
ADT 2010ADT 2010

Introduction toIntroduction to

XML, XPath XML, XPath (& XQuery)(& XQuery)

Chapter 10 inChapter 10 in

Silberschatz, Korth, SudarshanSilberschatz, Korth, Sudarshan

“Database System Concepts”“Database System Concepts”

Stefan Manegold
Stefan.Manegold@cwi.nl

http://www.cwi.nl/~manegold/

2

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Google HitsGoogle Hits

28 Mio.UvA

316 Mio.ABC

9.4 Mio.CWI

296 Mio.SQL

711 Mio.sex

2100 Mio.XML

of 3-letter combinations

3

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XML: Document Markup vs. High Data VolumeXML: Document Markup vs. High Data Volume

4

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Source Code MarkupSource Code Markup

5

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Source Code MarkupSource Code Markup

6

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Source Code MarkupSource Code Markup

7

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

HTML-Style Presentational MarkupHTML-Style Presentational Markup

8

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

■ XML: Extensible Markup Language

■ Defined by the WWW Consortium ():
http://www.w3c.org/XML/

■ Derived from SGML (Standard Generalized Markup Language), but
simpler to use than SGML

■ Documents have tags giving extra information about sections of the
document

● E.g. <title> XML </title> <slide> Introduction …</slide>

■ Extensible, unlike HTML

● Users can add new tags, and separately specify how the tag should
be handled for display

XML IntroductionXML Introduction

9

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XML Introduction (Cont.)XML Introduction (Cont.)

■ The ability to specify new tags, and to create nested tag structures make
XML a great way to exchange data, not just documents.

● Much of the use of XML has been in data exchange applications, not
as a replacement for HTML

■ Tags make data (relatively) self-documenting

● E.g.
 <bank>

 <account>
 <account_number> A-101 </account_number>
 <branch_name> Downtown </branch_name>
 <balance> 500 </balance>

 </account>
 <depositor>

 <account_number> A-101 </account_number>
 <customer_name> Johnson </customer_name>

 </depositor>
 </bank>

10

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

A Little Bit Of HistoryA Little Bit Of History

• Database world
• 1980 relational databases
• 1990 nested relational model and object oriented databases
• 2000 semi-structured databases

• Documents world
• 1974 SGML (Structured Generalized Markup Language)
• 1990 HTML (Hypertext Markup Language)
• 1992 URL (Universal Resource Locator)

Data + documents = information
1996 XML (Extended Markup Language)
URI (Universal Resource Identifier)

11

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XML Introduction (Cont.)XML Introduction (Cont.)

12

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XML: MotivationXML: Motivation

■ Data interchange is critical in today’s networked world

● Examples:

 Banking: funds transfer

 Order processing (especially inter-company orders)

 Scientific data

– Chemistry: ChemML, …

– Genetics: BSML (Bio-Sequence Markup Language), …

● Paper flow of information between organizations is being replaced
by electronic flow of information

■ Each application area has its own set of standards for representing
information

■ XML has become the basis for all new generation data interchange
formats

13

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XML Motivation (Cont.)XML Motivation (Cont.)

■ Earlier generation formats were based on plain text with line headers
indicating the meaning of fields

● Similar in concept to email headers

● Does not allow for nested structures, no standard “type” language

● Tied too closely to low level document structure (lines, spaces, etc)

■ Each XML based standard defines what are valid elements, using

● XML type specification languages to specify the syntax

 DTD (Document Type Descriptors)

 XML Schema

● Plus textual descriptions of the semantics

■ XML allows new tags to be defined as required

● However, this may be constrained by DTDs

■ A wide variety of tools is available for parsing, browsing and querying
XML documents/data

14

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Comparison with Relational DataComparison with Relational Data

■ Inefficient: tags, which in effect represent schema information, are
repeated

■ Better than relational tuples as a data-exchange format

● Unlike relational tuples, XML data is self-documenting due to
presence of tags

● Non-rigid format: tags can be added

● Allows nested structures

● Wide acceptance, not only in database systems, but also in
browsers, tools, and applications

15

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Structure of XML DataStructure of XML Data

■ Tag: label for a section of data

■ Element: section of data beginning with <tagname> and ending with
matching </tagname>

■ Elements must be properly nested

● Proper nesting

 <account> … <balance> …. </balance> </account>

● Improper nesting

 <account> … <balance> …. </account> </balance>

● Formally: every start tag must have a unique matching end tag,
that is in the context of the same parent element.

