
The Design and Performance Evaluation of Alternative XML Storage
Strategies

Feng Tian

A b s t r a c t
This paper studies five strategies for storing XML
documents including one that leaves documents in the
file system, three that use a relational database system,
and one that uses an object manager. We implement
and evaluate each approach using a number o f XQuery
queries. A number of interesting insights are gained

from these experiments and a summary o f the
advantages and disadvantages o f the approaches is
presented.

1. I n t r o d u c t i o n

XML is the new standard for lnternet data
representation and exchange. An important question is
what is the best way of storing XML documents since
the performance of the underlying storage
representation has a significant impact on query
processing efficiency. Several projects [I][9][10][16]
have proposed alternative strategies for storing XML
documents. These strategies can be classified according
to the underlying system used: file system, database
system, or object manager. To the best of our
knowledge there has been no careful performance study
comparing these alternatives and it is still an open
question which of the strategies is the best.

We briefly describe these alternatives. One way is to
store each XML document in a text file. The main
advantage of this approach is that it is easy to
implement and does not require the use of a database
system or storage manager. It has several significant
disadvantages, however. First, XML documents need to
be parsed every time they are accessed. Second, the
entire parsed file must be memory-resident during
query processing. These problems can be solved by
building external indices on XML documents. A query
engine can use these indices to retrieve document
segments relevant to a query. This type of index usually
stores offsets of XML elements in the text file to help
retrieve partial documents. Consequently, the indices
are difficult to maintain if the XML document is
updated.

An alternative is to store XML documents in a database
system. Several recent papers [9][10][16] have
examined how to map and store XML data in a
relational database system. The disadvantage of this
approach is~that current da~base system may not be

David J. DeWitt Jianjun Chen Chun Zhang
Department of Computer Science
University of Wisconsin, Madison

{flian, dewin, jchen, czhang } @cs.wisc.edu

well tuned for XML workload and accessing XML data
through an interface such as SQL incurs overhead not
mlat~:l to storage.

The third alternative is to use an object manager such as
Shore [4]. While this approach allows special purpose
processing, an object manager requires more work to
use than a ful l-blown database system.

This paper studies five alternative ways of storing XML
documents: one that employs text files stored in the file
system, three that use a relational database system, and
one that uses an object manager. We omit the approach
of using an object-oriented database mainly because the
underlying storage structure of an OODBMS is not
fundamentally different from that of an object manager.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 describes
the different strategies for storing XML. The
performance of these strategies is evaluated in Section
4. We conclude in Section 5.

2. Related Work

Recently, several projects have investigated strategies
for storing and XML data to facilitate efficient query
processing. Abiteboul et at. examine the use of a text
file [I]. In [10], Kanne and Moerkotte store each XML
file as a collection of records in an object manager and
evaluate alternative strategies for grouping XML
elements into page-sized records. Lore [I I] is a special
purpose database system that exploits features of the
semi-structured data model. Another approach is to
store XML data in a relational DBMS or OODBMS
[7][8][9][15][16]. [16] examined how to map XML data
into a relational database given the DTD of the file.
This study used the number of join operations
performed as its performance metric and not response
times for running real queries against XML datasets.
The STORED[7] system utilizes data mining to extract
a schema from XML data and converts them to
relations. In [9], Florescu and Kossman evaluated
several alternative mappings for storing XML
documents in a relational database system without
using DTD. Our work extends [9] and [16] by
comparing them with a few other strategies and
evaluating them using extensive experiments.

All major relational database vendors now offer some
form of XML support [6][12][14]. These commercial

S I G M O D R e c o r d , Vol . 31, No . 1, M a r c h 2002 5

tools arc all conceptually similar to the relational DTD
approach that we evaluate in this paper. Two object-
oriented database systems, Excelon [8] and POET [15].
map each X M L element into a separate object. Their
approaches are similar to the Object approach described
in Section 3.

