
M.Kersten 2008 1

The MonetDB Architecture

Martin Kersten
CWI

Amsterdam

M.Kersten 2008 2

Execution
Paradigm

Database
Structures

Query
optimizer

Try to keep things simple

DBMS
Architecture

M.Kersten Sep 2008

MonetDB quickstep

MonetDB
kernel

MAPI protocol

JDBC

C-mapi lib

Perl

End-user application

ODBC PHP Python

SQL XQuery

RoR

M.Kersten Sep 2008

The MonetDB Software Stack

XQuery

MonetDB 4 MonetDB 5

MonetDB kernel

SQL 03

Optimizers

SQL/XML
SOAP

Open-GIS

An advanced column-oriented DBMS

X100 Compile?

M.Kersten 2008 5

MonetDB storage

Database
Structures

N-ary
stores

PAX
stores

Column
stores

Try to keep things simple

M.Kersten 2008 6

John 32 Houston OK

Early 80s: tuple storage structures for PCs were simple

Mary 31 Houston OK

Easy to access at the cost of wasted space

 Try to keep things simple

M.Kersten 2008 7

Slotted pages Logical pages equated physical pages

32 John Houston

31 Mary Houston

 Try to keep things simple

M.Kersten 2008 8

Slotted pages Logical pages equated multiple physical pages

32 John Houston

31 Mary Houston

 Try to keep things simple

M.Kersten 2008 9

Not all attributes are equally important

 Avoid things you don’t always need

M.Kersten 2008 10

A column orientation is as simple and acts like an array

Attributes of a tuple are correlated by offset

 Avoid moving too much around

M.Kersten 2008 11

•  MonetDB Binary Association Tables

 Try to keep things simple

M.Kersten 2008 12

Physical data organization
•  Binary Association Tables

Bat Unit
fixed size

Dense
sequence

Memory
mapped
files

 Try to avoid doing things twice

M.Kersten 2008 13

•  Binary Association Tables accelerators

Hash-based
access

 Try to avoid doing things twice

Column properties:
 key-ness
 non-null
 dense
 ordered

M.Kersten 2008 14

•  Binary Association Tables storage control

A BAT can be used
as an encoding table

A VID datatype
can be used to
represent dense
enumerations

Type remappings
are used to squeeze
space

100

 Try to avoid doing things twice

M.Kersten 2008 15

•  Column orientation benefits datawarehousing

•  Brings a much tighter packaging and improves
transport through the memory hierarchy

•  Each column can be more easily optimized for
storage using compression schemes

•  Each column can be replicated for read-only
access

Mantra: Try to keep things simple

M.Kersten 2008 16

Execution
Paradigm

Database
Structures

Query
optimizer

DBMS
Architecture

Try to maximize performance

M.Kersten 2008 17

Execution
Paradigm

Volcano
model

Materialize
 All
 Model

Vectorized
model

Try to maximize performance

M.Kersten 2008 18

Volcano Engines

Query

SELECT
 name,
 salary*.19 AS tax

FROM
 employee

WHERE
 age > 25

M.Kersten 2008 19

Operators

Iterator interface
- open()
- next(): tuple
- close()

Volcano Engines

M.Kersten 2008 20

Primitives

Provide computational
functionality

All arithmetic allowed in
expressions,
e.g. multiplication

mult(int,int) int

Volcano Engines

M.Kersten 2008 21

•  The Volcano model is based on a simple pull-
based iterator model for programming
relational operators.

•  The Volcano model minimizes the amount of
intermediate store

•  The Volcano model is CPU intensive and can
be inefficient

Try to maximize performance

Volcano paradigm

M.Kersten 2008 22

MonetDB paradigm

•  The MonetDB kernel is a programmable
relational algebra machine

•  Relational operators operate on ‘array’-like
structures

Try to use simple a software pattern

MonetDB quickstep

SQL

MonetDB Server

Tactical
Optimizers

MonetDB
Kernel

MAL

MAL

function user.s3_1():void;
 X1:bat[:oid,:lng] := sql.bind("sys","photoobjall","objid",0);
 X20 := aggr.count(X1);
 sql.exportValue(1,"sys.","count_","int",32,0,6,X20,"");
end s3_1;

select count(*) from photoobjall;

