ADT 2010

Other Approaches to XQuery Processing

Stefan Manegold

Stefan.Manegold@cwi.nl
http://www.cwi.nl/~manegold/

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

Schedule 2

*16.11.2010:
-XPath navigation (Staircase Join)
*XQuery to Relational Algebra Compiler:
‘ltem- & Sequence- Representation
Efficient FLWoOR Evaluation (Loop-Lifting)
*Optimization
«23.11.2010:
*RDBMS back-end support for XML/XQuery (2/2):
*Updateable Document Representation
*30.11.2010:
Other (DB-) approaches to XML/XQuery processing

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

Topics

* Other approaches & techniques (selection, far from complete!)
* Document storage / tree encoding:
* ORDPATH
* DataGuides
* XPath processing:

* Tree patterns, holistic twig joins

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

DataGuides

m XPath Accelerator, ORDPATH & similar encoding schemes
»encode the document's tree structure in the node ranks/labels
they assign

=" DataGuides

> Developed in the context of Lore project (DBMS for semi-
structured data)
¢ Stanford University, Goldman & Widom, VLDB 1997

»encode the document's tree structure in relation names

> Observation:
®* Fach node is uniquely identified by its path from the root
® Paths of siblings with equal tag names can be unified,

®* Provided we keep their relative order (rank) explicitly
Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

DataGuides

Definition
given a semistructured data instance DB,
a DataGuide for DB is a graph G s.t.:

- every path in DB also occurs in G
- every path in G occurs in DB

- every path in G is unique

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

DataGuides

Example:

persorl
Y

name phgne ax

DB G

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

DataGuides

= Multiple DataGuides for the same data:

DB
project

praject praject

1r
title deadline titl deadline title

1[

person person dept
project project project
ﬁt]c/t;inc Wd]inﬁ title deadline
L 32

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

DataGuides

Definition
Let p, p’ be two path expressions and G a graph; we define
p=sp If p(G) =p(G)
l.e., p and p' are indistinguishable on G.

Definition
G Is a strong dataguide for a database DB if = ; is the same as = ;

Example:
- G1 is a strong dataguide
- G2 is not strong

person.project !=_, dept.project
person.project != ., dept.project
person.project = ., dept.project

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

DataGuides

® Constructing the strong DataGuide G:
Nodes(G)={{root}}
Edges(G)=0
while changes do
choose s in Nodes(G), a in Labels
add s’={y|x in s, (x -a->y) in Edges(DB)} to Nodes(G)

add (x -a->y) to Edges(G)
* Use hash table for Nodes(G)
* This is precisely the powerset automaton construction.

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

Monet XML approach

" Early attempt to store and query XML data in MonetDB
=By Albrecht Schmidt
" Not related to Pathfinder & MonetDB/XQuery

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches

10

ADT 2010

11

Monet XML approach

DEFINITION 1. An XML document 2 ¢ rooted tree d =
(V, E,r, label i, label o, rank) with nodes V' and edges E C
V x V and o distinguished node v € V', the root node. The
function labely : V' — string assigns [abels to nodes, i.e.,
elements; labela 1 V' — string — string assigns pairs of
strings, attributes and ther valees, to noedes. Character
Data (CDATA) are modeled a2 a special ‘string” attribute of
odata modes, rank 1 V — mt establishes a ranking to allow

for an order among nodes unth the same parent node. For
elements without any attributes labels maps to the empty
3¢,

DEFINITION 2. A pair (o,-) € oid x (oid Uint U string)
@ called an association.

DEFINITION 3. For a hode o i the syntar tree, we denote
the sequence of labels along the path (verter and edge labels)
from the root to o unth path(o).

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

12

Monet XML approach

DEFINITION 4. Grren an XML document d, the Monet
transform s a quadruple Mi(d) = (r,R, A, T) where

R. 12 the set of binary relations that contaan all associa-
tions between hodes;

A 13 the set of brnary relations that contain all associa-

tions between nodes and thewr attribute vadues, neld-
thg character data;

T w2 the set of linary relations that contamn all parrs of
nodes and their rank;

r remamns the root of the document.