3. Different Storage Strategies

We use the X M L document "Dept .xml" in Figure 3. I to
illustrate how X M L data is actually slated with each
strategies. An X M L document can be modeled as a
directed graph, with nodes in the graph representing
X M L elements or attributes and edges representing
parent-children relationships. Such a graph is shown in
Figure 3.2. Boxes with rounded comers represent
attribute or text nodes.

Figure 3.2 The graph represental lon n("Dep l . xm l "

3.1 The Text Approach

The first strategy stores each X M L document as a text
file. One way to implement a query engine with this
approach is to parse the X M L file into a memory-
resident tree against which the query is then executed.
The tree is retained in memory as long as some nodes in
the tree are needed for query evaluation. We ffound that
the parsing time dominated query execution time and
the approach was unacceptably slow. To make this
approach competitive we adopted the fol lowing
indexing strategy. Using the offset off an X M L element
inside Ihe text file as its id, we build a path index
mapping (parent_otHer, tag) to child of~et and an
inverse path index mapping child_oj~et to
parent_oJ~et. These two indices are used to facilitate
navigation through the X M L graph. Another index
mapping (tagnam~ value) or (attribute_name,
atlribute_value) to element offset is built to help
evaluate selection predicates. A query engine can use
these indices to retrieve segments of an X M L file
relevant to the query, reducing parsing time
dramatically.

3.2 The Relat ional DTD approach
The second strategy is the shared-inlining method
proposed in [16] and requires the existence o f a DTD.
A separate table is used to capture the set-containment

<?xrnl?>
< ;ELEMENT Depl (S rudem 'p
<!A'I-I 'LIST D©pz dcpl_id ID #REQUIRED>
<!ELEMETN Student ('Name, Enro l l ')>
<!A'I-PLIST Srudenz'smdem_id ID #REQUIRED>
< !ELEMENT Name #PCDATA>
< !ELEMENT Enroll #PCDATA>

Figure 3,1 S l i m

relationship between an element and a set of children
elements with the same tag. Each tuple in a table is
assigned an ID and contains a parentlD column Io
identify its parenl, An element that can appear only
once in its parent is intined as a column of the table
representing its parent. I f the DTD graph contains a
cycle, a separate table must be used to break the cycle,
The relational schema generated [from the Dept DTD
and how the document is stored are shown below.

I Paren l lD , i , p l o + "'dept1"' J
Table 3.1 The Depl lable

Paren t lD ID
2 3
2 4

Paren l lD ID T E X T
3 5 "'CS I 0'"
3 6 "'CS20'"

Table 3.2 "lZhe Enro l l table

Studenl id N a m e

"123 '~" "St l ' "
"124 $12'"

Table 3.3 The Student table

3.3 The Edge Approach

The third strategy is the "Edge" approach described in
[9]. The directed graph of"an X M L file is stored in a
single Edge table. Each node in the directed graph is
assigned an id in Ihe dcpt first order. Each tuple in the
Edge table corresponds to one edge in the directed
graph and contains the ids o f the two nodes connected
by Ihe edge, the tag o(the target node, and an ordinal
number that is used to encode the order o f children
nodes. When an element has only one text child, the
text is inlined.

SoureelD lag ord ina l Ta rge l lD Dala
I Dept] I 2 NULL
2 dept, id 0 ~ 0 " 'depI l"
2 Student 1 3 NULL
2 SnJden! 2 4 NULL
3 smdcnt_id 0 0 "' 123-
3 N a m e I 0 "'St I ""

3 Enroll 2 0 " 'CS I 0 "
3 ,Enroll 3 0 " C S 2 0 "
4 Smdem id 0 0 "124"
4 Name I 0 "'St2"'

Table 3.4 The Edge Table

Table 3.4 contains the Edge table [for the example
shown in Figure 3, I. TargetlD 0 indicates that Ihe edge
points to a T E X T node or A T T R I B U T E node. 0 in
ordinal field indicates an attribute edge.

