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kernel 

MAPI protocol 
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The MonetDB Software Stack 

XQuery 

MonetDB 4 MonetDB 5 

MonetDB kernel 

SQL 03 

Optimizers 

SQL/XML 
SOAP 

Open-GIS 

An advanced column-oriented DBMS 

X100 Compile? 
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MonetDB storage 

Database 
Structures  

N-ary  
stores 

PAX  
stores  

Column 
stores  

Try to keep things simple 
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John   32 Houston OK 

Early 80s: tuple storage structures for PCs were simple 

Mary   31 Houston OK 

Easy to access at the cost of wasted space 

   Try to keep things simple 
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Slotted pages Logical pages equated physical pages 

32 John Houston  

31 Mary  Houston  

   Try to keep things simple 
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Slotted pages Logical pages equated multiple physical pages 

32 John Houston  

31 Mary  Houston  

   Try to keep things simple 
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Not all attributes are equally important 

  Avoid things you don’t always need 
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A column orientation is as simple and acts like an array 

Attributes of a tuple are correlated by offset 

  Avoid moving too much around 
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•  MonetDB Binary Association Tables 

  Try to keep things simple 



M.Kersten 2008 12 

Physical data organization 
•  Binary Association Tables 

Bat Unit 
fixed size 

Dense 
sequence 

Memory  
mapped 
files 

  Try to avoid doing things twice 
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•  Binary Association Tables accelerators 

Hash-based 
access 

  Try to avoid doing things twice 

Column properties: 
 key-ness 
 non-null 
 dense 
 ordered 
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•  Binary Association Tables storage control 

A BAT can be used 
as an encoding table  

A VID datatype 
can be used to 
represent dense 
enumerations 

Type remappings 
are used to squeeze 
space 

100 

  Try to avoid doing things twice 
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•  Column orientation benefits datawarehousing 

•  Brings a much tighter packaging and improves 
transport through the memory hierarchy 

•  Each column can be more easily optimized for 
storage using compression schemes 

•  Each column can be replicated for read-only 
access 

Mantra: Try to keep things simple 
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Execution  
Paradigm 

Database 
Structures  

Query 
optimizer  

DBMS 
Architecture  

Try to maximize performance 
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Execution  
Paradigm 

Volcano 
model  

Materialize 
     All 
   Model  

Vectorized 
model  

Try to maximize performance 
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Volcano Engines 

Query 

SELECT  
 name,  
 salary*.19 AS tax 

FROM   
 employee 

WHERE  
 age > 25 
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Operators 

Iterator interface 
- open() 
- next(): tuple 
- close() 

Volcano Engines 
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Primitives 

Provide computational 
functionality 

All arithmetic allowed in  
expressions,  
e.g. multiplication 

mult(int,int)  int 

Volcano Engines 
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•  The Volcano model is based on a simple pull-
based iterator model for programming 
relational operators.  

•  The Volcano model minimizes the amount of 
intermediate store 

•  The Volcano model is CPU intensive and can 
be inefficient 

Try to maximize performance 

Volcano paradigm 
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MonetDB paradigm 

•  The MonetDB kernel is a programmable 
relational algebra machine 

•  Relational operators operate on ‘array’-like 
structures 

Try to use simple a software pattern 



MonetDB quickstep 

SQL 

MonetDB Server 

Tactical 
Optimizers 

MonetDB 
Kernel 

MAL 

MAL 

function user.s3_1():void; 
    X1:bat[:oid,:lng] := sql.bind("sys","photoobjall","objid",0); 
    X20 := aggr.count(X1); 
  sql.exportValue(1,"sys.","count_","int",32,0,6,X20,""); 
end s3_1; 

select count(*) from photoobjall; 

Kernel execution paradigms 

Tuple-at-a-time pipelined 

Operator-at-a-time 
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Operator implementation 

•  All algebraic operators materialize their result 
•  GOOD: small code footprints 
•  GOOD: potential for re-use 
•  BAD : extra storage for intermediates 
•  BAD: cpu cost for retaining it 

•  Local optimization decisions  
•  Sortedness, uniqueness, hash index 
•  Sampling to determine sizes 
•  Parallelism options 
•  Properties that affect the algorithms 

Try to use simple a software pattern 
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Operator implementation 