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

Monet XML approach

bibliography, o4

1 /\ ke

k
"BB88" = article. o, article, 0, —— = "BK99"
ﬁ _;_______:H:F’_“E:—{__________
author, o title, o editor, og author, oy, author, oy title, 0.
| | | | | |
cdata, oy cdata, o; cdata, oy cdata, oy cdata, oy, cdata, o
l string l string l string l string l string l string
"Ben Bit" "How to Hack" "Ed ltor" "Bob Byte" "Ken Key" "Hacking & RSI"

iriliography — article = {{o1, 03 (o1, 07)}
bl cograpiiy) 5 article < auther = {{2, 03} {07, 010, So70 0127 |
bitdiography = artiele 5 auther 5 adata = {{oa, 043 {or0.011) {012, 013) },
bibliography S artiele S author 5 adata 5 string = {{o4, “Ben. Bit"), {o11, “Bob Byte™), {o13, “Ken Key™)},
bidliography — article 5 title = {{oa, 05}, {07, 014}]y
bibsographsy —+ antials 3 tile <+ adata = {{os, o6 (C1ae015)
bibliography 5 article 5 title = adata % sfring = {{os, “How to Hack"), (o=, “Haddng & RSI")],

biblingmphy 5 avticle 5 aditor = {{o7, 050}
biblEography = avticle 5 aditor 5 adata = {{os, o)},

hibliagraphy —+ arficle = edifor < adata < atring = {(oq, “Ed kar™)},

< bibliography = article % key = {{o2, “BBSS"), (o7, “BK9F" 31}

13

Monet XML approach

" Early attempt to store and query XML data in MonetDB

=By Albrecht Schmidt

" Not related to Pathfinder & MonetDB/XQuery

" No XQuery compiler
» XMark queries are hand-crafted and -optimized in MIL

" Child, Descendant, Parent & Ancestor steps become regular
expressions on the relation names (i.e., catalog)

" Open: preceeding & following steps?

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches

14

ADT 2010

15

Topics

* Other approaches & techniques (selection, far from complete!)
* Document storage / tree encoding:
* ORDPATH
* DataGuides
* XPath processing:

* Tree patterns, holistic twig joins

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

Twig Join Algorithms

m So far: interpreted XPath expressions in an imperative manner
> Evaluated XPath expressions step-by-step, as stated in the query
> Given fo v fogiv, /e iy
> we first evaluated /, then XPath step «,::v,, then step o,::v,, ...

®" This may not always be the best choice:
> Intermediate results can get very large, even if the final result is
small:

a
bb/ T\TT > /a/b/d produces many intermediate

| | o b nodes, but only a single result node.

C C C d C

®m Database context => think in a declarative manner

> DBMS optimizer / engine can evaluate query in “best” order

16

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

17

Tree Patterns

® |In fact, XPath is a declarative language.
> /descendant::timeline/child: :event

“Find all nodes v, v,, and v,, such that
v, is a document root,
v, is a descendant element of v, and is named timeline, and
v, is a child element of v, and named event.

All nodes of type v, form the query result.

® Observe the combination of
(a) predicates on single nodes, and
(b) structural conditions between these nodes.

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

18

Tree Patterns

® Structural conditions: Intuitively expressed as tree patterns:
p1 > Nodes labeled with node predicates
» Structural conditions:

P2 Double line: ancestor/descendant relationships

Single line: parent/child relationships
P3

® Arbitrary predicates are allowed, but typical are predicate on tag names:
> Nodes labeled with requested tag name

/ > Document root: label /
If not /-node specified:
timelin i
tmetine search for pattern anywhere in the document
event

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

19

Tree Patterns

B Given such a tree pattern, ‘query evaluation” means

“Find all bindings of nodes in the document to nodes in the tree pattern,
such that all structural and node constraints are fulfilled.”

> Compare this to the tuple relational calculus:

{t|dr,ds: R(r) A S(s) n rla]l = s|a] A tla] = rla] A t[b] = s|b]}
We search for bindings for r and s that satisfy the given predicate.

B \We have not, however, specified which of the pattern nodes to be the query result.

> Either return tuples of nodes, as binding to all the pattern nodes, /
> or mark a specific node in the query as the result node. timeline
> N What is the XPath query for the tree pattern on the right? event

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

20

Tree Patterns

=" Not limited to path patterns
=" May also be twig patterns
" Mapping between tree patterns and XPath is in general not trivial

" Examples:

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

21

PathStack Algorithm

B N. Bruno, N. Koudas, and D. Srivastava. “Holistic Twig Joins: Optimal XML

Pattern Matching.” In Proceedings of the 21st Int'| ACM SIGMOD Conference
on Management of Data. Madison, Wisconsin, USA, 2002.