As suggested in [9], an index is built on flag, data) in
order to reduce the execution time o f selection queries.
We found thai it was also very important to build
indices on (source/c/, ordinal) and (target/D), The
[former is used In lookup children elements of" a given
element and the later is used when traversing from a
child node to its parent,

<?xml vers ion-" 1.0"?>
<! DOCTYPE Depl SYSTEM "'D©pl.dtd">
< D e p z dept_id="depl I ">
<Srudem smdem id="123">
<Nam©>SI I <J'N ~ , < E n r o l] > C S I O</Enroll~<En roll>CS20</Enro] I><./Srude nl>
<Srudem smdcnt_id="] 24"><Nam©>Sz2<./Nam¢></S rudem>
<'J'Dcpl,>

~le X IHL Ilia "Dep l .aml " and l u D T D

6 S I G M O D R e c o r d . Vol . 31. N o . 1. M a r c h 2 0 0 2

The clustering strategy on the Edge table has significant
impacts on query performance. While we clustered the
Edge table on the Tag field, an alternative strategy is to
cluster the table according to SourcelD. This strategy
has the benefit that sub-elements of one XML element
are stored close to each other. The drawback is that
elements with the same tag name ate not clustered.
Consequently, queries such as "select all students
whose major is Computer Science" will incur a large
number of random I/Os. Our experiments showed
clustering on the Tag attribute has better performance,
except when reconstructing the original XML file.
Thus, we only consider clustering on the Tag anribute
in this paper.

3.4 The Att r ibute Approach

Florescu and Kossman [9] suggested another approach
called the "Attribute" approach. The Attribute approach
is a horizontal part i t ion o f the Edge approach by the
Tag field. Tuples with different tags are stored in
separate tables. While one might argue that the
Attribute approach saves space by not storing the tag
field, it sacrifices a very important property o f Edge
approach. With the Attribute approach, a query
processor needs a DTD to decide which table contains
sub-elements since the tags o f the sub-elements are not
recorded in the table. Furthermore, for a large collection
of XML documents, the attribute approach can result in
a large number of tables.

3.5 The Object Approach

An obvious way of storing XML documents in an
object manager is to store each XML element as a
separate object. However, since XML elements are
usually quite small, we found the space overhead of this
strategy prohibitive. Instead, all the elements o f an
XML document are stored in a single object with the
XML elements becoming light-weight objects inside
the object. We use the term Iw_object to refer to the
light-weight object andfile..object to denote the object
corresponding to the entire XML document.

Offset Record
0 Length=40, Dep(, parenr~rtil, prev=nil, next=nil

fir~tchild.1.40, last child-t4.0, Aztr(deptid="deptl")
40 Length.=40, Student, parents0, prev'~nil, nex~-140.

finl_child=80, lasuchi]d=] 20, A.r(studenUid="] 23")
O0 Length=20, Name, pamm=40, prev--'nil, next=t00, no

children, no aztribme, #PCDATA:"SzI"
100 Length--Z0, Enroll, parent"-40, prey=B0, n©xr~ 120, no

children, no atlribuTe,#PCDATA="CS I 0"
120 Lcnglh=20, Enroll, paten -~40, prev=ioo, n©x~nil, no

children, no anfibute, #PCDATA="CS20"
140 Length=40, Studenl. parent=0, prey=40, next=nil,

first child=180, last.child= 180,Anr(srudem.id="124")
160 Length=20, Name, parenl~140, prey=nil, next--nil, no

children, no anributc, #PCDATA="Sz2 ''
Figure 3,.3 File object holding "Dept.zml"

Figure 3.3 shows how the example XML file is stored
in aftle_object. The Format o f each lwobject is shown
below:

I Icnglh I flag I tag I parch11pmvlncxKI opl child I opt nnr Iop, ,cxl I

The offset o f the Iw_object inside aft/e_object is used
as its ident i f ier (iwoid), as shown at the upper left
comer o f each Iwobject in Figure 3.3. The length f ield
records the total length of the/w_object. Theflag field
contains bits that indicate whether this Iw_object has
opt_child, opt_our, or opt_text fields. The tag field is
the tag name of the XML element. The parent field
records the Iw_oid of the parent node. Opt_child
records the iw oids of the first and last child, if the
lw_object has children. The sibling list o f a node is
implemented as doubly linked list via theprev and next
fields. Opt attr records the (name, value) pair o f each
attribute of the XML element. Text data is in-lined in
the opt_text field if the text is the only child o f the
XML element; otherwise, the text data is treated as a
separate lwobject. We build a B-Tree index that maps
(tag, opt_text) and (stir_name, stir_value) to Iw_oid.
An element is entered in this index even i f the opt_text
f ie ld is empty so that this index can be used to retr ieve
all XML elements with a specific tag name. We also
build a path index that maps (parent_id, tag) to child
Iw oid.

