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Schedule 2

*16.11.2010:
-XPath navigation (Staircase Join)
*XQuery to Relational Algebra Compiler:
‘ltem- & Sequence- Representation
Efficient FLWoOR Evaluation (Loop-Lifting)
*Optimization
«23.11.2010:
*RDBMS back-end support for XML/XQuery (2/2):
*Updateable Document Representation
*30.11.2010:
Other (DB-) approaches to XML/XQuery processing
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Topics

* Other approaches & techniques (selection, far from complete!)
* Document storage / tree encoding:
* ORDPATH
* DataGuides
* XPath processing:

* Tree patterns, holistic twig joins
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DataGuides

m XPath Accelerator, ORDPATH & similar encoding schemes
»encode the document's tree structure in the node ranks/labels
they assign

=" DataGuides

> Developed in the context of Lore project (DBMS for semi-
structured data)
¢ Stanford University, Goldman & Widom, VLDB 1997

»encode the document's tree structure in relation names

> Observation:
®* Fach node is uniquely identified by its path from the root
® Paths of siblings with equal tag names can be unified,

®* Provided we keep their relative order (rank) explicitly
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DataGuides

Definition
given a semistructured data instance DB,
a DataGuide for DB is a graph G s.t.:

- every path in DB also occurs in G
- every path in G occurs in DB

- every path in G is unique
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DataGuides

Example:

persorl
Y

name phgne ax

DB G
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DataGuides

=  Multiple DataGuides for the same data:

DB
project

praject praject

1r
title deadline titl deadline title

1[

person person dept
project project project
ﬁt]c/t;inc Wd]inﬁ title deadline
L 32
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DataGuides

Definition
Let p, p’ be two path expressions and G a graph; we define
p=sp If p(G) =p(G)
l.e., p and p' are indistinguishable on G.

Definition
G Is a strong dataguide for a database DB if = ; is the same as = ;

Example:
- G1 is a strong dataguide
- G2 is not strong

person.project !=_, dept.project
person.project != ., dept.project
person.project = ., dept.project
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DataGuides

®  Constructing the strong DataGuide G:
Nodes(G)={{root}}
Edges(G)=0
while changes do
choose s in Nodes(G), a in Labels
add s’={y|x in s, (x -a->y) in Edges(DB)} to Nodes(G)

add (x -a->y) to Edges(G)
* Use hash table for Nodes(G)
* This is precisely the powerset automaton construction.
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Monet XML approach

" Early attempt to store and query XML data in MonetDB
=By Albrecht Schmidt
" Not related to Pathfinder & MonetDB/XQuery
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Monet XML approach

DEFINITION 1. An XML document 2 ¢ rooted tree d =
(V, E,r, label i, label o, rank) with nodes V' and edges E C
V x V and o distinguished node v € V', the root node. The
function labely : V' — string assigns [abels to nodes, i.e.,
elements; labela 1 V' — string — string assigns pairs of
strings, attributes and ther valees, to noedes. Character
Data (CDATA) are modeled a2 a special ‘string” attribute of
odata modes, rank 1 V — mt establishes a ranking to allow

for an order among nodes unth the same parent node. For
elements without any attributes labels maps to the empty
3¢,

DEFINITION 2. A pair (o,-) € oid x (oid Uint U string)
@ called an association.

DEFINITION 3. For a hode o i the syntar tree, we denote
the sequence of labels along the path (verter and edge labels)
from the root to o unth path(o).
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Monet XML approach

DEFINITION 4. Grren an XML document d, the Monet
transform s a quadruple Mi(d) = (r,R, A, T) where

R. 12 the set of binary relations that contaan all associa-
tions between hodes;

A 13 the set of brnary relations that contain all associa-

tions between nodes and thewr attribute vadues, neld-
thg character data;