B Answer queries for path patterns.

N ldea:

> Path patterns contain the forward axes child and descendant only.
> To evaluate forward axes, it is sufficient to scan forward in preorder only.

> Can we evaluate path queries in a single document scan?

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

22

PathStack Algorithm: Path Patterns

B During a sequential table read, maintain the path from the root to the current node
with the help of a stack:

For each node n

> Remove all nodes v from the stack that are not ancestors of n (v.post < n.post).

> Push n onto the stack.

(This is similar to the stack we used to generate the pre/post encoding.)

B For any node check if we can match the stack against the query pattern.

/ /
> Example: Stack

d

> For descendant axes, we allow gaps for the match. b

C
| L . d d
m \\e can find path patterns in a single sequential read. o e'

stack pattern

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

PathStack Algorithm: Path Patterns

B The task is now to match the ancestor stack against the query pattern.

> This requires regular expression matching.
> Matching has to be triggered for each document node.

> Regular expression matching is expensive.

W It is not sufficient to find some match, we need to find all query results.

> There may be multiple matches on the same stack.
(E.g., if the same tag name appears more than once on the stack.)

m Although we meet the single scan constraint, path evaluation is tedious.

H ldea:

> While scanning, only put interesting nodes on the stack.

- Add some more structural information to the stack.

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches

23

ADT 2010

24

PathStack Algorithm: Path Patterns

(1) Test the predicates before pushing nodes on the stack.

> Save work when evaluating the stack.

(20 Keep separate stacks for each node in the query pattern.

> We know which predicate each node belongs to afterwards.

> Each of the stacks contains the ancestor/descendant relationship of nodes
satisfying the same predicate.

(3 Link nodes in different stacks to represent their ancestor/descendant relationship.

> Recover the information we lost in (2).

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

25

PathStack Algorithm: Path Patterns

B When a node is pushed onto the stack S;, it is linked to the current top of 5;_1.

> The pointer starting from node v always points to an ancestor of v.

B We insert a node into Stack S; only if

> the parent stack S;_; is not empty, or
> S, is the stack of the query root, i.e. 1 = 0.

B Nodes within one stack are always in ancestor/descendant relationship.
> From stack-bottom to top, all nodes are on a root-to-leaf path in the XML tree.
B For descendant-only patterns we have found an answer, as soon as there Is a node
In the leaf stack.

> The child relationship has to be checked separately.

B The tree of stacks encodes all (partial) answers to the query pattern.

> We will shortly see how to retrieve them.

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

26

PathStack Algorithm: Path Patterns

Example:
/ ‘ So / So C S
timeline ‘ S ‘ S, timeline | S

event ‘ S5 S, S,

all stacks initially empty document root visited first timeline node visited
Q So / So
timeline | 53 @ timeline | 5;

Q event | 5> 5
first event node second timeline node
visited visited

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

27

PathStack Algorithm: Path Patterns

Example: Recursive XML

<ay> a ‘ \-SD aj 50 : ag -SD
{b1}
{aE}
{bE}
<cy> </eq> b ‘ \ 5 ‘ \ 5 b1 54
{szn
<co> </fco>
</ans
c;bl;z c 52 52 Sz
</ay>

Document Query stacks initially empty aj visited by visited
a 550 aj .SU a] f;g : aj f;D
agz az az QE
b1 S5 by 5 b1 5 by 5
ba bz
‘ \-52 ‘ \ 52 C1 52 €2 52
a, visited b> visited ¢y visited co visited

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

28

PathStack Algorithm: Path Patterns

B For each tuple t in the document relation, the PathStack algorithm performs three
steps:

(1) Clean stacks.

> Remove all nodes in all stacks that precede the current node t.
(v € t/preceding < v.pre < t.pre A v.post < t.post)

(2) Push t on the appropriate stack.

> Push if £ matches a predicate in g.

> Only push If £ matches the query root, or the parent stack is not empty.

(3 If t matches the query leaf, output all solutions.