4. P e r f o r m a n c e S t u d y

This section evaluates the performance o f the five
strategies described in Section 3 on two different
datasets. The first dataset models a university
department database l ike that described in [5]. It
contains 250 XML files, 114MB in total. Figure 4.1
presents an overall picture o f the DTD for the dataset.
The arrows indicate element containment relationships.
Strong lines with a "*" indicate that there may be
multiple sub-element occurrences.

Figure 4.1 DTD graph of Deparlment dataset

The second dataset we used is the Open Directory
Project data.set [13], which contains a comprehensive
directory o f the web. The size of the ODP data set we
used is about 140 MB. Web pages are organized into
topics and each topic may contain nested sub topics.
This hierarchical information is captured by cycles in
DTD graph shown in Figure 4.2. A Topic element can
have several other Topic elements as its children. This

S I G M O D R e c o r d , Vol . 31 , N o . 1, M a r c h 2 0 0 2 7

cycle in DTD graph wil l require that a path expression
query be translated into a fixed-point evaluation.

Figure 4.2 DTD graph of the ODP dataset

Table 4.1 lists the indices used with each approach.
Table 4.2 summarizes the space consumed by each
strategy.

Indices
TEXT path index, invoned path index, (tag,data) or (anmame,

anrvalue) to element_otT~l
DTD Indices on each column containing XML data value,

Indices on parentld and myld
Edge (tag, data), (sourceld, ordinal), {tarBetld)
A r r R (sourceld)p (tarBetld), (data)
Object (laB, data), (atrr name, stir value), path index I

Table 4.] Inditer oreach approach

I ri.EXTiDTDiEdRelA.i.TRiObj ectl
Oepa"mentlData Ill+ 169 J223 1,65 1 , 0 , •
Dataset llnd,cesp06 129.3 1=67 p]0 1'64 /
loop 1,o,,= 1,26 1 m I,,7 1 , 6 0 !
IOataset Jlndlcespl2 lit2 1190 IIel p g z /

Table 4,2 Space usage oreach approach (in MB)

Our experiments were conducted using an 800 MHz
Pentium Il l with 256 MB memory running Linux 2.2.
We used DB2 V7. i as the relational DBMS. The Object
strategy was implemented using Shore [4]. Both DB2
and Shore were configured to use a 30MB memory
buffer pool. There was no buffer pool ['or the TEXT
approach and the query processor used as much
physical memory as available (256M). The indices for
the TEXT approach were implemented using Berkley
DB [2]. For the DTD and Edge approaches, XQuery
queries were manually translated to SQL queries to be
executed by DB2.

We conducted extensive experiments to compare the
strategies. The results presented in this section were
obtained with cold buffer pools. More results can be
found in [1'7].

4,1 Reconstruct Original XML Documents

This experiment measures the time to reconstruct
documents in the original datasets. There is no
reconstruct time for the TEXT approach since the
original X M L files were stored in the file system.

]DTnledgelAttr lburelObj~t l
par'men' Da'--,,I "0'12011 i I 7" I
PDatase, liiS4llS:z]] 2Bs6 I el I

Table 4.3 Reconstruction lime (set)
DTD and Edge approach clustered elements according
to tag names. Hence, the order oftuples in the tables no
longer reflects the original order of" elements in X M L

documents and reconstruction incurs many random
I/Os, In the Edge approach, one SQL is used to retrieve
element id of all sub-elements. For the Attribute
approach, DTD int'ormation is required ¢o decide which
tables that may contain sub-elements. The number of
SQL queries needed to find all sub-elements equals the
number or'possible tags.

