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XML: Document Markup vs. High Data VolumeXML: Document Markup vs. High Data Volume
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Source Code MarkupSource Code Markup
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Source Code MarkupSource Code Markup
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HTML-Style Presentational MarkupHTML-Style Presentational Markup
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■ XML:  Extensible Markup Language

■ Defined by the WWW Consortium (         ): 
http://www.w3c.org/XML/

■ Derived from SGML (Standard Generalized Markup Language), but 
simpler to use than SGML 

■ Documents have tags giving extra information about sections of the 
document

● E.g.  <title> XML </title>  <slide> Introduction …</slide>

■ Extensible, unlike HTML

● Users can add new tags, and separately specify how the tag should 
be handled for display

XML IntroductionXML Introduction
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XML Introduction (Cont.)XML Introduction (Cont.)

■ The ability to specify new tags, and to create nested tag structures make 
XML a great way to exchange data, not just documents.

● Much of the use of XML has been in data exchange applications, not 
as a replacement for HTML

■ Tags make data (relatively) self-documenting 

● E.g.
     <bank>

                <account>  
               <account_number> A-101     </account_number>
               <branch_name>      Downtown </branch_name>
               <balance>              500         </balance>

                </account>
                <depositor>

               <account_number> A-101    </account_number>
               <customer_name> Johnson </customer_name>

                </depositor>
               </bank>
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A Little Bit Of HistoryA Little Bit Of History

• Database world
• 1980 relational databases
• 1990 nested relational model and object oriented databases
• 2000 semi-structured databases

• Documents world
• 1974 SGML (Structured Generalized Markup Language)
• 1990 HTML (Hypertext Markup Language)
• 1992 URL (Universal Resource Locator)

Data + documents = information
1996 XML (Extended Markup Language)
URI (Universal Resource Identifier)
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XML Introduction (Cont.)XML Introduction (Cont.)
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XML: MotivationXML: Motivation

■ Data interchange is critical in today’s networked world

● Examples:

 Banking:  funds transfer

 Order processing (especially inter-company orders)

 Scientific data

– Chemistry:  ChemML, …

– Genetics:    BSML (Bio-Sequence Markup Language), …

● Paper flow of information between organizations is being replaced 
by electronic flow of information

■ Each application area has its own set of standards for representing 
information

■ XML has become the basis for all new generation data interchange 
formats
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XML Motivation (Cont.)XML Motivation (Cont.)

■ Earlier generation formats were based on plain text with line headers 
indicating the meaning of fields

● Similar in concept to email headers

● Does not allow for nested structures, no standard “type” language

● Tied too closely to low level document structure (lines, spaces, etc)

■ Each XML based standard defines what are valid elements, using

●  XML type specification languages to specify the syntax

 DTD (Document Type Descriptors)

 XML Schema

● Plus textual descriptions of the semantics

■ XML allows new tags to be defined as required

● However, this may be constrained by DTDs

■ A wide variety of tools is available for parsing, browsing and querying 
XML documents/data
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Comparison with Relational DataComparison with Relational Data

■ Inefficient: tags, which in effect represent schema information, are 
repeated

■ Better than relational tuples as a data-exchange format

● Unlike relational tuples, XML data is self-documenting due to 
presence of tags

● Non-rigid format: tags can be added

● Allows nested structures

● Wide acceptance, not only in database systems, but also in 
browsers, tools, and applications
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Structure of XML DataStructure of XML Data

■ Tag:  label for a section of data

■ Element: section of data beginning with <tagname> and ending with 
matching </tagname>

■ Elements must be properly nested

● Proper nesting

  <account> … <balance>  …. </balance> </account> 

● Improper nesting 

  <account> … <balance>  …. </account> </balance> 

● Formally:  every start tag must have a unique matching end tag, 
that is in the context of the same parent element.

■ Every document must have a single top-level element
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Example of Nested ElementsExample of Nested Elements

 <bank-1>
      <customer>

      <customer_name> Hayes </customer_name>
      <customer_street> Main </customer_street>
      <customer_city>     Harrison </customer_city>
      <account>

     <account_number> A-102 </account_number>
     <branch_name>      Perryridge </branch_name>
     <balance>               400 </balance>

      </account>
          <account>
               …
          </account>

       </customer>
         .
         .

       </bank-1>
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Motivation for NestingMotivation for Nesting

■ Nesting of data is useful in data transfer

● Example:  elements representing customer_id, customer_name, 
and address nested within an order element

■ Nesting is not supported, or discouraged, in relational databases

● With multiple orders, customer name and address are stored 
redundantly

● normalization replaces nested structures in each order by foreign 
key into table storing customer name and address information

● Nesting is supported in object-relational databases

■ But nesting is appropriate when transferring data

● External application does not have direct access to data 
referenced by a foreign key
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Structure of XML Data (Cont.)Structure of XML Data (Cont.)
■ Mixture of text with sub-elements is legal in XML. 