> We are then sure to find a path from the root to t that contains a match for
each query predicate.

B If overlapping predicates are required, 1.e. a node can satisfy more than one of the
predicates, the algorithm needs to be rewritten slightly.

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

29

PathStack Algorithm: Path Patterns

Function PathStack (g : query pattern, doc : table (pre, post))

foreach t € doc in pre-order do
foreach n; € g do

while — empty(S;) A S;.top().post < t.post do
L | Si.pop(); /* clean stacks */

if ¢t matches a predicate p; in g then

if / =0 then

So.push(t, nil); /* deal with query root node */
else if — empty(S,_1) then

| Si.push(t, stack position of S;_j.top());

if g; is a leaf in the query pattern and t has been pushed onto a stack then
showSolutions(/, stack position of S;.top());

| Si.pop();

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

30

PathStack Algorithm: Path Patterns

Back-tracing the solutions

B We are now left with the output of the actual query solution.

B Without the request for a specific binding in the query pattern, we return all bindings
to all query nodes.

H ldea:

> From each node v in each stack S;, we find its ancestors
— below v in stack 5;, and

— In stack S;_1, If we follow the parent pointer of v.

> We find all solutions by following all these ancestors until the root stack.

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

31

PathStack Algorithm: Path Patterns

Example: Recursive XML document

o all'-\-
{bl}
{az}
{bz‘}
<cq1> </cq>
cbe}
<Co> cfczb
<fag>
</by>
</ay>

Document

So

— Cq

(az, bz, c1)

Stefan.Manegold@CWI.nl

a
b
C
Query
1 a1 ESU
I
'\ b1 | S,
e
52 \R'___ <]
(a1, ba, c1)

Other Xquery Processing Approaches

bs

=
S~

C1

(a1, by, ¢1)

ADT 2010

32

PathStack Algorithm: Path Patterns

Function showSolutions (stackno : int, slotho : int)

positions[stackno] + slotno;
if stackno = 0 then
output (Sg[positions|0]], ..., Sp_1|positions[n — 1]]);

else
foreach j < Sitackno[slotnol.parent do
| showSolutions(stackno -1, j);

B 1 is the number of nodes in the query pattern.

B positions is an array of length n that holds the current position within all stacks
traversed so far.

B \We assume that we can reach an entry within a stack by an index, starting from 0.

B If we reach the query root stack Sg, we output the node in each stack we traversed
to reach the root stack.

B Otherwise we follow the parent pointer (the parent field is the index within the parent

stack) and recurse for that parent and all its ancestors in the parent stack.
Stefan.ManegoId@CWl.nI Other Xquery Processing Approaches ADT 2010

33

PathStack Algorithm: Path Patterns

B showSolutions() returns all query answers for descendant-only queries.
B To support the child axis, we additionally need test the level properties.

m . How can we rewrite showSolutions() to support the child axis?

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

34

PathStack Algorithm: Path Patterns

B The showSolutions() algorithm with support for the child axis:

Function showSolutions (stackno : int, slotno : int)

positions|stackno] + slotno;
if stackno = 0 then
output (Sp|[positions|0]], ..., S,—1|positions[n — 1]]);

else
if stackno - 1 — stackno is a descendant axis then
foreach j < S, cinolslotnol.parent do

| showSolutions(stackno -1, j);

else
foreach j < Sg.cinolslotnol.parent do

if Sctackno—1[/]./evel = Sstackno[slotno].level — 1 then
L | showSolutions(stackno- 1, j);

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

35

PathStack Algorithm: Path Patterns

B showSolutions() returns nodes in leaf-to-root order.

> |f another order is desired, we need to block processing.

B No duplicate elimination 1s performed.

> If we remove each leaf node from the stack, as soon as its results are returned,
we can avoid duplicates with respect to all bindings.

> If only some bindings are requested, explicit duplicate elimination must be
performed.

B PathStack does evaluate any path pattern in a single sequential read.

> We touch at most |document| nodes.

> Sequential access is (again) cache efficient.

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

36

PathStack Algorithm: Twig Patterns

®So far we only considered path patterns
®Can we extend our ideas for efficient twig pattern evaluation?

Idea:

" Decompose twig patterns into multiple path patterns.
= All path patterns start from the same root.