4.2 Selection Queries

Our second set of experiments measures the
performance of.different types of`selection queries.

Selection Query I: Index look up

Index look up on Department data
SQ_IA: Find Stall'name whose id is 'P 77'
FOR Ss in documenl(ydepanmenl/Staff
WHERE Ss/@id=' P_77'
RETURN <result> {$Mname~ </result>

I S Q i A [DTD 0.4 I Edge 0.5 t Attribute 0, I°ob#?'l TEXT_ I
Table 4.4 SQ_IA (time in seconds)

There is only one Sta]~" that satisSes the predicate in
SQ_IA. The relational database based approaches have
worse performance than object manager and text based
strategies due to the overhead of" relational query
engine.

Index scan on ODP darn
SQ_IB: select Topic description with thlc "Photography".

FOR St in documentO/hopic WH ERE SrVTitle=' Photography'
RETURN St/De~cripmn
$Q_I B*: select Topic description which has s sub-topic with
Tide "Photography"
FOR St in documentO//topic WHERE $¢['rh1¢ = "Pholography'
RETURN $¢Deacription

DTD Edge Attribute Objec! TEXT
SQ_IB 0.8 1.2 2_1 9.4 6.7
SQ IB* 2.4 10.7 7.4 9.6 7.3

Table 4.$ SQ_IB znd-SQ_l B ° (lime in seconds')
For SQ_IB, objects in Object and TEXT approaches
were clustered according to the document order. After
the index look up using Title-'Photography', chasing
child/parent links incurred lots of random 1/O. The
relational approaches performed much better because
tuples were clustered according to lag names. For
SQ_IB*, the cycle in DTD graph required a fixed-point
evaluation with relational approaches, thus their
running times were much worse than SQ.._I B.

Selection Query 2: Scan Selection

Scan Seleellon on Department data
SQ_ZA: Select professor id, name with salaries higher than
$60r000
FOR Sp in docnment()/depanmen~proressor
WHERE salary($p) > 60000
RETURN Sp/id, $p/name

8 S I G M O D R e c o r d , Vol. 31, No. l , M a r c h 2002

The Salary o f an employee o f the department is
computed by the salaryO function using the Salaryinfo
sub-element of Professor.

ISQ I DTDlEdeelAnributelOblectlTEXTI
zAI t .9?l lS .41 t3.2 I Zs I 29 I
Table 4.6 $Q_ZA (time In seconds)

Clustering the souse type of elements together (e.g. all
Professors) is important for this query. The D T D
approach has the best performance because it also
inlines Salarylnfo and personal information like id and
Name with Professor elements, while the Edge and
Attribute approaches need to perform joins to retrieve
those values. The TEXT approach has essentially the
same access pattern as the Object approach, except we
need to parse the professor elements to retrieve
Salarylnfo, id and name.

Scan selection on ODP dais

SQ_2B: find topics thal arc updated in last qua~er of a year.

FOR $1 in documenzO/Itopic
WHERE momh(Sz4esropdal¢) >= I 0
RETURN $t/l~scripfion
SQ_2B*: find topics that contain a sub-topic which is updated
in lasl quarter of s)rear.
FOR $[in document0Uiopic
WHERE rnonth($l//lasmpdal©) >= 10
RETURN JdDescripzion

l IDTnlEdgelAnributelOHectlTgXTI
2B 5.1 I I.S I 4.5 45 31

2B* S3 S0 I 72 47 41
Table 4.'7 SQ_2B and SQ_2B* (time In seconds)

Comparing results of SQ_2B with those of SQ_2B*,
the performance of relational approaches dropped from
the best to the worst. This is because SQ_2B* requires
recursiv¢ SQL query processing.