•  All algebraic operators materialize their result 

•  Local optimization decisions  

•  Heavy use of code expansion to reduce cost 
•  55 selection routines 
•  149 unary operations 
•  335 join/group operations 
•  134 multi-join operations 
•  72 aggregate operations 

Try to use simple a software pattern 
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Execution  
Paradigm 

Database 
Structures  

Query 
optimizer  

DBMS 
Architecture  

Try to avoid the search space trap 
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SQL 

MonetDB Server 

MAL optimizers 

MonetDB Kernel 

MAL 

MAL 

Strategic optimizer: 
–  Exploit the lanuage the language 
–  Rely on heuristics 

Operational optimizer: 
–  Exploit everything you know at runtime 
–  Re-organize if necessary 

Tactical MAL optimizer: 
– Modular optimizer framework 
– Focused on coarse grain resource 
optimization 

MonetDB quickstep 



MonetDB quickstep 

SQL 

MonetDB Server 

Tactical 
Optimizers 

MonetDB 
Kernel 

MAL 

MAL 

function user.s3_1():void; 
    X1:bat[:oid,:lng] := sql.bind("sys","photoobjall","objid",0); 
    X6:bat[:oid,:lng] := sql.bind("sys","photoobjall","objid",1); 
    X9:bat[:oid,:lng] := sql.bind("sys","photoobjall","objid",2); 
    X13:bat[:oid,:oid]  := sql.bind_dbat("sys","photoobjall",1); 
    X8 := algebra.kunion(X1,X6); 
    X11 := algebra.kdifference(X8,X9); 
    X12 := algebra.kunion(X11,X9); 
    X14 := bat.reverse(X13); 
    X15 := algebra.kdifference(X12,X14); 
    X18 := algebra.markT(X15,0@0); 
    X19 := bat.reverse(X18); 
    X20 := aggr.count(X19); 
  sql.exportValue(1,"sys.","count_","int",32,0,6,X20,""); 
end s3_1; 

select count(*) from photoobjall; 

0 base table 

1 insert 

2 update 

delete 



MonetDB quickstep 

SQL 

MonetDB Server 

Tactical 
Optimizers 

MonetDB 
Kernel 

MAL 

MAL 

function user.s3_1():void; 
    X1:bat[:oid,:lng] := sql.bind("sys","photoobjall","objid",0); 
    X20 := aggr.count(X1); 
  sql.exportValue(1,"sys.","count_","int",32,0,6,X20,""); 
end s3_1; 

select count(*) from photoobjall; 

Optimizer pipelines. 

sql> select optimizer; 
inline,remap,evaluate,costModel,coercions
,emptySet,aliases,mergetable,deadcode,c
onstants,commonTerms,joinPath,deadcode
,reduce,garbageCollector,dataflow,history,r
eplication,multiplex 



MonetDB quickstep 

SQL 

MonetDB Server 

Tactical 
Optimizers 

MonetDB 
Kernel 

MAL 

MAL 

function user.s3_1():void; 
    X1:bat[:oid,:lng] := sql.bind("sys","photoobjall","objid",0); 
    X20 := aggr.count(X1); 
  sql.exportValue(1,"sys.","count_","int",32,0,6,X20,""); 
end s3_1; 

select count(*) from photoobjall; 

Kernel execution paradigms 

Tuple-at-a-time pipelined 

Operator-at-a-time 



Query optimization 

•  Alternative ways of evaluating a given query 
•  Equivalent expressions 
•  Different algorithms for each operation (Chapter 13) 

•  Cost difference between a good and a bad way of 
evaluating a query can be enormous 
•  Example: performing a r X s  followed by a selection 

r.A = s.B is much slower than performing a join on 
the same condition 

•  Need to estimate the cost of operations 
•  Depends critically on statistical information about 

relations which the database must maintain 
•  Need to estimate statistics for intermediate results to 

compute cost of complex expressions 



Introduction (Cont.) 

Relations generated by two equivalent expressions 
have the same set of attributes and contain the same 
set of tuples, although their attributes may be ordered 
differently. 



Introduction (Cont.) 

•  Generation of query-evaluation plans for an 
expression involves several steps: 
1. Generating logically equivalent expressions 

•  Use equivalence rules to transform an expression 
into an equivalent one. 