T w2 the set of linary relations that contamn all parrs of
nodes and their rank;

r remamns the root of the document.
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Monet XML approach

bibliography, o4

1 /\ ke

k
"BB88" = article. o, article, 0, —— = "BK99"
ﬁ _;_______:H:F’_“E:—{__________
author, o title, o editor, og author, oy, author, oy title, 0.
| | | | | |
cdata, oy cdata, o; cdata, oy cdata, oy cdata, oy, cdata, o
l string l string l string l string l string l string
"Ben Bit" "How to Hack" "Ed ltor" "Bob Byte" "Ken Key" "Hacking & RSI"

iriliography — article = {{o1, 03 (o1, 07)}
bl cograpiiy) 5 article < auther = {{2, 03} {07, 010, So70 0127 |
bitdiography = artiele 5 auther 5 adata = {{oa, 043 {or0.011 ) {012, 013) },
bibliography S artiele S author 5 adata 5 string = {{o4, “Ben. Bit"), {o11, “Bob Byte™), {o13, “Ken Key™)},
bidliography — article 5 title = {{oa, 05}, {07, 014} ]y
bibsographsy —+ antials 3 tile <+ adata = {{os, o6 (C1ae015)
bibliography 5 article 5 title = adata % sfring = {{os, “How to Hack"), (o=, “Haddng & RSI")],

biblingmphy 5 avticle 5 aditor = {{o7, 050}
biblEography = avticle 5 aditor 5 adata = {{os, o)},

hibliagraphy —+ arficle = edifor < adata < atring = {(oq, “Ed kar™)},

< bibliography = article % key = {{o2, “BBSS"), (o7, “BK9F" 31}
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Monet XML approach

" Early attempt to store and query XML data in MonetDB

=By Albrecht Schmidt

" Not related to Pathfinder & MonetDB/XQuery

" No XQuery compiler
» XMark queries are hand-crafted and -optimized in MIL

" Child, Descendant, Parent & Ancestor steps become regular
expressions on the relation names (i.e., catalog)

" Open: preceeding & following steps?
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Topics

* Other approaches & techniques (selection, far from complete!)
* Document storage / tree encoding:
* ORDPATH
* DataGuides
* XPath processing:

* Tree patterns, holistic twig joins
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Twig Join Algorithms

m So far: interpreted XPath expressions in an imperative manner
> Evaluated XPath expressions step-by-step, as stated in the query
> Given fo v fogiv, /e iy
> we first evaluated /, then XPath step «,::v,, then step o,::v,, ...

®" This may not always be the best choice:
> Intermediate results can get very large, even if the final result is
small:

a
bb/ T\TT > /a/b/d produces many intermediate

| | o b nodes, but only a single result node.

C C C d C

®m Database context => think in a declarative manner

> DBMS optimizer / engine can evaluate query in “best” order

16
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Tree Patterns

® |In fact, XPath is a declarative language.
> /descendant::timeline/child: :event

“Find all nodes v, v,, and v,, such that
v, is a document root,
v, is a descendant element of v, and is named timeline, and
v, is a child element of v, and named event.

All nodes of type v, form the query result.

® Observe the combination of
(a) predicates on single nodes, and
(b) structural conditions between these nodes.
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Tree Patterns

® Structural conditions: Intuitively expressed as tree patterns:
p1 > Nodes labeled with node predicates
» Structural conditions:

P2 Double line: ancestor/descendant relationships

Single line: parent/child relationships
P3

® Arbitrary predicates are allowed, but typical are predicate on tag names:
> Nodes labeled with requested tag name

/ > Document root: label /
If not /-node specified:
timelin i
tmetine search for pattern anywhere in the document
event
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Tree Patterns

B Given such a tree pattern, ‘query evaluation” means

“Find all bindings of nodes in the document to nodes in the tree pattern,
such that all structural and node constraints are fulfilled.”

> Compare this to the tuple relational calculus:

{t|dr,ds: R(r) A S(s) n rla]l = s|a] A tla] = rla] A t[b] = s|b]}
We search for bindings for r and s that satisfy the given predicate.

B \We have not, however, specified which of the pattern nodes to be the query result.