4.3 Set Conta inment Queries

Set containment querl~ on Department dais
I CO_l: SaIccl ills and names of professors who have s kid named I

"Birl 16"

I I FOR Sp in decumem(ydepanmenr]professor
WHERE $p/kidf"Eir116" RETURN Jp/id, Jp/naroe

l IDTDlEdeelAnributelOhiect ITEXT I
ICO II 1.2 I27.tl 9 I S.6 I 21 1

Table 4,B CQ_I (llroe In seconds)

Containment queries for ODP data
I CQ_Z: Find sub-topic of Topic 10366

RETURN $//Topic/Dcscriplion
FOR St in document(yrropic WHERE $l/@catid--' 10366"

[]DTDlEdeelAttrlbutelObJeetlTEXTI
I c O Z l l . S l z . s l z.s I t I t.4 I

Table 4.9 CQ_2 (time in seconds)

The DTD approach exhibits good performance for both
queries because similar elements are clustered together.
The information that is needed to construct the result o f

the query is readily available as columns o f the
relational tables. The Edge and Attribute approaches
suffer from the cost o f constructing query results as
tup|e corresponding to a single real world object (eg. id
and name) are scattered around the tables. Since the
Object approach cluster elements in the original order
of the document, the I/O (sequential) needed to retrieve
Description by CQ_2 is confined in one Topic element.
CQ_I requires navigating from children (Kid is g i r l l f)
to parent nodes (Professor). Traversing upward is more
l ikely to incur random !/O. Whi le the parent node id is
stored as a field o f children nodes in the Object
approach, the T E X T approach must use the inverse path
index to look up the parent id, therefore the
perfozTnance suffers.

4.4 Join Queries

Join query on Departroent data
JQ_I: Find smdems with same birthdate and zipcode
FOR Jsl in documenz(]ddepanment/smdenl
RETURN <rcsult> FOR $s2 in decurocnt0/deparlmcnt/szudenz

WHERE $l/binhdaz© = $s2/birzhdate and
$s l lzipcode = SsTJzipcode and Ss l l@id !ffi $sZ/(~id
RETURN $s I/~id, $sl/name, Ss2/~,~,id, $s2/name </result>

[[DTDI EdaelAnributelObjectlTExTl
IJ0:13,41 35 1 31 1 30 I 35 1

Table 4,10 JQ_I (time in seconds)
J Q I can be directly translated into a self-join query on
the Student table with the DTD approach. For the
Object and Text approaches, we implemented a hash
jo in and assumed that the hash table fits in memory.
The reason that D T D approach signif icantly out-
performed the Object approach is that all student
information is clustered in one table, whereas for the
Object approach, the student information is scattered in
different departments.

Join on ODP data
JQ_2: Retrieve descprizions for same subtopic of Illinois and
Wisconsin
FOR Sit in documem(yfFopic[@,id='lllinois']//Topic
RETRUN FOR $wt in document0/[ropic[Q_.id='Wisconsin']/[Topic
WHERE $iz[ritle ffi $wtfl'ille
RETURN Sit/Description, $wz/Descriplion

I IDTDI EdeelAttrlbutelObJecllTEXTI
I , Jo211 .51 1 7 l is I t [I I

Table 4, | l JQ_2 (time In seconds)

JQ_.2 consists of fixed-point evaluation of both sides of
the jo in operator. The cost o f evaluating the recursive
query wi th Edge and Attr ibute approaches is high. We
examined the execution plan and found the execution
plan is sub-optimal because it is hard to estimate the
size o f Ihe output o f f ixed-point evaluation.

4.5 S u m m a r y

Our experiments demonstrated that there are three
forms of desirable clustering when storing XML files.

S I G M O D Record, Vol. 31, No. 1, March 2002 9

I. Clustering elements corresponding to the same
real world object. For example, storing a
student's id and name together.

2. Clustering the same kind of elements together.
For example, storing all student elements
together.

3. Clustering elements using the same order as in
the original text XML files

The Relational-DTD approach uses strategies I and 2
aggressiveiy. DTD information helps to produce much
more compact data representation. The drawback of this
approach is that it cannot handle X M L documents
without DTD. Fortunately, in many X M L application
such as E-business information exchange, well agreed
upon DTDs have begun to appear. Using a relational
database system has several other advantages including
portability and scalabi]ity. In addition, since a
significant fraction of the dam on the web currently
resides in relational database systems, using a relational
DBMS to store X M L documents makes it possible to
query both types of data with one system and one query
language.