2.  Annotating resultant expressions to get alternative 
query plans 

3.  Choosing the cheapest plan based on estimated 
cost 

•  The overall process is called cost based 
optimization. 



Equivalence Rules 
1.  Conjunctive selection operations can be 

deconstructed into a sequence of individual 
selections. 

2.  2.  Selection operations are commutative. 

3. Only the last in a sequence of projection 
operations is needed, the others can be 
omitted. 

4. Selections can be combined with Cartesian 
products and theta joins. 
a.  σθ(E1 X E2) =  E1     θ E2  
b.  σθ1(E1     θ2 E2) =  E1     θ1∧ θ2 E2  



Equivalence Rules (Cont.) 

5. Theta-join operations (and natural joins) are 
commutative. 

 E1     θ  E2 = E2   θ  E1 

6. (a) Natural join operations are associative: 
   (E1      E2)    E3 = E1      (E2     E3) 

(b) Theta joins are associative in the following 
manner: 

  (E1       θ1 E2)    θ2∧ θ 3 E3 = E1        θ2∧ θ3 (E2   θ2 E3) 

     where θ2 involves attributes from only E2 
and E3. 



Pictorial Depiction of Equivalence Rules 



Equivalence Rules (Cont.) 

7. The selection operation distributes over the 
theta join operation under the following two 
conditions: 
(a)  When all the attributes in θ0  involve only 
the attributes of one  of the expressions (E1) 
being joined. 

                σθ0(E1     θ E2) = (σθ0(E1))    θ E2  

 (b) When θ 1 involves only the attributes of E1 
and θ2  involves  only the attributes of E2. 
       σθ1∧θ2 (E1    θ E2) =  (σθ1(E1))    θ (σθ2 (E2)) 



Equivalence Rules (Cont.) 

8. The projections operation distributes over the 
theta join operation as follows: 
 (a) if it involves only attributes from L1 ∪ L2: 

 (b) Consider a join E1      θ E2.  
•   Let L1 and L2 be sets of attributes from E1 and E2, 

respectively.   
•  Let L3 be attributes of E1 that are involved in join 

condition θ, but are not in L1 ∪ L2, and 
•   let L4 be attributes of E2 that are involved in join 

condition θ, but are not in L1 ∪ L2. 



Equivalence Rules (Cont.) 
9.  The set operations union and intersection are 

commutative  
 E1 ∪ E2  = E2 ∪ E1  
 E1 ∩ E2  = E2 ∩ E1  

  (set difference is not commutative). 
11. Set union and intersection are associative. 

                  (E1 ∪ E2) ∪ E3 = E1 ∪ (E2 ∪ E3) 
              (E1 ∩ E2) ∩ E3 = E1 ∩ (E2 ∩ E3) 

11. The selection operation distributes over ∪, ∩ and –.  
                  σθ (E1  –  E2) = σθ (E1) –  σθ(E2) 
                     and similarly for ∪ and ∩ in place of  – 
Also:           σθ (E1  –  E2) = σθ(E1) –  E2 
                          and similarly for ∩ in place of  –, but 
not for ∪ 

12.  The projection operation distributes over 
union 

                       ΠL(E1 ∪ E2) = (ΠL(E1)) ∪ (ΠL(E2))  



Multiple Transformations (Cont.) 



Optimizer strategies 

•  Heuristic 
•  Apply the transformation rules in a specific order 

such that the cost converges to a minimum 

•  Cost based 
•  Simulated annealing 
•  Randomized generation of candidate QEP 
•  Problem, how to guarantee randomness 



Memoization Techniques  

•  How to generate alternative Query Evaluation Plans? 
•  Early generation systems centred around a tree 

representation of the plan  
•  Hardwired tree rewriting rules are deployed to 

enumerate part of the space of possible QEP 
•  For each alternative the total cost is determined 
•  The best (alternatives) are retained for execution 

•  Problems: very large space to explore, duplicate 
plans, local maxima, expensive query cost 
evaluation. 

•  SQL Server optimizer contains about 300 rules to be 
deployed. 