> Either return tuples of nodes, as binding to all the pattern nodes, /
> or mark a specific node in the query as the result node. timeline
> N What is the XPath query for the tree pattern on the right? event
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Tree Patterns

=" Not limited to path patterns
=" May also be twig patterns
" Mapping between tree patterns and XPath is in general not trivial

" Examples:
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PathStack Algorithm

B N. Bruno, N. Koudas, and D. Srivastava. “Holistic Twig Joins: Optimal XML

Pattern Matching.” In Proceedings of the 21st Int'| ACM SIGMOD Conference
on Management of Data. Madison, Wisconsin, USA, 2002.

B Answer queries for path patterns.

N ldea:

> Path patterns contain the forward axes child and descendant only.
> To evaluate forward axes, it is sufficient to scan forward in preorder only.

> Can we evaluate path queries in a single document scan?
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PathStack Algorithm: Path Patterns

B During a sequential table read, maintain the path from the root to the current node
with the help of a stack:

For each node n

> Remove all nodes v from the stack that are not ancestors of n (v.post < n.post).

> Push n onto the stack.

(This is similar to the stack we used to generate the pre/post encoding.)

B For any node check if we can match the stack against the query pattern.

/ /
> Example: Stack

d

> For descendant axes, we allow gaps for the match. b

C
| L . d d
m \\e can find path patterns in a single sequential read. o e'

stack pattern
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PathStack Algorithm: Path Patterns

B The task is now to match the ancestor stack against the query pattern.

> This requires regular expression matching.
> Matching has to be triggered for each document node.

> Regular expression matching is expensive.

W It is not sufficient to find some match, we need to find all query results.

> There may be multiple matches on the same stack.
(E.g., if the same tag name appears more than once on the stack.)

m  Although we meet the single scan constraint, path evaluation is tedious.

H ldea:

> While scanning, only put interesting nodes on the stack.

- Add some more structural information to the stack.
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PathStack Algorithm: Path Patterns

(1) Test the predicates before pushing nodes on the stack.

> Save work when evaluating the stack.

(20 Keep separate stacks for each node in the query pattern.

> We know which predicate each node belongs to afterwards.

> Each of the stacks contains the ancestor/descendant relationship of nodes
satisfying the same predicate.

(3 Link nodes in different stacks to represent their ancestor/descendant relationship.

> Recover the information we lost in (2).
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PathStack Algorithm: Path Patterns

B When a node is pushed onto the stack S;, it is linked to the current top of 5;_1.

> The pointer starting from node v always points to an ancestor of v.

B We insert a node into Stack S; only if

> the parent stack S;_; is not empty, or
> S, is the stack of the query root, i.e. 1 = 0.

B Nodes within one stack are always in ancestor/descendant relationship.
> From stack-bottom to top, all nodes are on a root-to-leaf path in the XML tree.
B For descendant-only patterns we have found an answer, as soon as there Is a node
In the leaf stack.

> The child relationship has to be checked separately.

B The tree of stacks encodes all (partial) answers to the query pattern.

> We will shortly see how to retrieve them.
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PathStack Algorithm: Path Patterns

Example:
/ ‘ So / So C S
timeline ‘ S ‘ S, timeline | S

event ‘ S5 S, S,

all stacks initially empty document root visited first timeline node visited
Q So / So
timeline | 53 @ timeline | 5;

Q event | 5> 5
first event node second timeline node
visited visited
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PathStack Algorithm: Path Patterns

Example: Recursive XML

<ay> a ‘ \-SD aj 50 : ag -SD
{b1}
{aE}
{bE}
<cy> </eq> b ‘ \ 5 ‘ \ 5 b1 54
{szn
<co> </fco>
</ans
c;bl;z c 52 52 Sz
</ay>

Document Query stacks initially empty aj visited by visited
a 550 aj .SU a] f;g : aj f;D
agz az az QE
b1 S5 by 5 b1 5 by 5
ba bz
‘ \-52 ‘ \ 52 C1 52 €2 52
a, visited b> visited ¢y visited co visited
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PathStack Algorithm: Path Patterns

B For each tuple t in the document relation, the PathStack algorithm performs three
steps:

(1) Clean stacks.