■ Every document must have a single top-level element

16

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Example of Nested ElementsExample of Nested Elements

 <bank-1>
 <customer>

 <customer_name> Hayes </customer_name>
 <customer_street> Main </customer_street>
 <customer_city> Harrison </customer_city>
 <account>

 <account_number> A-102 </account_number>
 <branch_name> Perryridge </branch_name>
 <balance> 400 </balance>

 </account>
 <account>
 …
 </account>

 </customer>
 .
 .

 </bank-1>

17

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Motivation for NestingMotivation for Nesting

■ Nesting of data is useful in data transfer

● Example: elements representing customer_id, customer_name,
and address nested within an order element

■ Nesting is not supported, or discouraged, in relational databases

● With multiple orders, customer name and address are stored
redundantly

● normalization replaces nested structures in each order by foreign
key into table storing customer name and address information

● Nesting is supported in object-relational databases

■ But nesting is appropriate when transferring data

● External application does not have direct access to data
referenced by a foreign key

18

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Structure of XML Data (Cont.)Structure of XML Data (Cont.)
■ Mixture of text with sub-elements is legal in XML.

● Example:

 <account>
 This account is seldom used any more.
 <account_number> A-102</account_number>
 <branch_name> Perryridge</branch_name>
 <balance>400 </balance>
</account>

● Useful for document markup, but discouraged for data
representation

19

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

AttributesAttributes

■ Elements can have attributes

 <account acct-type = “checking” >
 <account_number> A-102 </account_number>
 <branch_name> Perryridge </branch_name>
 <balance> 400 </balance>

 </account>

■ Attributes are specified by name=value pairs inside the starting tag of
an element

■ An element may have several attributes, but each attribute name can
only occur once

<account acct-type = “checking” monthly-fee=“5”>

20

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Attributes vs. SubelementsAttributes vs. Subelements

■ Distinction between subelement and attribute

● In the context of documents, attributes are part of markup, while
subelement contents are part of the basic document contents

● In the context of data representation, the difference is unclear
and may be confusing

 Same information can be represented in two ways

– <account account_number = “A-101”> …. </account>

– <account>
 <account_number>A-101</account_number> …
 </account>

● Suggestion: use attributes for identifiers of elements, and use
subelements for contents

● Attributes can be used to qualify tags

=> avoid the so-called tag soup

21

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Data on the WebData on the Web

22

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

The (Future) Web: A Huge XML DatabaseThe (Future) Web: A Huge XML Database

23

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

The (Future) Web: A Huge XML DatabaseThe (Future) Web: A Huge XML Database

24

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

The (Future) Web: A Huge XML DatabaseThe (Future) Web: A Huge XML Database

25

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

NamespacesNamespaces

■ XML data has to be exchanged between organizations

■ Same tag name may have different meaning in different
organizations, causing confusion on exchanged documents

■ Specifying a unique string as an element name avoids confusion

■ Better solution: use unique-name:element-name

■ Avoid using long unique names all over document by using XML
Namespaces

 <bank Xmlns:FB=‘http://www.FirstBank.com’>
 …

 <FB:branch>
 <FB:branchname>Downtown</FB:branchname>

 <FB:branchcity> Brooklyn </FB:branchcity>
 </FB:branch>
…

</bank>

http://www.firstbank.com/
http://www.firstbank.com/

26

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

More on XML SyntaxMore on XML Syntax

■ Elements without subelements or text content can be abbreviated by

ending the start tag with a /> and deleting the end tag

● <account number=“A-101” branch=“Perryridge” balance=“200 />

■ To store string data that may contain tags, without the tags being

interpreted as subelements, use CDATA as below

● <![CDATA[<account> … </account>]]>

Here, <account> and </account> are treated as just strings

CDATA stands for “character data”

