Spatial and Geographic Databases



Database extensions

Database management research is continuously expanding
its scope of applicability

Problems encountered:

Technical problems:
— The old datatypes {int...str} are insufficient

— The algorithms are often more complex than relation
algebra

— Application programmers treat data management equal
to datastructures and algorithmic control



Case study: Sequoia benchmark

Sequoia Benchmark (1995-2000)

Presents a benchmark for earth
science (ES) databases

A functional benchmark can be used
to elucidate the requirements and
describes the challenges in
concrete terms:

— Benchmark data

— Benchmark query
— Benchmark constraints and reporting



Case study: Sequoia benchmark

Satellite imagery (longitude, latitude, wavelength band, time);

— Sample Earth’s surface on a 30m x 30m grid, in 7 wavelength
bands, every 15 days.

Massive size:

SEQUOIA 2000 ES — 100Tbytes of data
NASA Earth Observation System — 10 petabytes

Complex data types:

ES DBs include multi-dimensional arrays, geometries for spatial
objects, and other complex data types.

Sophisticated searching:
Searching arrays and spatial data for desired information.



Case study: Sequoia benchmark

Benchmark Data
— Regional, National, World Benchmarks

Raster Data:
— RASTER (time, location, band, data) g

Point Data:
— POINT (name, location)

Polygon Data:
— POLYGON (landuse, location)

Directed Graph Data:
— GRAPH (identifier, segment)



http://www.watleo.uwaterloo.ca/~piwowar/geog255/DataStructures/Hamilton.jpg

Case study: Sequoia benchmark

Data L.oad

ES expend much effort loading new data, this activity is usually
disregarded in other benchmarks.

Query 1: Create and load the data base and build any necessary
secondary indexes.

Query will record the elapsed time to load the data into the system being
tested, performing whatever data conversions are desired, and building
any secondary indexes.



Case study: Sequoia benchmark

Raster Queries

Query 2: Select RASTER data for a given wavelength band
and rectangular region ordered by ascending time.

Time travel query, watch what happens to as time increased.

Query 3: Select RASTER data for a given time and
geographic rectangle and then calculate an arithmetic
function of the five wavelength band values for each cell in
the study rectangle.

Computes a weighted average of the individual cell values in
data. The result for the function can not be pre-computed.



Case study: Sequoia benchmark

Query 4: Select RASTER data for a given time, wavelength band, and
geographic rectangle. Lower the resolution of the image by a factor
of 64 to a cell size of 4km x 4km and store it as a new DBMS object.

* Changes the spatial resolution of a raster image, this operation creates
an abstract of raster data.

* It is useful to see a large area in low resolution and then zoom into
areas of particular interest.

* Requires dynamic creation of new DB tables/classes



Case study: Sequoia benchmark

Point and Polygon Queries
Query 5: Find the POINT record that has a specific name.

System must have non-spatial indexing (B-tree, hashing) and be able to
assemble spatial and non-spatial attributes for output.

Query 6: Find all polygons that intersect a specific rectangle and store
them in the DBMS.

Requires spatial index (R-tree) and dynamic creation of new DB
tables/classes



Case study: Sequoia benchmark

Point and Polygon Query

Query 7: Find all polygons that are more than a specific size and within a
specific circle

Combination query that has both spatial/non-spatial restrictions. (R-tree)

Requirements

* Query optimizer that can evaluate expected selectivity of spatial/non-
spatial clause and choose the more restrictive one to process

* The clause that spatially subsets the data should be used



Case study: Sequoia benchmark

Spatial Joins
Queries that join data of one spatial type to those of a different spatial
type.

Query 8: Show the landuse/landcover in a 50 km quadrangle surrounding
a given point

Find polygons that intersect a rectangle of interest. (R-tree)
Perform complex spatial joins of POINT and POLYGON data sets



Case study: Sequoia benchmark

Spatial Joins

Query 9: Find the raster data for a given landuse type in a study
rectangle for a given wavelength band and time

Perform a join between raster data and polygon data

Query 10: Find the names of all points within polygons of a specific
vegetation type and create this as a new DBMS object.

Join between point and polygon data.
Dynamic creation of new DB tables/classes



Case study: Sequoia benchmark

Recursion

Need to trace drainage basins or irrigation networks a restricted recursive
queries on network data

Query 11: Find all segments of any waterway that are within 20 km
downstream of a specific geographic point

* Computation required in the middle of recursion
* Small recursion scope

* Search space can be radically pruned at start
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Case study: Sequoia benchmark
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Why using a DBMS ?