> Remove all nodes in all stacks that precede the current node t.
(v € t/preceding < v.pre < t.pre A v.post < t.post)

(2) Push t on the appropriate stack.

> Push if £ matches a predicate in g.

> Only push If £ matches the query root, or the parent stack is not empty.

(3 If t matches the query leaf, output all solutions.

> We are then sure to find a path from the root to t that contains a match for
each query predicate.

B If overlapping predicates are required, 1.e. a node can satisfy more than one of the
predicates, the algorithm needs to be rewritten slightly.
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PathStack Algorithm: Path Patterns

Function PathStack (g : query pattern, doc : table (pre, post))

foreach t € doc in pre-order do
foreach n; € g do

while — empty(S;) A S;.top().post < t.post do
L | Si.pop(); /* clean stacks */

if ¢t matches a predicate p; in g then

if / =0 then

So.push(t, nil); /* deal with query root node */
else if — empty(S,_1) then

| Si.push(t, stack position of S;_j.top());

if g; is a leaf in the query pattern and t has been pushed onto a stack then
showSolutions(/, stack position of S;.top());

| Si.pop();
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PathStack Algorithm: Path Patterns

Back-tracing the solutions

B We are now left with the output of the actual query solution.

B Without the request for a specific binding in the query pattern, we return all bindings
to all query nodes.

H ldea:

> From each node v in each stack S;, we find its ancestors
— below v in stack 5;, and

— In stack S;_1, If we follow the parent pointer of v.

> We find all solutions by following all these ancestors until the root stack.

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010



31

PathStack Algorithm: Path Patterns

Example: Recursive XML document

o all'-\-
{bl}
{az}
{bz‘}
<cq1> </cq>
cbe}
<Co> cfczb
<fag>
</by>
</ay>

Document

So

— Cq

(az, bz, c1)

Stefan.Manegold@CWI.nl

a
b
C
Query
1 a1 ESU
I
'\ b1 | S,
e
52 \R'___ <]
(a1, ba, c1)
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PathStack Algorithm: Path Patterns

Function showSolutions (stackno : int, slotho : int)

positions[stackno] + slotno;
if stackno = 0 then
output (Sg[positions|0]], ..., Sp_1|positions[n — 1]]);

else
foreach j < Sitackno[slotnol.parent do
| showSolutions(stackno -1, j);

B 1 is the number of nodes in the query pattern.

B positions is an array of length n that holds the current position within all stacks
traversed so far.

B \We assume that we can reach an entry within a stack by an index, starting from 0.

B If we reach the query root stack Sg, we output the node in each stack we traversed
to reach the root stack.

B Otherwise we follow the parent pointer (the parent field is the index within the parent

stack) and recurse for that parent and all its ancestors in the parent stack.
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PathStack Algorithm: Path Patterns

B showSolutions() returns all query answers for descendant-only queries.
B To support the child axis, we additionally need test the level properties.

m . How can we rewrite showSolutions() to support the child axis?
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PathStack Algorithm: Path Patterns

B The showSolutions() algorithm with support for the child axis:

Function showSolutions (stackno : int, slotno : int)

positions|stackno] + slotno;
if stackno = 0 then
output (Sp|[positions|0]], ..., S,—1|positions[n — 1]]);

else
if stackno - 1 — stackno is a descendant axis then
foreach j < S, cinolslotnol.parent do

| showSolutions(stackno -1, j);

else
foreach j < Sg.cinolslotnol.parent do

if Sctackno—1[/]./evel = Sstackno[slotno].level — 1 then
L | showSolutions(stackno- 1, j);
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PathStack Algorithm: Path Patterns

B showSolutions() returns nodes in leaf-to-root order.

> |f another order is desired, we need to block processing.

B No duplicate elimination 1s performed.

> If we remove each leaf node from the stack, as soon as its results are returned,
we can avoid duplicates with respect to all bindings.

> If only some bindings are requested, explicit duplicate elimination must be
performed.

B PathStack does evaluate any path pattern in a single sequential read.

> We touch at most |document| nodes.

> Sequential access is (again) cache efficient.
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PathStack Algorithm: Twig Patterns

®So far we only considered path patterns
®Can we extend our ideas for efficient twig pattern evaluation?