■ A comment may appear wherever a tag is allowed:

● <!-- This is a comment and ignored b the XML parser -->

■ Processing instructions can be used to control specific XML parsers:

● <?php sql (“SELECT * FROM ...”) ... ?>

27

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XML Document SchemaXML Document Schema

■ Database schemas constrain what information can be stored, and
the data types of stored values

■ XML documents are not required to have an associated schema

● We also speak of semi-structured data

■ However, schemas are very important for XML data exchange

● Otherwise, a site cannot automatically interpret data received
from another site

■ Two mechanisms for specifying XML schema

● Document Type Definition (DTD)

 Widely used

● XML Schema

 Newer, increasing use

28

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Document Type Definition (DTD)Document Type Definition (DTD)

■ The type of an XML document can be specified using a DTD

■ DTD constraints structure of XML data

● What elements can occur

● What attributes can/must an element have

● What subelements can/must occur inside each element,
and how many times.

■ DTD does not constrain data types

● All values represented as strings in XML

■ DTD syntax

● <!ELEMENT element (subelements-specification) >

● <!ATTLIST element (attributes) >

29

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Element Specification in DTDElement Specification in DTD

■ Subelements can be specified as

● names of elements, or

● #PCDATA (parsed character data), i.e., character strings

● EMPTY (no subelements) or ANY (anything can be a
subelement)

■ Example
<! ELEMENT depositor (customer_name account_number)>

 <! ELEMENT customer_name (#PCDATA)>
<! ELEMENT account_number (#PCDATA)>

■ Subelement specification may have regular expressions
 <!ELEMENT bank ((account | customer | depositor)+)>

 Notation:

– “|” - alternatives

– “+” - 1 or more occurrences

– “*” - 0 or more occurrences

30

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Bank DTDBank DTD

<!DOCTYPE bank [
<!ELEMENT bank ((account | customer | depositor)+)>
<!ELEMENT account (account_number branch_name balance)>
<! ELEMENT customer(customer_name customer_street customer_city)>
<! ELEMENT depositor (customer_name account_number)>
<! ELEMENT account_number (#PCDATA)>
<! ELEMENT branch_name (#PCDATA)>
<! ELEMENT balance(#PCDATA)>
<! ELEMENT customer_name(#PCDATA)>
<! ELEMENT customer_street(#PCDATA)>
<! ELEMENT customer_city(#PCDATA)>

]>

31

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Attribute Specification in DTDAttribute Specification in DTD

■ Attribute specification : for each attribute
● Name
● Type of attribute

 CDATA
 ID (identifier) or IDREF (ID reference) or IDREFS (multiple IDREFs)

– more on this later
● Whether

 mandatory (#REQUIRED)
 has a default value (value),
 or neither (#IMPLIED)

■ Examples
● <!ATTLIST account acct-type CDATA “checking”>
● <!ATTLIST customer

customer_id ID # REQUIRED
accounts IDREFS # REQUIRED >

32

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

IDs and IDREFsIDs and IDREFs

■ An element can have at most one attribute of type ID

■ The ID attribute value of each element in an XML document must be
distinct

● Thus the ID attribute value is an object identifier

■ An attribute of type IDREF must contain the ID value of an element
in the same document

■ An attribute of type IDREFS contains a set of (0 or more) ID values.
Each ID value must contain the ID value of an element in the same
document

33

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Bank DTD with AttributesBank DTD with Attributes