● Example:

     <account>
      This account is seldom used any more.
       <account_number> A-102</account_number>
       <branch_name> Perryridge</branch_name>
       <balance>400 </balance>
</account>

● Useful for document markup, but discouraged for data 
representation



19

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

AttributesAttributes

■ Elements can have attributes

           <account acct-type = “checking” >
             <account_number> A-102 </account_number>
             <branch_name> Perryridge </branch_name>
             <balance> 400 </balance>

             </account>

■ Attributes are specified by  name=value pairs inside the starting tag of 
an element

■ An element may have several attributes, but each attribute name can 
only occur once

<account  acct-type = “checking”  monthly-fee=“5”>
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Attributes vs. SubelementsAttributes vs. Subelements

■ Distinction between subelement and attribute

● In the context of documents, attributes are part of markup, while 
subelement contents are part of the basic document contents

● In the context of data representation, the difference is unclear 
and may be confusing

 Same information can be represented in two ways

– <account  account_number = “A-101”>  …. </account>

– <account> 
    <account_number>A-101</account_number> …
 </account>

● Suggestion: use attributes for identifiers of elements, and use 
subelements for contents

● Attributes can be used to qualify tags

=> avoid the so-called tag soup
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Data on the WebData on the Web
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The (Future) Web: A Huge XML DatabaseThe (Future) Web: A Huge XML Database
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The (Future) Web: A Huge XML DatabaseThe (Future) Web: A Huge XML Database
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The (Future) Web: A Huge XML DatabaseThe (Future) Web: A Huge XML Database
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NamespacesNamespaces

■ XML data has to be exchanged between organizations

■ Same tag name may have different meaning in different 
organizations, causing confusion on exchanged documents

■ Specifying a unique string as an element name avoids confusion

■ Better solution: use  unique-name:element-name

■ Avoid using long unique names all over document by using XML 
Namespaces

     <bank Xmlns:FB=‘http://www.FirstBank.com’>
      …

 <FB:branch>
    <FB:branchname>Downtown</FB:branchname>

 <FB:branchcity>    Brooklyn   </FB:branchcity>
 </FB:branch>
…

</bank>

http://www.firstbank.com/
http://www.firstbank.com/
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More on XML SyntaxMore on XML Syntax

■ Elements without subelements or text content can be abbreviated by 

ending the start tag with a  />  and deleting the end tag

● <account  number=“A-101” branch=“Perryridge”  balance=“200 />

■ To store string data that may contain tags, without the tags being 

interpreted as subelements, use CDATA as below

● <![CDATA[<account> … </account>]]>

Here, <account> and </account> are treated as just strings

CDATA stands for “character data”

■ A comment may appear wherever a tag is allowed:

● <!-- This is a comment and ignored b the XML parser -->

■ Processing instructions can be used to control specific XML parsers:

● <?php sql (“SELECT * FROM ...”) ... ?>
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XML Document SchemaXML Document Schema

■ Database schemas constrain what information can be stored, and 
the data types of stored values

■ XML documents are not required to have an associated schema

● We also speak of semi-structured data

■ However, schemas are very important for XML data exchange

● Otherwise, a site cannot automatically interpret data received 
from another site

■ Two mechanisms for specifying XML schema

● Document Type Definition (DTD)

 Widely used

● XML Schema 

 Newer, increasing use



28

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Document Type Definition (DTD)Document Type Definition (DTD)

■ The type of an XML document can be specified using a DTD

■ DTD constraints structure of XML data

● What elements can occur

● What attributes can/must an element have

● What subelements can/must occur inside each element, 
and how many times.

■ DTD does not constrain data types

● All values represented as strings in XML

■ DTD syntax

● <!ELEMENT element (subelements-specification) >

● <!ATTLIST   element (attributes)  >
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Element Specification in DTDElement Specification in DTD

■ Subelements can be specified as

● names of elements, or

● #PCDATA (parsed character data), i.e., character strings

● EMPTY (no subelements) or ANY (anything can be a 
subelement)

■ Example
<! ELEMENT depositor (customer_name  account_number)>

   <! ELEMENT customer_name (#PCDATA)>
<! ELEMENT account_number (#PCDATA)>

■ Subelement specification may have regular expressions
  <!ELEMENT bank ( ( account | customer | depositor)+)>

 Notation: 

–  “|”   -  alternatives

–  “+”  -  1 or more occurrences

–  “*”   -  0 or more occurrences
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Bank DTDBank DTD

