The Design and Performance Evaluation of Alternative XML Storage
Strategies

Feng Tian David J. DeWitt

Jianjun Chen Chun Zhang

Department of Computer Science
University of Wisconsin, Madison
{ftian, dewitt, jchen, czhang} @cs.wisc.edu

Abstract

This paper studies five strategies for sioring XML
documents including one that leaves documents in the
Jile system, three that use a relational database system,
and one that uses an object manager. We implement
and evaluate each approach using a number of XQuery
gueries. A number of interesting insights are gained
Sfrom these experiments and a summary of the
advantages and disadvantages of the approaches is
presented.

1. Introduction

XML is the new standard for Internet data
representation and exchange. An important question is
what is the best way of storing XML documents since
the performance of the wunderlying storage
representation has a significant impact on query
processing efficiency. Several projects [1][9][10][16]
have proposed alternative strategies for storing XML
documents. These strategies can be classified according
to the underlying system used: file system, database
system, or object manager, To the best of our
knowledge there has been no careful performance study
comparing these alternatives and it is still an open
question which of the strategies is the best.

We briefly describe these alternatives. One way is to
store each XML document in a text file. The main
advantage of this approach is that it is easy to
implement and does not require the use of a database
system or storage manager. It has several significant
disadvantages, however. First, XML documents need to
be parsed every time they are accessed. Second, the
entire parsed file must be memory-resident during
query processing. These problems can be solved by
building external indices on XML documents. A query
engine can use these indices to retrieve document
segments relevant to a query. This type of index usually
stores offsets of XML elements in the text file to help
retrieve partial documents. Consequently, the indices
are difficult to maintain if the XML document is
updated.

An alternative is to store XML documents in a database
system. Several recent papers [9][10][16] have
examined how to map and store XML data in a
relational database system. The disadvantage of this
approach is that current database system may not be

SIGMOD Record, Vol. 31, No. 1, March 2002

well tuned for XML workload and accessing XML data
through an interface such as SQL incurs overhead not
related to storage.

The third alternative is to use an object manager such as
Shore [4]. While this approach allows special purpose
processing, an object manager requires more work to
use than a full-blown database system.

This paper studies five alternative ways of storing XML
documents: one that employs text files stored in the file
system, three that use a relational database system, and
one that uses an object manager. We omit the approach
of using an object-oriented database mainly because the
underlying storage structure of an OODBMS is not
fundamentally different from that of an object manager.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 describes
the different strategies for storing XML. The
performance of these strategies is evaluated in Section
4. We conclude in Section 5.

2. Related Work

Recently, several projects have investigated strategies
for storing and XML data to facilitate efficient query
processing. Abiteboul et al. examine the use of a text
file [1]. In (10], Kanne and Moerkotte store each XML
file as a collection of records in an object manager and
evaluate alternative strategies for grouping XML
elements into page-sized records. Lore [11] is a special
purpose database system that exploits features of the
semi-structured data model. Another approach is to
store XML data in a relational DBMS or OODBMS
[71(8][(91[15][!16]. [16] examined how to map XML dala
into a relational database given the DTD of the file.
This study used the number of join operations
performed as its performance metric and not response
times for running real queries against XML datasels.
The STORED(7] system utilizes data mining to extract
a schema from XML data and converts them to
relations. In [9], Florescu and Kossman evaluated
several alternative mappings for storing XML
documents in a relational database system without
using DTD. Our work extends [9] and [16] by
comparing them with a few other strategies and
evaluating them using extensive experiments.

All major relational database vendors now offer some
form of XML support [6][12][14]). These commercial

1ools are all conceptually similar to the relational DTD
approach that we evaluate in this paper. Two object-
oriented database systems, Excelon [8] and POET [15],
map each XML element into a separate object. Their
approaches are similar to the Object approach described
in Section 3.

3. Different Storage Strategles

We use the XML document “Dept.xml” in Figure 3.1 to
illustrate how XML data is actually stored with each
strategies. An XML document can be modeled as a
directed graph, with nodes in the graph representing
XML elements or attributes and edges representing
parent-children relationships. Such a graph is shown in
Figure 3.2. Boxes with rounded corners represent
attribute or text nodes.

Figure 3.2 The graph representation of “Dept.xml”
3.1 The Text Approach

The first strategy stores each XML document as a lext
file. One way to implement a query engine with this
approach is to parse the XML file into a memory-
resident tree against which the query is then executed.
The tree is retained in memory as long as some nodes in
the tree are needed for query evaluation. We found that
the parsing time dominated query execution time and
the approach was unacceptably slow. To make this
approach competitive we adopted the following
indexing strategy. Using the offset of an XML element
inside the text file as its id, we build a path index
mapping (pareni_offset, tag) to child_offset and an
inverse path index wmapping child offset to
parent_ofjset. These two indices are used to Facilitate
navigation through the XML graph. Another index
mapping (fagname, value) or (artribute_name,
attribute_value) to element offset is built to help
evaluate selection predicates. A query engine can use
these indices 10 retrieve segments of an XML file
relevant to the query, reducing parsing Llime
dramalically.

3.2 The Relational DTD approach

The second strategy is the shared-inlining method
proposed in [16] and requires the existence of a DTD.
A separate table is used to capture the set-containment

relationship between an element and a set of children
clements with the same tag. Each tuple in a table is
assigned an /D and contains a parent/D column 10
identify its parenl. An element that can appear only
once in its parent is inlined as a column of the 1able
representing its parent. If the DTD graph contains a
cycle, a separale table must be used to break the cycle.
The relational schema generated from the Dept DTD
and how the document is stored are shown below.