■ Bank DTD with ID and IDREF attribute types.
 <!DOCTYPE bank-2[

 <!ELEMENT account (branch, balance)>
 <!ATTLIST account
 account_number ID # REQUIRED

 owners IDREFS # REQUIRED>
 <!ELEMENT customer(customer_name,
customer_street,

 customer_city)>
 <!ATTLIST customer

 customer_id ID # REQUIRED
 accounts IDREFS # REQUIRED>

 … declarations for branch, balance, customer_name,
 customer_street and customer_city
]>

34

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XML data with ID and IDREF attributesXML data with ID and IDREF attributes

<bank-2>
<account account_number=“A-401” owners=“C100 C102”>
 <branch_name> Downtown </branch_name>
 <balance> 500 </balance>
</account>
<customer customer_id=“C100” accounts=“A-401”>
 <customer_name>Joe </customer_name>
 <customer_street> Monroe </customer_street>
 <customer_city> Madison</customer_city>
</customer>
<customer customer_id=“C102” accounts=“A-401 A-402”>
 <customer_name> Mary </customer_name>
 <customer_street> Erin </customer_street>
 <customer_city> Newark </customer_city>
</customer>

</bank-2>

35

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Limitations of DTDsLimitations of DTDs

■ No typing of text elements and attributes

● All values are strings, no integers, reals, etc.

■ Difficult to specify unordered sets of subelements

● Order is usually irrelevant in databases (unlike in the document-
layout environment from which XML evolved)

● (A | B)* allows specification of an unordered set, but

 Cannot ensure that each of A and B occurs only once

■ IDs and IDREFs are untyped

● The owners attribute of an account may contain a reference to
another account, which is meaningless

 owners attribute should ideally be constrained to refer to
customer elements

36

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XML SchemaXML Schema

■ XML Schema is a more sophisticated schema language which
addresses the drawbacks of DTDs. Supports

● Typing of values

 E.g. integer, string, etc

 Also, constraints on min/max values

● User-defined, comlex types

● Many more features, including

 uniqueness and foreign key constraints, inheritance

■ XML Schema is itself specified in XML syntax, unlike DTDs

● More-standard representation, but verbose

■ XML Scheme is integrated with namespaces

■ BUT: XML Schema is significantly more complicated than DTDs.

37

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XML Schema Version of Bank DTDXML Schema Version of Bank DTD
<xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema>
<xs:element name=“bank” type=“BankType”/>

<xs:element name=“account”>
<xs:complexType>
 <xs:sequence>
 <xs:element name=“account_number” type=“xs:string”/>
 <xs:element name=“branch_name” type=“xs:string”/>
 <xs:element name=“balance” type=“xs:decimal”/>
 </xs:squence>
</xs:complexType>

</xs:element>
….. definitions of customer and depositor ….
<xs:complexType name=“BankType”>

<xs:squence>
<xs:element ref=“account” minOccurs=“0” maxOccurs=“unbounded”/>
<xs:element ref=“customer” minOccurs=“0” maxOccurs=“unbounded”/>
<xs:element ref=“depositor” minOccurs=“0” maxOccurs=“unbounded”/>

</xs:sequence>
</xs:complexType>
</xs:schema>

http://www.w3.org/2001/XMLSchema

38

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XML Schema Version of Bank DTDXML Schema Version of Bank DTD

■ Choice of “xs:” was ours -- any other namespace prefix could be
chosen

■ Element “bank” has type “BankType”, which is defined separately

● xs:complexType is used later to create the named complex type
“BankType”

■ Element “account” has its type defined in-line

39

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

More features of XML SchemaMore features of XML Schema

■ Attributes specified by xs:attribute tag:

● <xs:attribute name = “account_number”/>

● adding the attribute use = “required” means value must be
specified

■ Key constraint: “account numbers form a key for account elements
under the root bank element:
<xs:key name = “accountKey”>

<xs:selector xpath = “]bank/account”/>
<xs:field xpath = “account_number”/>

<\xs:key>

■ Foreign key constraint from depositor to account:
<xs:keyref name = “depositorAccountKey” refer=“accountKey”>