<!DOCTYPE bank [
<!ELEMENT bank ( ( account | customer | depositor)+)>
<!ELEMENT account (account_number branch_name balance)>
<! ELEMENT customer(customer_name customer_street customer_city)>
<! ELEMENT depositor (customer_name account_number)>
<! ELEMENT account_number (#PCDATA)>
<! ELEMENT branch_name (#PCDATA)>
<! ELEMENT balance(#PCDATA)>
<! ELEMENT customer_name(#PCDATA)>
<! ELEMENT customer_street(#PCDATA)>
<! ELEMENT customer_city(#PCDATA)>

]>
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Attribute Specification in DTDAttribute Specification in DTD

■ Attribute specification : for each attribute  
● Name
● Type of attribute 

 CDATA
 ID (identifier) or IDREF (ID reference) or IDREFS (multiple IDREFs) 

–   more on this later 
● Whether  

 mandatory (#REQUIRED)
 has a default value (value), 
 or neither (#IMPLIED)

■ Examples
● <!ATTLIST account  acct-type CDATA “checking”>
● <!ATTLIST customer

customer_id   ID          # REQUIRED
accounts       IDREFS # REQUIRED   >
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IDs and IDREFsIDs and IDREFs

■ An element can have at most one attribute of type ID

■ The ID attribute value of each element in an XML document must be 
distinct

● Thus the ID attribute value is an object identifier

■ An attribute of type IDREF must contain the ID value of an element 
in the same document

■ An attribute of type IDREFS contains a set of (0 or more) ID values.  
Each ID value must contain the ID value of an element in the same 
document
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Bank DTD with AttributesBank DTD with Attributes

■ Bank DTD with ID and IDREF attribute types.
      <!DOCTYPE bank-2[

     <!ELEMENT account (branch, balance)>
     <!ATTLIST account
              account_number ID          # REQUIRED

          owners                IDREFS # REQUIRED>
      <!ELEMENT customer(customer_name, 
customer_street,  

                                                                          customer_city)>
      <!ATTLIST customer

           customer_id        ID          # REQUIRED
           accounts            IDREFS # REQUIRED>

          … declarations for branch, balance, customer_name, 
                                    customer_street and customer_city
]>
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XML data with ID and IDREF attributesXML data with ID and IDREF attributes

<bank-2>
<account account_number=“A-401” owners=“C100 C102”>
         <branch_name> Downtown </branch_name>
        <balance>          500 </balance>
</account>
<customer customer_id=“C100” accounts=“A-401”>
         <customer_name>Joe         </customer_name>
        <customer_street> Monroe  </customer_street>
        <customer_city>     Madison</customer_city>
</customer>
<customer customer_id=“C102” accounts=“A-401 A-402”>
         <customer_name> Mary     </customer_name>
        <customer_street> Erin       </customer_street>
        <customer_city>     Newark </customer_city>
</customer>

</bank-2>



35

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Limitations of DTDsLimitations of DTDs

■ No typing of text elements and attributes

● All values are strings, no integers, reals, etc.

■ Difficult to specify unordered sets of subelements

● Order is usually irrelevant in databases (unlike in the document-
layout environment from which XML evolved)

● (A | B)* allows specification of an unordered set, but

 Cannot ensure that each of A and B occurs only once

■ IDs and IDREFs are untyped

● The owners attribute of an account may contain a reference to 
another account, which is meaningless

 owners attribute should ideally be constrained to refer to 
customer elements
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XML SchemaXML Schema

■ XML Schema is a more sophisticated schema language which 
addresses the drawbacks of DTDs.  Supports

● Typing of values

 E.g. integer, string, etc

 Also, constraints on min/max values

● User-defined, comlex types

● Many more features, including

 uniqueness and foreign key constraints, inheritance 

■ XML Schema is itself specified in XML syntax, unlike DTDs

● More-standard representation, but verbose

■ XML Scheme is integrated with namespaces 

■ BUT:  XML Schema is significantly more complicated than DTDs.
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XML Schema Version of Bank DTDXML Schema Version of Bank DTD
<xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema>
<xs:element name=“bank” type=“BankType”/>

<xs:element name=“account”>
<xs:complexType>
      <xs:sequence>
            <xs:element name=“account_number” type=“xs:string”/>
            <xs:element name=“branch_name”      type=“xs:string”/>
            <xs:element name=“balance”               type=“xs:decimal”/>
      </xs:squence>
</xs:complexType>

</xs:element>
….. definitions of customer and depositor ….
<xs:complexType name=“BankType”>

<xs:squence>
<xs:element ref=“account”   minOccurs=“0” maxOccurs=“unbounded”/>
<xs:element ref=“customer” minOccurs=“0” maxOccurs=“unbounded”/>
<xs:element ref=“depositor” minOccurs=“0” maxOccurs=“unbounded”/>