® Use PathStack for each of them and merge their results.

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

PathStack Algorithm: Twig Patterns

=" Example: Decompose twig pattern into path patterns

Original twig query qg:

do d

b

RN

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches

37

ADT 2010

38

PathStack Algorithm: Twig Patterns

=" Example: Decompose twig pattern into path patterns

Original twig query qg: Split into path patterns g; and g-:
Jo c‘?‘l d1 a G2 a
/ b b b
C \ d C d
l l

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

39

PathStack Algorithm: Twig Patterns

B \We're now back at our original problem:

> To evaluate twig patterns, we first produce intermediate results.

> These intermediate results may get huge, even if the final result is small.
B Can we avoid some of the intermediate results that won't contribute anyway?

H ldea:

> Before pushing a node onto a stack, peek at each descendant tuple stream.

> Only push a node, if we can find nodes in the stream heads that allow the creation
of at least one twig solution.

B This way the TwigStack algorithm skips irrelevant intermediate results.

> The stream processing model allows this “peeking forward™ .

> For the sequential document read, we need to materialize intermediate results.

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

PathStack Algorithm: Twig Patterns

PathStack performance

Execution time (seconds)

30

25

20

15

10

HsS B PathStack 8 PathMPMJ

Path length

40

B The graphic shows the performance of PathStack, compared to a simple evaluation
strategy, similar to a nested loop (“PathMPMJ").

B [he time needed for a sequential read of the data is labeled “SS™.

Stefan.Manegold@CWI.nl

Other Xquery Processing Approaches

ADT 2010

Summary (1/5)

* XML
* Document markup
* Data exchange
* Semi-structured
* Tree model
* DTDs
* XML Schema
* XPath

* Navigation, location steps, axes, node tests, predicates,
functions

* XQuery
* Sequences & Iterations (FLWoOR expressions)

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches

41

ADT 2010

42

Summary (2/5)

* XML Data Management
* XML file processors
* XML databases
* XML integration platforms
* RDBMS with XML functionality, SQL/XML

* Relational XML storage: schema-based vs. schema-oblivious

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

Summary (3/5)

* Purely Relational XML/XQuery processing:
MonetDB/XQuery

* Document encoding: XPath Accelerator (pre/post plane)
* XPath navigation: Staircase Join
* XQuery to Relational Algebra translation
* ltem- & Sequence-representation
* Iterations: Loop-lifting
* Loop-lifted staircase join
* Peephole Optimization
* Order-awareness, sort avoidance
* XML/XQuery Update Support

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches

43

ADT 2010

Summary (4/5)

* Other approaches & techniques

* Document storage/encoding:

* ORDPATH
* DataGuides

* XPath processing:

* Tree patterns, holistic twig joins

Stefan.Manegold@CWI.nl

Other Xquery Processing Approaches

44

ADT 2010

45

Summary (5/5)

* Literature
* Slides
* Literature references on slides

* Literature references on website:
http://www.cwi.nl/~manegold/teaching/adt/html/xquery.html

* Tentamen / Exam:
* Tuesday December 21 2010
*09:00 -11:00
* Zaal / Room: Al.14

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

46

Projects: Join the MonetDB Team!

- Own ideas, suggestions, initiative welcome!

- Master Student Projects (6 Months)
* Various projects, each consisting of both research & implementation
* See monetdb.cwi.nl/Development/Research/Projects/ for a sample list
* Feel free to come with your own idea(s)!

* Implementation Projects
* Both short-term & long-term
* E.g. open feature requests: sf.net/tracker/?group id=56967
 Become owner/maintainer of some (new) part of MonetDB

* We are (desperately) looking for Windows SW-development & system

experts!

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

a7

We Offer...

+ 24x7x365 support & advice
* Membership in a kind & friendly Family-Team of Experts

- Chance to participate in & contribute to a large & successful
open-source research project

- Lots of experiences, exiting research & fun
- Desk & workstation at CWI
* Fridge, micro-wave, free coffee, free soup, free cake (occasionally)
* Master Students only (possibly part-time)
* Limited availability => FCFS!
* Some pocket money (stage vergoeding)
* Master Students only
* Limited availability => FCFS!

Stefan.Manegold@CWI.nl Other Xquery Processing Approaches ADT 2010

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