* Potential database benefits:
— Logical data model
— High-level query language
— Automatic storage management

— Fast execution engine for ad-hoc queries

But, how to extract the core ingredients and place them in a
DBMS software stack.

——p A spatial extension to RDBMS



Spatial and Geographic Databases

Spatial databases store information related to spatial locations, and
support efficient storage, indexing and querying of spatial data.

Special purpose index structures are important for accessing spatial
data, and for processing spatial join queries.

Computer Aided Design (CAD) databases store design information
about how objects are constructed E.g.: designs of buildings,
aircraft, layouts of integrated-circuits

Geographic databases store geographic information (e.g., maps):
often called geographic information systems or GIS.



Represented of Geometric Information

Various geometric constructs can be represented in a
database in a normalized fashion.

Represent a line segment by the coordinates of its
endpoints.

Approximate a curve by partitioning it into a sequence of
segments

— Create a list of vertices in order, or

— Represent each segment as a separate tuple that also
carries with it the identifier of the curve (2D features
such as roads).



Represented of Geometric Information

* Closed polygons

— List of vertices in order, starting vertex is the same as
the ending vertex, or

— Represent boundary edges as separate tuples, with each
containing identifier of the polygon, or

— Use triangulation — divide polygon into triangles

* Note the polygon identifier with each of its triangles.



Representation of Geometric Constructs

line segment

{(x1,y1), (x2,y2)}

triangle {(xLy1), (x2,y2), (x3,y3)}

{(x1,y1), (x2,y2), (x3,y3), ID1}
{(x1,y1), (x3,y3), (x4,y4), ID1}
{(x1,y1), (x4,y4), (x5,y5), ID1}

polygon

polygon O {(x1y1), (x2,y2), (x3,y3), (x4,y4), (x5,y5)}

object representation



Representation of Geometric Information (Cont.

* Representation of points and line segment in 3-D similar to
2-D, except that points have an extra z component

* Represent arbitrary polyhedra by dividing them into
tetrahedrons, like triangulating polygons.

Is Euclidean spaces a suitable base for modeling?



Problem: space 1s continuous A problematic case

computer numbers are discrete

p=ix.v)e |R:

p=ix. v)e real = real

o s Do A7

« s D properly contained m the area below



Application data are sets of points and intersecting line seg-
ments. Need to msert a segment intersecting other segments.
Basic idea: slightly distort both segments.

Solution’?






Se '.H_,’['['JE‘]']T‘-: can move!

Poimt v 1s now on the
wrong side of 4!



Representation of Geometric Information (Cont.

* Alternative: List their faces, each of which is a polygon, along with an
indication of which side of the face is inside the polyhedron.

two R-cycles ¢; and ¢;.

[\

Figure 3-12
The following terminology is introduced for these configurations:
Cq 1S ¢y and ¢; are
* (area-)inside (i, ii, 1ii) * area-disjoint (iv, v, vi)
* edge-inside (ii, iii) * edge-disjoint (v, vi)
* vertex-inside (iii) « (vertex-)disjoint (vi)



An R-face fis a pawr (¢, H), with ¢ an R-cycle and
H= 3k, ... h, | asetof R-cycles, such that:

(i) Vie {1, ....m}:h;edge-inside c
(i) Vije {l.....om}, i#jhand h; are edge-disjoint
(1) “no other cyele™ can be formed from the segments of |

Last condition enforces unique representations.




Let /= (fy, 1) and g = (g, () be two R-faces.
Jarea-inside g
&= [y arca-inside g
~n ¥ ge (g area-disjoint f,

v dfe Pt garea-inside [




Topological relationships studied in some depth. Any com-
pleteness criteria 7

Yes! Egenhofer 89 and subsequent work. Originally for simple
regions only (no holes, connected)

boundary

interior
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spatial relatronships supported by Oracle Spatial (Oracle 9i Spatial, 2003).



Design Databases

Represent design components as objects (generally geometric
objects); the connections between the objects indicate how the
design is structured.

Simple two-dimensional objects: points, lines, triangles,
rectangles, polygons.

Complex two-dimensional objects: formed from simple objects
via union, intersection, and difference operations.

Complex three-dimensional objects: formed from simpler
objects such as spheres, cylinders, and cuboids, by union,
intersection, and difference operations.

Wireframe models represent three-dimensional surfaces as a set
of simpler objects.