</xs:sequence>
</xs:complexType>
</xs:schema>

http://www.w3.org/2001/XMLSchema
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XML Schema Version of Bank DTDXML Schema Version of Bank DTD

■ Choice of “xs:” was ours -- any other namespace prefix could be 
chosen

■ Element “bank” has type “BankType”, which is defined separately

● xs:complexType is used later to create the named complex type 
“BankType”

■ Element “account” has its type defined in-line
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More features of XML SchemaMore features of XML Schema

■ Attributes specified by xs:attribute tag:

● <xs:attribute name = “account_number”/>

● adding the attribute use = “required” means value must be 
specified

■ Key constraint: “account numbers form a key for account elements 
under the root bank element:
<xs:key name = “accountKey”>

<xs:selector xpath = “]bank/account”/>
<xs:field xpath = “account_number”/>

<\xs:key>

■ Foreign key constraint from depositor to account:
<xs:keyref name = “depositorAccountKey” refer=“accountKey”>

<xs:selector xpath = “]bank/account”/>
<xs:field xpath = “account_number”/>

<\xs:keyref>
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Querying and Transforming XML DataQuerying and Transforming XML Data

■ Translation of information from one XML schema to another

■ Querying on XML data 

■ Above two are closely related, and handled by the same tools

■ Standard XML querying/translation languages

● XPath

 Simple language consisting of path expressions

● XSLT

 Simple language designed for translation from XML to XML 
and XML to HTML

● XQuery

 An XML query language with a rich set of features



41

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Tree Model of XML DataTree Model of XML Data

■ Query and transformation languages are based on a tree model of 
XML data

■ An XML document is modeled as a tree, with nodes corresponding 
to elements and attributes

● Element nodes have child nodes, which can be attributes or 
subelements

● Text in an element is modeled as a text node child of the element

● Children of a node are ordered according to their order in the 
XML document

● Element and attribute nodes (except for the root node) have a 
single parent, which is an element node

● The root node has a single child, which is the root element of the 
document
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Tree Model of XML DataTree Model of XML Data
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Tree Model of XML DataTree Model of XML Data
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Relationships between nodes: Relationships between nodes: 
Descendant/AncestorDescendant/Ancestor
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Relationships between nodes: Relationships between nodes: 
Preceding/FollowingPreceding/Following
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Document PartitioningDocument Partitioning
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The Sibling RelationshipThe Sibling Relationship
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XPathXPath

• Titles of all books published by Longstreet Press

  $cat/catalog/book[publisher=“Longstreet Press”]/title
  
  <title>No Such Thing As A Bad Day</title>

• Publications with Don Chamberlin as author or editor 

   $cat//*[(author|editor) = “Don Chamberlin”]

  

  <book><title>XQuery from the Experts</title>…</book>,

  <spec><title>XQuery Formal Semantics</title>…</spec>
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XPath: Path ExpressionsXPath: Path Expressions
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XPath: Path ExpressionsXPath: Path Expressions
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XPath AxesXPath Axes
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Absolute Path ExpressionsAbsolute Path Expressions
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Absolute Path ExpressionsAbsolute Path Expressions
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XPath Expressions against JTR DocumentXPath Expressions against JTR Document

/child::*

/child::JackTheRipper/child::scene/child::victim

/descendant::node()/child::suspect

/descendant::node()/attribute::???                 there are no attributes (yet?)

/descendant::node()/child::scene/following-sibling::node()

/descendant::node()/child::timeline/child::*/following-sibling::node()

/descendant::node()/child::inspector/self::node()/parent::node()/child::*
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XPath: Abbreviated SyntaxXPath: Abbreviated Syntax
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XPath: PredicatesXPath: Predicates
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XPath: PredicatesXPath: Predicates

//panel/bubbles/bubble[1]

(//panel/bubbles/bubble)[1]

//panel[2]/scene/text()

//*[3]

/descendant::*[3]
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XPath: Boolean ExpressionsXPath: Boolean Expressions

//*[./@id]

//*[@time]

//*[name and picture]

//*[not(*)]

//*[doctor/text() = “Watson” or  inspector/text() = “Holmes”]
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Functions in XPathFunctions in XPath

■ XPath provides several functions
● The function count()  at the end of a path counts the number of 

elements in the set generated by the path
 E.g. /bank-2/account[count(./customer) > 2] 

– Returns accounts with > 2 customers
● Also function for testing position (1, 2, ..) of node w.r.t. siblings

■ Boolean connectives and and or and function not() can be used in 
predicates

■ IDREFs can be referenced using function id()
● id() can also be applied to sets of references such as IDREFS and 

even to strings containing multiple references separated by blanks
● E.g.  /bank-2/account/id(@owner) 

 returns all customers referred to from the owners attribute of 
account elements.
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