Memoization Techniques 

•  How to generate alternative Query Evaluation Plans? 
•  Keep a memo of partial QEPs and their cost.  
•  Use the heuristic rules to generate alternatives to 

built more complex QEPs 
•  r1      r2      r3       r4 

r1  r2 r2  r3 r3  r4 r1  r4 
x Level 1 plans 

 r3  r3 
Level 2 plans 

Level n plans  r4 

r2  r1 
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Ditching the optimizers 

•  Applications have different characteristics 
•  Platforms have different characteristics 
•  The actual state of computation is crucial 

•  A generic all-encompassing optimizer cost-

model does not work 
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Code Inliner.  
Constant Expression Evaluator.  
Accumulator Evaluations. 
Strength Reduction.  
Common Term Optimizer.  

Join Path Optimizer.  
Ranges Propagation.  
Operator Cost Reduction.  
Foreign Key handling.  
Aggregate Groups.  

Code Parallizer.  
Replication Manager.  
Result Recycler.  

MAL Compiler.  
Dynamic Query Scheduler.  
Memo-based Execution.  
Vector Execution.  

Alias Removal.  
Dead Code Removal.  
Garbage Collector.  

Try to disambiguate decisions 



M.Kersten 2008 46 

Execution  
Paradigm 

Database 
Structures  

Query 
optimizer  

DBMS 
Architecture  

No data from persistent store to the memory trash 



M.Kersten 2008 47 

Execution paradigms 

•  The MonetDB kernel is set up to accommodate 
different execution engines 

•  The MonetDB assembler program is  
•  Interpreted in the order presented 
•  Interpreted in a dataflow driven manner 
•  Compiled into a C program 
•  Vectorised processing 

•  X100 project 

No data from persistent store to the memory trash 
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MonetDB/x100  

Combine Volcano model with 
vector processing. 

All vectors together should fit  
the CPU cache 

Vectors are compressed 

Optimizer should tune this, 
given the query characteristics. 

ColumnBM  
(buffer manager) 

X100 query engine 

CPU 
cache 

networked 
ColumnBM-s 

RAM 
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•  Varying the vector size on TPC-H query 1 

mysql,  
oracle,  

db2 

X100 

MonetDB 

low IPC,  
overhead 

RAM 
 bandwidth  

bound 

No data from persistent store to the memory trash 



Query evaluation strategy 

•  Pipe-line query evaluation strategy 
•  Called Volcano query processing model 
•  Standard in commercial systems and MySQL 

•  Basic algorithm: 
•  Demand-driven evaluation of query tree. 
•  Operators exchange data in units such as records 
•  Each operator supports the following interfaces:– 

open, next, close 
•  open() at top of tree results in cascade of opens 

down the tree. 
•  An operator getting a next() call may recursively 

make next() calls from within to produce its next 
answer. 

•  close() at top of tree results in cascade of close 
down the tree 



Query evaluation strategy 

•  Pipe-line query evaluation strategy 
•  Evaluation: 

• Oriented towards OLTP applications 
•  Granule size of data interchange 

•  Items produced one at a time 
• No temporary files 

•  Choice of intermediate buffer size allocations 

• Query executed as one process 
• Generic interface, sufficient to add the iterator 

primitives for the new containers. 
•  CPU intensive 
•  Amenable to parallelization 



Query evaluation strategy 

•  Materialized evaluation strategy 
•  Used in MonetDB 
•  Basic algorithm: 

•   for each relational operator produce the complete 
intermediate result using materialized operands 

•  Evaluation: 
• Oriented towards decision support queries 
•  Limited internal administration and dependencies 
•  Basis for multi-query optimization strategy 
• Memory intensive 
•  Amendable for distributed/parallel processing 



TPC-H 

ATHLON X2 3800+ (2000mhz) 2 disks in raid 0, 2G main memory  

TPC-H  
60K rows line_item table 

Comfortably fit in memory 
Performance in milliseconds 



TPC-H 

ATHLON X2 3800+ (2000mhz) 2 disks in raid 0, 2G main memory  

Scale-factor 1 
6M row line-item table 

Out of the box performance 
Queries produce empty 

or erroneous results 



TPC-H 

ATHLON X2 3800+ (2000mhz) 2 disks in raid 0, 2G main memory  



TPC-H 

ATHLON X2 3800+ (2000mhz) 2 disks in raid 0, 2G main memory  