Idea:

" Decompose twig patterns into multiple path patterns.
= All path patterns start from the same root.

® Use PathStack for each of them and merge their results.
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PathStack Algorithm: Twig Patterns

=" Example: Decompose twig pattern into path patterns

Original twig query qg:

do d

b

RN
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PathStack Algorithm: Twig Patterns

=" Example: Decompose twig pattern into path patterns

Original twig query qg: Split into path patterns g; and g-:
Jo c‘?‘l d1 a G2 a
/ b b b
C \ d C d
l l
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PathStack Algorithm: Twig Patterns

B \We're now back at our original problem:

> To evaluate twig patterns, we first produce intermediate results.

> These intermediate results may get huge, even if the final result is small.
B Can we avoid some of the intermediate results that won't contribute anyway?

H ldea:

> Before pushing a node onto a stack, peek at each descendant tuple stream.

> Only push a node, if we can find nodes in the stream heads that allow the creation
of at least one twig solution.

B This way the TwigStack algorithm skips irrelevant intermediate results.

> The stream processing model allows this “peeking forward™ .

> For the sequential document read, we need to materialize intermediate results.

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010



PathStack Algorithm: Twig Patterns

PathStack performance

Execution time (seconds)

30

25

20

15

10

HsS B PathStack 8 PathMPMJ

Path length

40

B The graphic shows the performance of PathStack, compared to a simple evaluation
strategy, similar to a nested loop ( “PathMPMJ").

B [ he time needed for a sequential read of the data is labeled “SS™.
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Summary (1/5)

* XML
* Document markup
* Data exchange
* Semi-structured
* Tree model
* DTDs
* XML Schema
* XPath

* Navigation, location steps, axes, node tests, predicates,
functions

* XQuery
* Sequences & Iterations (FLWoOR expressions)
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Summary (2/5)

* XML Data Management
* XML file processors
* XML databases
* XML integration platforms
* RDBMS with XML functionality, SQL/XML

* Relational XML storage: schema-based vs. schema-oblivious
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Summary (3/5)

* Purely Relational XML/XQuery processing:
MonetDB/XQuery

* Document encoding: XPath Accelerator (pre/post plane)
* XPath navigation: Staircase Join
* XQuery to Relational Algebra translation
* ltem- & Sequence-representation
* Iterations: Loop-lifting
* Loop-lifted staircase join
* Peephole Optimization
* Order-awareness, sort avoidance
* XML/XQuery Update Support

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches

43

ADT 2010



Summary (4/5)

* Other approaches & techniques

* Document storage/encoding:

* ORDPATH
* DataGuides

* XPath processing:

* Tree patterns, holistic twig joins
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Summary (5/5)

* Literature
* Slides
* Literature references on slides

* Literature references on website:
http://www.cwi.nl/~manegold/teaching/adt/html/xquery.html

* Tentamen / Exam:
* Tuesday December 21 2010
*09:00 -11:00
* Zaal / Room: Al.14
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Projects: Join the MonetDB Team!

- Own ideas, suggestions, initiative welcome!

- Master Student Projects (6 Months)
* Various projects, each consisting of both research & implementation
* See monetdb.cwi.nl/Development/Research/Projects/ for a sample list
* Feel free to come with your own idea(s)!

* Implementation Projects
* Both short-term & long-term
* E.g. open feature requests: sf.net/tracker/?group id=56967
 Become owner/maintainer of some (new) part of MonetDB

* We are (desperately) looking for Windows SW-development & system

experts!
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We Offer...

+ 24x7x365 support & advice
* Membership in a kind & friendly Family-Team of Experts

- Chance to participate in & contribute to a large & successful
open-source research project

- Lots of experiences, exiting research & fun
- Desk & workstation at CWI
* Fridge, micro-wave, free coffee, free soup, free cake (occasionally)
* Master Students only (possibly part-time)
* Limited availability => FCFS!
* Some pocket money (stage vergoeding)
* Master Students only
* Limited availability => FCFS!
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