Kernel execution paradigms

Tuple-at-a-time pipelined

Operator-at-a-time

M.Kersten 2008 24

Operator implementation

•  All algebraic operators materialize their result
•  GOOD: small code footprints
•  GOOD: potential for re-use
•  BAD : extra storage for intermediates
•  BAD: cpu cost for retaining it

•  Local optimization decisions
•  Sortedness, uniqueness, hash index
•  Sampling to determine sizes
•  Parallelism options
•  Properties that affect the algorithms

Try to use simple a software pattern

M.Kersten 2008 25

Operator implementation

•  All algebraic operators materialize their result

•  Local optimization decisions

•  Heavy use of code expansion to reduce cost
•  55 selection routines
•  149 unary operations
•  335 join/group operations
•  134 multi-join operations
•  72 aggregate operations

Try to use simple a software pattern

M.Kersten 2008 26

Execution
Paradigm

Database
Structures

Query
optimizer

DBMS
Architecture

Try to avoid the search space trap

M.Kersten 2008 27

SQL

MonetDB Server

MAL optimizers

MonetDB Kernel

MAL

MAL

Strategic optimizer:
–  Exploit the lanuage the language
–  Rely on heuristics

Operational optimizer:
–  Exploit everything you know at runtime
–  Re-organize if necessary

Tactical MAL optimizer:
– Modular optimizer framework
– Focused on coarse grain resource
optimization

MonetDB quickstep

MonetDB quickstep

SQL

MonetDB Server

Tactical
Optimizers

MonetDB
Kernel

MAL

MAL

function user.s3_1():void;
 X1:bat[:oid,:lng] := sql.bind("sys","photoobjall","objid",0);
 X6:bat[:oid,:lng] := sql.bind("sys","photoobjall","objid",1);
 X9:bat[:oid,:lng] := sql.bind("sys","photoobjall","objid",2);
 X13:bat[:oid,:oid] := sql.bind_dbat("sys","photoobjall",1);
 X8 := algebra.kunion(X1,X6);
 X11 := algebra.kdifference(X8,X9);
 X12 := algebra.kunion(X11,X9);
 X14 := bat.reverse(X13);
 X15 := algebra.kdifference(X12,X14);
 X18 := algebra.markT(X15,0@0);
 X19 := bat.reverse(X18);
 X20 := aggr.count(X19);
 sql.exportValue(1,"sys.","count_","int",32,0,6,X20,"");
end s3_1;

select count(*) from photoobjall;

0 base table

1 insert

2 update

delete

MonetDB quickstep

SQL

MonetDB Server

Tactical
Optimizers

MonetDB
Kernel

MAL

MAL

function user.s3_1():void;
 X1:bat[:oid,:lng] := sql.bind("sys","photoobjall","objid",0);
 X20 := aggr.count(X1);
 sql.exportValue(1,"sys.","count_","int",32,0,6,X20,"");
end s3_1;

select count(*) from photoobjall;

Optimizer pipelines.

sql> select optimizer;
inline,remap,evaluate,costModel,coercions
,emptySet,aliases,mergetable,deadcode,c
onstants,commonTerms,joinPath,deadcode
,reduce,garbageCollector,dataflow,history,r
eplication,multiplex

MonetDB quickstep

SQL

MonetDB Server

Tactical
Optimizers

MonetDB
Kernel

MAL

MAL

function user.s3_1():void;
 X1:bat[:oid,:lng] := sql.bind("sys","photoobjall","objid",0);
 X20 := aggr.count(X1);
 sql.exportValue(1,"sys.","count_","int",32,0,6,X20,"");
end s3_1;

select count(*) from photoobjall;

Kernel execution paradigms

Tuple-at-a-time pipelined

Operator-at-a-time

Query optimization

•  Alternative ways of evaluating a given query
•  Equivalent expressions
•  Different algorithms for each operation (Chapter 13)

•  Cost difference between a good and a bad way of
evaluating a query can be enormous
•  Example: performing a r X s followed by a selection

r.A = s.B is much slower than performing a join on
the same condition

•  Need to estimate the cost of operations
•  Depends critically on statistical information about

relations which the database must maintain
•  Need to estimate statistics for intermediate results to

compute cost of complex expressions

Introduction (Cont.)