<xs:selector xpath = “]bank/account”/>
<xs:field xpath = “account_number”/>

<\xs:keyref>

40

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Querying and Transforming XML DataQuerying and Transforming XML Data

■ Translation of information from one XML schema to another

■ Querying on XML data

■ Above two are closely related, and handled by the same tools

■ Standard XML querying/translation languages

● XPath

 Simple language consisting of path expressions

● XSLT

 Simple language designed for translation from XML to XML
and XML to HTML

● XQuery

 An XML query language with a rich set of features

41

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Tree Model of XML DataTree Model of XML Data

■ Query and transformation languages are based on a tree model of
XML data

■ An XML document is modeled as a tree, with nodes corresponding
to elements and attributes

● Element nodes have child nodes, which can be attributes or
subelements

● Text in an element is modeled as a text node child of the element

● Children of a node are ordered according to their order in the
XML document

● Element and attribute nodes (except for the root node) have a
single parent, which is an element node

● The root node has a single child, which is the root element of the
document

42

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Tree Model of XML DataTree Model of XML Data

43

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Tree Model of XML DataTree Model of XML Data

44

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Relationships between nodes: Relationships between nodes:
Descendant/AncestorDescendant/Ancestor

45

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Relationships between nodes: Relationships between nodes:
Preceding/FollowingPreceding/Following

46

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Document PartitioningDocument Partitioning

47

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

The Sibling RelationshipThe Sibling Relationship

48

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XPathXPath

• Titles of all books published by Longstreet Press

 $cat/catalog/book[publisher=“Longstreet Press”]/title

 <title>No Such Thing As A Bad Day</title>

• Publications with Don Chamberlin as author or editor

 $cat//*[(author|editor) = “Don Chamberlin”]

 <book><title>XQuery from the Experts</title>…</book>,

 <spec><title>XQuery Formal Semantics</title>…</spec>

49

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XPath: Path ExpressionsXPath: Path Expressions

50

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XPath: Path ExpressionsXPath: Path Expressions

51

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XPath AxesXPath Axes

52

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Absolute Path ExpressionsAbsolute Path Expressions

53

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Absolute Path ExpressionsAbsolute Path Expressions

54

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XPath Expressions against JTR DocumentXPath Expressions against JTR Document

/child::*

/child::JackTheRipper/child::scene/child::victim

/descendant::node()/child::suspect

/descendant::node()/attribute::??? there are no attributes (yet?)

/descendant::node()/child::scene/following-sibling::node()

/descendant::node()/child::timeline/child::*/following-sibling::node()

/descendant::node()/child::inspector/self::node()/parent::node()/child::*

55

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XPath: Abbreviated SyntaxXPath: Abbreviated Syntax

56

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XPath: PredicatesXPath: Predicates

57

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XPath: PredicatesXPath: Predicates

//panel/bubbles/bubble[1]

(//panel/bubbles/bubble)[1]

//panel[2]/scene/text()

//*[3]

/descendant::*[3]

58

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XPath: Boolean ExpressionsXPath: Boolean Expressions

//*[./@id]

//*[@time]

//*[name and picture]

//*[not(*)]

//*[doctor/text() = “Watson” or inspector/text() = “Holmes”]

59

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Functions in XPathFunctions in XPath

■ XPath provides several functions
● The function count() at the end of a path counts the number of

elements in the set generated by the path
 E.g. /bank-2/account[count(./customer) > 2]

– Returns accounts with > 2 customers
● Also function for testing position (1, 2, ..) of node w.r.t. siblings

■ Boolean connectives and and or and function not() can be used in
predicates

■ IDREFs can be referenced using function id()
● id() can also be applied to sets of references such as IDREFS and

even to strings containing multiple references separated by blanks
● E.g. /bank-2/account/id(@owner)

 returns all customers referred to from the owners attribute of
account elements.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

