron adapts its firing rate after each switch. Switching responses for different
cycle times are overlapped. (c) The response curves for various cycle times overlap when time is
normalized for cycle time T . (d) Input-output relationship derived from 1-s-wide time windows in
the two signal variance conditions: left projected velocity signal s vs normalized firing rate, right,
projected velocity signal s normalized by respective variance σ. (e) Relationship between fitted
adaptation timescale τ as a function of cycle time T . Red circles simulation data; black circles
experimental data from [5]. Green circles simulation data for switching signals multiplied by a
factor 10. (f) Simulation response to signal scaled by factors σ1 = 1, σ2 = 2, σ3 = 3 (solid lines),
and responses rescaled by signal scale factor (dotted lines). (g) Effective gain in the multiplicative
aSRM neuron as a function of contrast, for signal u with mean held constant and variance varied
(blue line), and variance held constant and mean varied (green line). For the experiments, resting
threshold ϑ0 was set to 0.008, spike-triggered adaptation currents decayed with a power-law constant
of β = 1.15, as 4.4(t− ti + 0.7)−β and response kernels as 2.5 exp(−t/10) (time t in ms).

3.1 Variance Switching

The neural responses to variance switching [4, 5] in sensory signals are considered central evidence
for the information maximizing effect of adaptation, and also demonstrate the fast timescale of (ini-
tial) adaptation. In these key experiments, recordings are obtained from the blowfly’s H1 neuron,
and its responses are measured to a repeated change in perceived velocity variance. Signal variance
is repeatedly scaled from σ1 to σ2 = 10 ∗ σ1, with a cycle time T . As the cycle-time T is increased,
the effective time constant of adaptation grows (as measured by fitting an exponent on the initial
segment of the decaying curve). This time-constant of adaptation shows scale-free behavior: when
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normalizing for the interval time T , the neural response curves overlap, and there is linear relation-
ship between cycle-time T and effective adaptation time constant τ . As shown in [23], the additive
aSRM is only able to match these findings qualitatively for a limited change in variance.

As in [4, 5], we generated random white noise within an interval enclosed by [−σi, σi], for different
values of the variance σi (1 and 10 respectively). This signal was filtered with filters obtained by the
GLM-model [8] on the original data from [4]. We fed the thus filtered and rectified signal into the
multiplicative aSRM and optimized the model parameters using exhaustive line-search.

The optimized multiplicative aSRM exhibits both the exact same firing behavior and the same linear
relationship between switching interval as the experimental data in [5] (Figure 4b,c). Furthermore,
characterizing the input-output relationship as in [5] recovers the same overlapping response-curves
after normalizing projected velocity signal for the scaled variance. The fitted adaptation decay
time-constant τ also closely matches the experimental data [5] (Figure 4e, simulation: red circles,
data: black circles). Changing the dynamic range for both σ1 and σ2 = 10 ∗ σ1 by a factor of
10 did not change the relationship (green circles). We also characterized the signal versus firing
rate response for three scaled versions of the same velocity signal, with scaling factors 1,2 and 3,
similar to [4] (solid lines, Figure 4f). As in [4], the adapted signal-rate response curves also overlap
after normalizing the signal for the scaled variance (dotted lines, Figure 4f). Multiplicative effective
adaptation thus maximizes the transmitted information as in [4, 5].

For adaptation to relate to contrast, loosely defined as the ratio of (local) standard deviation σ and
local average signal ū, σ/ū, and thus detection threshold, it should respond accordingly to changes
in not just variance but also in changes to mean (rectified) signal magnitude. Ozuysal & Baccus
[14] show that this property holds for their kinetic model of gain modulation, which also closely
matches experimental data. In the kinetic model, gain scales linearly with standard deviation when
all other signal statistics are held constant, and similarly with 1/ū; in simulations we find that the
multiplicative aSRM shares this property (Figure 4g).

3.2 H1 encoding/decoding

With multiplicative effective adaptation responding to contrast changes, we can examine the effec-
tiveness of the corresponding neural coding model. For this, we use the original blowfly data from
Brenner et al [4], consisting of velocity stimulus profiles presented to the blowfly, where the ve-
locity stimulus is scaled with factors of σ1 = 18◦s−1, σ2 = 2σ1 = 36◦s−1, σ3 = 90◦s−1 and
σ4 = 180◦s−1. We examine how well multiplicative adaptive neural coding approximates the recti-
fied filtered signal, as compared to such neural coding with the additive aSRM.