Representation of Geometric Constructs

(a) Difference of cylinders (b) Union of cylinders

(a) Difference of cylinders (b) Union of cylinders

* Design databases also store non-spatial information about objects (e.g.,
construction material, color, etc.)

* Spatial integrity constraints are important.

— E.g., pipes should not intersect, wires should not be too close to
each other, etc.



Geographic Data

* Raster data consist of bit maps or pixel maps, in two
or more dimensions.

— Example 2-D raster image: satellite image of cloud
cover, where each pixel stores the cloud visibility in
a particular area.

— Additional dimensions might include the temperature
at different altitudes at different regions, or
measurements taken at different points in time.

* Design databases generally do not store raster data.



Geographic Data (Cont.)

* Vector data are constructed from basic geometric objects: points,
line segments, triangles, and other polygons in two dimensions, and

cylinders, speheres, cuboids, and other polyhedrons in three
dimensions.

* Vector format often used to represent map data.

— Roads can be considered as two-dimensional and represented by
lines and curves.

— Some features, such as rivers, may be represented either as

complex curves or as complex polygons, depending on whether
their width is relevant.

— Features such as regions and lakes can be depicted as polygons.



Applications of Geographic Data

Examples of geographic data
— map data for vehicle navigation

— distribution network information for power, telephones,
water supply, and sewage

Vehicle navigation systems store information about roads and
services for the use of drivers:

— Spatial data: e.g, road/restaurant/gas-station coordinates

— Non-spatial data: e.g., one-way streets, speed limits, traffic
congestion

Global Positioning System (GPS) unit - utilizes information
broadcast from GPS satellites to find the current location of user
with an accuracy of tens of meters.

— increasingly used in vehicle navigation systems as well as
utility maintenance applications.



Spatial Access

* Develop a data structure to speedup spatial data access

— Nearness queries request objects that lie near a specified location.

— Nearest neighbor queries, given a point or an object, find the
nearest object that satisfies given conditions.

— Region queries deal with spatial regions. e.g., ask for objects that
lie partially or fully inside a specified region.

— Queries that compute intersections or unions of regions.

— Spatial join of two spatial relations with the location playing the
role of join attribute.



Indexing of Spatial Data

k-d tree - early structure used for indexing in multiple dimensions.
Each level of a k-d tree partitions the space into two.
— choose one dimension for partitioning at the root level of the tree.

— choose another dimensions for partitioning in nodes at the next level
and so on, cycling through the dimensions.

In each node, approximately half of the points stored in the sub-tree fall
on one side and half on the other.

Partitioning stops when a node has less than a given maximum number
of points.

The k-d-B tree extends the k-d tree to allow multiple child nodes for
each internal node; well-suited for secondary storage.



Division of Space by a k-d Tree

Each line in the figure (other than the outside box) corresponds to
a node in the k-d tree

— the maximum number of points in a leaf node has been set to
1.

The numbering of the lines in the figure indicates the level of the
tree at which the corresponding node appears.



Division of Space by Quadtrees

Quadtrees

Each node of a quadtree is associated with a rectangular region of space;
the top node is associated with the entire target space.

Each non-leaf nodes divides its region into four equal sized quadrants

— correspondingly each such node has four child nodes corresponding to
the four quadrants and so on

Leaf nodes have between zero and some fixed maximum number of points
(set to 1 in example).




Quadtrees (Cont.)

* PR quadtree: stores points; space is divided based on regions, rather
than on the actual set of points stored.

* Region quadtrees store array (raster) information.

— A node is a leaf node if all the array values in the region that it
covers are the same. Otherwise, it is subdivided further into four
children of equal area, and is therefore an internal node.

— FEach node corresponds to a sub-array of values.

— The sub-arrays corresponding to leaves either contain just a single
array element, or have multiple array elements, all of which have
the same value.

* Extensions of k-d trees and PR quadtrees have been proposed to index
line segments and polygons

— Require splitting segments/polygons into pieces at partitioning
boundaries
* Same segment/polygon may be represented at several leaf nodes



R-Trees

R-trees are a N-dimensional extension of B*-trees, useful for
indexing sets of rectangles and other polygons.

Supported in “many” modern database systems, along with
variants like R" -trees and R*-trees.

Basic idea: generalize the notion of a one-dimensional interval
associated with each B+ -tree node to an
N-dimensional interval, that is, an N-dimensional rectangle.