Relations generated by two equivalent expressions
have the same set of attributes and contain the same
set of tuples, although their attributes may be ordered
differently.

Introduction (Cont.)

•  Generation of query-evaluation plans for an
expression involves several steps:
1. Generating logically equivalent expressions

•  Use equivalence rules to transform an expression
into an equivalent one.

2.  Annotating resultant expressions to get alternative
query plans

3.  Choosing the cheapest plan based on estimated
cost

•  The overall process is called cost based
optimization.

Equivalence Rules
1.  Conjunctive selection operations can be

deconstructed into a sequence of individual
selections.

2.  2. Selection operations are commutative.

3. Only the last in a sequence of projection
operations is needed, the others can be
omitted.

4. Selections can be combined with Cartesian
products and theta joins.
a.  σθ(E1 X E2) = E1 θ E2
b.  σθ1(E1 θ2 E2) = E1 θ1∧ θ2 E2

Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are
commutative.

 E1 θ E2 = E2 θ E1

6. (a) Natural join operations are associative:
 (E1 E2) E3 = E1 (E2 E3)

(b) Theta joins are associative in the following
manner:

 (E1 θ1 E2) θ2∧ θ 3 E3 = E1 θ2∧ θ3 (E2 θ2 E3)

 where θ2 involves attributes from only E2
and E3.

Pictorial Depiction of Equivalence Rules

Equivalence Rules (Cont.)

7. The selection operation distributes over the
theta join operation under the following two
conditions:
(a) When all the attributes in θ0 involve only
the attributes of one of the expressions (E1)
being joined.

 σθ0(E1 θ E2) = (σθ0(E1)) θ E2

 (b) When θ 1 involves only the attributes of E1
and θ2 involves only the attributes of E2.
 σθ1∧θ2 (E1 θ E2) = (σθ1(E1)) θ (σθ2 (E2))

Equivalence Rules (Cont.)

8. The projections operation distributes over the
theta join operation as follows:
 (a) if it involves only attributes from L1 ∪ L2:

 (b) Consider a join E1 θ E2.
•  Let L1 and L2 be sets of attributes from E1 and E2,

respectively.
•  Let L3 be attributes of E1 that are involved in join

condition θ, but are not in L1 ∪ L2, and
•  let L4 be attributes of E2 that are involved in join

condition θ, but are not in L1 ∪ L2.

Equivalence Rules (Cont.)
9.  The set operations union and intersection are

commutative
 E1 ∪ E2 = E2 ∪ E1
 E1 ∩ E2 = E2 ∩ E1

  (set difference is not commutative).
11. Set union and intersection are associative.

 (E1 ∪ E2) ∪ E3 = E1 ∪ (E2 ∪ E3)
 (E1 ∩ E2) ∩ E3 = E1 ∩ (E2 ∩ E3)

11. The selection operation distributes over ∪, ∩ and –.
 σθ (E1 – E2) = σθ (E1) – σθ(E2)
 and similarly for ∪ and ∩ in place of –
Also: σθ (E1 – E2) = σθ(E1) – E2
 and similarly for ∩ in place of –, but
not for ∪

12. The projection operation distributes over
union

 ΠL(E1 ∪ E2) = (ΠL(E1)) ∪ (ΠL(E2))

Multiple Transformations (Cont.)

Optimizer strategies

•  Heuristic
•  Apply the transformation rules in a specific order

such that the cost converges to a minimum

•  Cost based
•  Simulated annealing
•  Randomized generation of candidate QEP
•  Problem, how to guarantee randomness

Memoization Techniques

•  How to generate alternative Query Evaluation Plans?
•  Early generation systems centred around a tree

representation of the plan
•  Hardwired tree rewriting rules are deployed to

enumerate part of the space of possible QEP
•  For each alternative the total cost is determined
•  The best (alternatives) are retained for execution

•  Problems: very large space to explore, duplicate
plans, local maxima, expensive query cost
evaluation.

•  SQL Server optimizer contains about 300 rules to be
deployed.