We filter each version of this velocity stimulus with the filter obtained using GLM optimization
on the velocity stimulus with variance σ1 and optimize the parameters in both aSRM models for
condition σ1, using deterministic thresholds. We choose an exponential response kernel with time-
constant 10ms to match the correlation time of the filtered signal. An example of stimulus encoding
with multiplicative adaptive neural coding is shown in figure 5a.

We compare coding efficiency for the multiplicative aSRM and for the additive aSRM for a spike
precision of 1ms [24], applying the model optimized for condition σ1 to all four stimulus conditions
σ1, σ2, σ3, σ4, and, for the multiplicative aSRM additionally for the conditions 50 × σ1, 100 ×
σ1, 500×σ1. Relative coding efficiencies are plotted in figure 5b, black and white bars. We see that
the multiplicative aSRM maintains a high coding efficiency over the entire dynamic range, even for
the 500×σ1 stimulus condition. The dynamic range of the additive aSRM however is insufficient to
encode the wide dynamic range of the original data. Similar to the experiment in [4], the firing rate
for the multiplicative aSRM remains approximately stable for all stimulus conditions, with a firing
rate of 55 ± 5 spikes/s, without changing any parameters. The firing rate for the additive aSRM
increases from a (matched) firing rate of 55 spikes/s for the σ1 stimulus, to over 180 spikes/s for the
σ4 stimulus.

We also compare against the additive aSRM and neural coding with a non-adaptive, fixed response
kernel SRM, with the magnitude of the response-kernel (equivalent to ϑ0) optimized for the local
variance such that for each stimulus, the firing rate for these models matches that of the multiplicative
aSRM. This is shown in the light grey (scaled additive aSRM) and dark grey (scaled non-adaptive
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SRM) bars in figure 5b. The coding efficiency for multiplicative aSRM is close to that of locally
rescaled additive aSRM’s, and exceeds locally rescaled non-adaptive coding.
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Figure 5: Multiplicative Spike-Coding: (a) illustration of stimulus encoding as a sum of shifted
and weighted response kernels. Black dots denote spike-times, black solid line the signal u(t), and
magenta the approximated signal û(t). (b) Computed coding efficiency. Information rate Rinfo was
computed, with effective signal and noise bandwidth cutoff at 50Hz (matching the original stimulus
signal). Coding efficiency was computed by dividing Rinfo by the spike-train entropy rate S/T [24]
for a timing precision of 1 ms. Model parameters for the multiplicative aSRM are as in Figure 4.

4 Discussion

We showed how a multiplicative model of neural adaptation in the Spike Response Model can ac-
count quantitatively for key experimental adaptation data. When interpreting the fast adaptation
component as the manifestation of a greedy signal encoding scheme, we further showed that multi-
plicative adaptation allows the Spike Response Model to achieve high coding efficiency for signals
with dynamic ranges that change over several orders of magnitude, without changing parameters.
Just as the H1 blowfly neuron, the multiplicative aSRM uses a near-constant firing rate for the widely
varying dynamic range in the different stimulus conditions.

The ubiquity of adaptation in neural systems and notions of synaptic facilitation and depression
suggest that gain modulation could possibly be decoded by a receiving neuron by adaptively scaling
the size of the post-synaptic response. Although Series [25] argues that a number of visual percepts
are consistent with decoding neurons being “unaware” of presynaptic adaptation, the presence or
absence of such coupled adaptation can be considered as a form of spectral filtering. As we have
shown, a key advantage of accounting for gain modulation in spike-based neural coding is that it
greatly extends the neuron’s dynamic range, allowing for instance implicit spike-based probabilistic
computation as in [26] to scale to multiple layers.

From a biological perspective, it may seem implausible to let threshold dynamics and spike-triggered
adaptation currents scale with vast changes in dynamic range. However, as noted in [16], there is a
theoretical link between spike-triggered plasticity like spike-timing dependent plasticity and spike-
triggered adaptation [27]. That is, scaling of synaptic weights could complement adaptation to
large changes in dynamic range. The multiplicative Adaptive Spike Response Model also captures
only part of the first-order dynamics in the LNK model in [14], and does not account for variance-
dependent changes in temporal filtering (e.g. [9]). Thus, spike-based adaptation of the response
kernel could likely further improve the coding efficiency.

The multiplicative Adaptive Spike Response Model provides a spike-based account for gain-
modulation, which can easily be reconstructed by post-synaptic neurons as a function of the received
spike-train. It thus provides an effective neuron model for dynamical spiking neural networks, re-
solving for instance stability problems in spiking reservoir computing approaches.
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