Both Edge approach and Attribute approach exploit
clustering strategy 2. Unfortunately, the benefits of
clustering strategy I are lost. This results in much
worse performance when the query must apply
predicates related to several sub-elements and when
constructing result documents. The parent-children
relationship between X M L elements are captured by
SQL joins. This produces very complex SQL queries
involving tens of joins for complex path expressions
that make it difficult for the relational database query
optimizer to produce a correct plan. The number of
joins also makes these approaches sensitive to
complexity of path expression. The Attribute approach
has more compact data representation than Edge
approach. On the other hand, Attribute approach needs
DTD information in order to reconstruct an element.
The reconstruction cost is higher due to more SQL
queries needed to fetch all sub-elements.

The Object approach uses clustering strategy 3. Since
elemen~ corresponding to one real world object are
frequently clustered together in the original X M L
document, strategy 3 shares some of the benefits of
strategy 1. While strategy 3 provides very good
performance when reconstructing query results, the fact
that similar objects (elements with same tag name) are
not clustered adds significant overhead to query
processing when compared with the DTD approach,

5, Conc lus i on

"l'his paper explores several different strategies for
storing XML documents: in the file system, in a
relational database system and in an object manager.

We evaluated the performance of each strategy using a
set of queries. Our results clearly indicate that DTO
information is vital to achieve good performance and
compact data representation. When DTD is available,
the DTD approach has compact data representation and
excellent performance across different datasets and
different queries,

On the other hand, there are applications that need to
handle XML files without DTDs or XML files used as a
Markup Language. When DTD has cycles, a path
express in XQuery will be translated into recursive $QL
queries. Our results showed object storage manager
based approaches can out perform relational approach
on fixed-point evaluation.

With proper indices, the TEXT approach can achieve
similar performance to the Object manager based
approach. However, the cost of maintaining indices will
make this approach only useful when update frequency
is low,

References
[I] $. Abiteboul, S, Cluet, et al. Qtterying and =lpdating
thefi/e. VLDB 1993
[2] Berk/ey DB toolkit, http://www.sleepycat.com
[3] P. Buneman, Semi-structured data, PODS I997
[4] M. Carey, D. DeWitI, el al. Shoring Up Persistent
Applications, SIGMOD 1994
[5] M. Carey, D. DeWit[, el al. The BUCKY Object-
Relational Benchmark, SIGMOD 1997
[6] IBM DB2 XML Extender.
http:llwww4.ibm.com/softwareldata/db21extenders/
[7] A. Deutsch, M. F. Fernandez, et al. Storing Send-
structured Data with STORED, S[GMOD 1999
[8] Excelon. http://www,odi.com/excelon
[9] D. F}orescu, D. Kossman, Storing and Querying
XML Data using an RDMBS. [EEE Data Engineering
Bulletin 22(3), 1999
[I O] C. Kanne, G. Moerkotte, EffTcient storage of XMIL
data, ICDE 2000
[I I] J. McHugh, S. Abiteboul, R. Goldman, et al. Lore.
A Database Management System fbr Semi-s/rote/uteri
Data, SIGMOD Record 26(3) (1997)
[12] Microsoft SQL Server 2000 Books Online, XML
and Interact support.
[] 3] Open Directory' Project. http://www.dmoz.org/.
[14] Oracle XML SQL Utilities.
http:llotn.oracle.com/techlmxlloracle_xsu/.
[15] POET, hltp://www.poet.com/.
[16] J. Shanmugasundaram, K. Tufte, et al. Relational
Databases for Querying XML Documents: Limitations
and Opportunities. VLDB 1999.
[17] http:llwww.cs.wisc.edul-~ianlpaper/xmlstore.pd f.

10 S I G M O D R e c o r d , Vol. 31, No. 1, M a r c h 2002