Memoization Techniques

•  How to generate alternative Query Evaluation Plans?
•  Keep a memo of partial QEPs and their cost.
•  Use the heuristic rules to generate alternatives to

built more complex QEPs
•  r1 r2 r3 r4

r1 r2 r2 r3 r3 r4 r1 r4
x Level 1 plans

 r3 r3
Level 2 plans

Level n plans r4

r2 r1

M.Kersten 2008 44

Ditching the optimizers

•  Applications have different characteristics
•  Platforms have different characteristics
•  The actual state of computation is crucial

•  A generic all-encompassing optimizer cost-

model does not work

M.Kersten 2008 45

Code Inliner.
Constant Expression Evaluator.
Accumulator Evaluations.
Strength Reduction.
Common Term Optimizer.

Join Path Optimizer.
Ranges Propagation.
Operator Cost Reduction.
Foreign Key handling.
Aggregate Groups.

Code Parallizer.
Replication Manager.
Result Recycler.

MAL Compiler.
Dynamic Query Scheduler.
Memo-based Execution.
Vector Execution.

Alias Removal.
Dead Code Removal.
Garbage Collector.

Try to disambiguate decisions

M.Kersten 2008 46

Execution
Paradigm

Database
Structures

Query
optimizer

DBMS
Architecture

No data from persistent store to the memory trash

M.Kersten 2008 47

Execution paradigms

•  The MonetDB kernel is set up to accommodate
different execution engines

•  The MonetDB assembler program is
•  Interpreted in the order presented
•  Interpreted in a dataflow driven manner
•  Compiled into a C program
•  Vectorised processing

•  X100 project

No data from persistent store to the memory trash

M.Kersten 2008 48

MonetDB/x100

Combine Volcano model with
vector processing.

All vectors together should fit
the CPU cache

Vectors are compressed

Optimizer should tune this,
given the query characteristics.

ColumnBM
(buffer manager)

X100 query engine

CPU
cache

networked
ColumnBM-s

RAM

M.Kersten 2008 49

•  Varying the vector size on TPC-H query 1

mysql,
oracle,

db2

X100

MonetDB

low IPC,
overhead

RAM
 bandwidth

bound

No data from persistent store to the memory trash

Query evaluation strategy

•  Pipe-line query evaluation strategy
•  Called Volcano query processing model
•  Standard in commercial systems and MySQL

•  Basic algorithm:
•  Demand-driven evaluation of query tree.
•  Operators exchange data in units such as records
•  Each operator supports the following interfaces:–

open, next, close
•  open() at top of tree results in cascade of opens

down the tree.
•  An operator getting a next() call may recursively

make next() calls from within to produce its next
answer.

•  close() at top of tree results in cascade of close
down the tree

Query evaluation strategy

•  Pipe-line query evaluation strategy
•  Evaluation:

• Oriented towards OLTP applications
•  Granule size of data interchange

•  Items produced one at a time
• No temporary files

•  Choice of intermediate buffer size allocations

• Query executed as one process
• Generic interface, sufficient to add the iterator

primitives for the new containers.
•  CPU intensive
•  Amenable to parallelization

Query evaluation strategy

•  Materialized evaluation strategy
•  Used in MonetDB
•  Basic algorithm:

•  for each relational operator produce the complete
intermediate result using materialized operands

•  Evaluation:
• Oriented towards decision support queries
•  Limited internal administration and dependencies
•  Basis for multi-query optimization strategy
• Memory intensive
•  Amendable for distributed/parallel processing

TPC-H

ATHLON X2 3800+ (2000mhz) 2 disks in raid 0, 2G main memory

TPC-H
60K rows line_item table

Comfortably fit in memory
Performance in milliseconds

TPC-H

ATHLON X2 3800+ (2000mhz) 2 disks in raid 0, 2G main memory

Scale-factor 1
6M row line-item table

Out of the box performance
Queries produce empty

or erroneous results

TPC-H

ATHLON X2 3800+ (2000mhz) 2 disks in raid 0, 2G main memory

TPC-H

ATHLON X2 3800+ (2000mhz) 2 disks in raid 0, 2G main memory