Will consider only the two-dimensional case (N = 2)

— generalization for N > 2 is straightforward, although R-trees
work well only for relatively small N



R Trees (Cont.)

* A rectangular bounding box is associated with each tree node.

Bounding box of a leaf node is a minimum sized rectangle that
contains all the rectangles/polygons associated with the leaf node.

The bounding box associated with a non-leaf node contains the
bounding box associated with all its children.

Bounding box of a node serves as its key in its parent node (if

any)
Bounding boxes of children of a node are allowed to overlap

* A polygon is stored only in one node, and the bounding box of the
node must contain the polygon

The storage efficiency or R-trees is better than that of k-d trees or
quadtrees since a polygon is stored only once



Example R-Tree

A set of rectangles (solid line) and the bounding boxes (dashed line) of the nodes
of an R-tree for the rectangles. The R-tree is shown on the right.




(slide by Ramakrishnan and Gehrke)

D Leaf entry
D Index entry

Spatial object
approximated by

bounding box R8







3d R-Tree

Dimi. 1



Search in R-Trees

* To find data items (rectangles/polygons) intersecting (overlaps) a
given query point/region, do the following, starting from the root
node:

— If the node is a leaf node, output the data items whose keys
intersect the given query point/region.

— FElse, for each child of the current node whose bounding box
overlaps the query point/region, recursively search the child

* Can be very inefficient in worst case since multiple paths may need
to be searched

— but works acceptably in practice.

* Simple extensions of search procedure to handle predicates
contained-in and contains



Insertion in R-Trees

* To insert a data item:
— Find a leaf to store it, and add it to the leaf

* To find leaf, follow a child (if any) whose bounding box contains
bounding box of data item, else child whose overlap with data item
bounding box is maximum

— Handle overflows by splits (as in B+ -trees)
* Split procedure is different though (see below)
— Adjust bounding boxes starting from the leaf upwards
* Split procedure:

— Goal: divide entries of an overfull node into two sets such that the
bounding boxes have minimum total area

* This is a heuristic. Alternatives like minimum overlap are possible
— Finding the “best” split is expensive, use heuristics instead
* See next slide



Splitting an R-Tree Node

Quadratic split divides the entries in a node into two new nodes as
follows
1. Find pair of entries with “maximum separation”

* that is, the pair such that the bounding box of the two would has the
maximum wasted space (area of bounding box — sum of areas of two
entries)

1. Place these entries in two new nodes

2. Repeatedly find the entry with “maximum preference” for one of
the two new nodes, and assign the entry to that node

LI Preference of an entry to a node is the increase in area of bounding
box if the entry is added to the other node

1. Stop when half the entries have been added to one node
[J Then assign remaining entries to the other node

Cheaper linear split heuristic works in time linear in number of
entries,

— Cheaper but generates slightly worse splits.



Deleting in R-Trees

Deletion of an entry in an R-tree done much like a B*-tree deletion.

— In case of underful node, borrow entries from a sibling if possible,
else merging sibling nodes

— Alternative approach removes all entries from the underfull node,
deletes the node, then reinserts all entries



Space-filling curves

Idea: Create 1-to-1 correspondence between points in 2D
and 1D that "preserves locality”.

T
S




Z-ordering

Simplest space-filling curve
Consider point given by

binary coordinates:
(00101110, 01101011)

Mapped to the number

formed by interleaving:
0001110011101101.

Mapping a 2D range query:
Determine the smallest

interval containing range. ZZ;’_%;TZ F 2
o Z-order: Top-left and LTS SRS

bottom right corners
determine the extremes.
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e Many different indexes, with different
strengths and weaknesses.

e Distinguishing features include:
— Linear or super-linear space?
— Good for any point distribution?

— Support for queries: Range q.,near
neighbor q., stabbing q., intersection q.,...

— Exact or approximate results?
- Fast updates, or meant for static use?

e Most common in practice: R-trees, kd/
quad-trees, (space-filling curves).

~J



MonetDB

* An early extension of
Monet provided SELECT *
geometric and FROM rivers
topological structures WHERE route intersects Window

SELECT cnams, sname

. :
MSc projects FROM cities, states

— Needs a I‘EdESIgH WHERE center inside area
and demonstrator
appliC&ltiOIl SELECT rmams, intersecticon(route, Bavaria),

— Extend into the lengthi{intersecticn (route, Bavaria) )

direction of CAD- FROM rivers
CAM Objects WHEEE route intersects Bavaria
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