ParentiD | ID | Dept id ParentiD | ID | TEXT
1 2 “deptl™ 3 5 “CS10"
Table 3.1 The Dept table 3 6 ~CS20"
Table 3.2 The Enroll 1able

ParentiD | ID | Student id | Name

2 3 123" “Silt

2 4 124" “Si2™

Table 3.3 The Student table
3.3 The Edge Approach

The third strategy is the “Edge” approach described in
[2]. The directed graph of an XML file is stored in a
single Edge table. Each node in the directed graph is
assigned an id in the dept first order. Each tuple in the
Edge table corresponds to one edge in the directed
graph and conlains the ids of the two nodes connected
by the edge, the tag of the target node, and an ordinal
number that is used to encode the order of children
nodes. When an element has only one text child, the
text is inlined.

SourcelD | 1ap ordinal | TargetID | Data
1 Dept | 2 NULL
2 dept id 0 0 “dept!™
2 Srudent 1 3 NULL
2 Student 2 4 NULL
3 srudent id | O 0 123"
3 Name 1 0 St
3 Enroll 2 0 “CS10™
3 Enroll 3 0 ~CS20™
4 Studem id | O 0 124"
4 Name 1 0 ire

Table 3.4 The Edge Table

Table 3.4 contains the Edpe table for the example
shown in Figure 3.1. Target/D 0 indicates that the edge
points to a TEXT node or ATTRIBUTE node. 0 in
ordinal field indicales an artribute edge.

As suggested in [9], an index is built on (iag, dara) in
order to reduce the execution time of selection queries.
We found that it was also very imporant lo build
indices on (sourceld, ordinal) and (rargeiiD). The
former is used to lookup children elements of a given
element and the later is used when traversing from a
child node to its parent,

<?'xml?>

<'ELEMENT Depr (Srudent®)>

<!ATTLIST Dept dept_id ID #REQUIRED>
<!'ELEMETN Student (Name, Enroll*)>
<!ATTLIST Srudent’student_id 1D #REQUIRED>
<!ELEMENT Name #PCDATA>

<!ELEMENT Enroll 4P CDATA> </Dept>

<7xml version="1.0"7>

<!DOCTYPE Dept SYSTEM “Depi.did">

<Deplt dept_id="'dep11">

<Smudent studeni_id="123">

<Name>Si11 </Name><Enroll>CS 1 0</Enroll><Enroll>CS20</Enroll></Srudent>
<Srudent sudeni_id="124"><Name>S12</Name></Srudenr>

Figure 3.1 Sample XML flle “Dept.xml” and Its DTD

SIGMOD Record. Vol. 31. No. 1. March 2002

The cluslering strategy on the Edge table has significant
impacts on query performance. While we clustered the
Edge table on the Tag field, an alternative strategy is to
cluster the table according to SourcelD. This strategy
has the benefit that sub-elements of one XML element
are stored close to each other. The drawback is that
elements with the same tag name are not clustered.
Consequently, queries such as “select all students
whose major is Computer Science” will incur a large
number of random 1/0s. Our experiments showed
clustering on the Tag attribute has better performance,
except when reconstructing the original XML file.
Thus, we only consider clustering on the Tag attribute
in this paper.

3.4 The Attribute Approach

Florescu and Kossman [9] suggested another approach
called the “Auribute” approach. The Attribute approach
is a horizontal partition of the Edge approach by the
Tag field. Tuples with different tags are stored in
separale tables. While one might argue that the
Attribute approach saves space by not storing the tag
field, it sacrifices a very important property of Edge
approach. With the Attribute approach, a query
processor needs a DTD to decide which table contains
sub-elements since the tags of the sub-elements are not
recorded in the table. Furthermore, for a large collection
of XML documents, the attribute approach can result in
a |large number of tables.

3.5 The Object Approach

An obvious way of storing XML documents in an
object manager is to store each XML element as a
separate object. However, since XML elements are
usually quite small, we found the space overhead of this
strategy prohibitive. Instead, all the elements of an
XML document are stored in a single object with the
XML elements becoming light-weight objects inside
the object. We use the termn Iw_object to refer to the
light-weight object and file_object to denote the object
corresponding to the entire XML document.

Offset Record

0 | Length=40, Dept, parent=nil, prev=nil, next=nil
first_child=40, last child=140, Aur(dept id="dep1]"

40 | Length=40, Student, parent=0, prev=nil, next=140,
first_child=80, last_child=120, Anr(srudent_id="123")

80 | Length=20, Name, parenr=40, prev=nil, next=100, no
children, no attribute, #PCDATA="S11"

100 | Lengih=20, Enroll, parent=40, prev=80, nexr=120, no

children, no anribute, APCDATA="CS10"

120 | Lengih=20, Enroll, parent=40, prev=100, next=nil, no

children, no anribute, #PCDATA="CS20"

140 | Lengh=40, Student, parent=0, prev=40, next=nil,

first_child=180, last child=180,Atir(student_id="124")

180 | Length=20, Name, parenr=140, prev=nil, next=nil, no

children, no artrribute, #PCDATA="S12"

Figure 33 File object holding “Dept.xml”

SIGMOD Record, Vol. 31, No. 1, March 2002

Figure 3.3 shows how the example XML file is stored
in a file_object. The format of each Iw_object is shown
below:

[[length | Nag | 1ag | parem [previnext] opt child | opt_atr [opr_text |

The offset of the /w_objeci inside a file_object is used
as its identifier (Iw_oid), as shown at the upper left
corner of each ;w_object in Figure 3.3. The length field
records the total length of the ;w_object. The flag field
contains bits that indicate whether this Iw_object has
opt_child, opt_aitr, or opt_text fields. The tag field is
the 1ag name of the XML element. The parent field
records the Mw_oid of the parent node. Opi_child
records the /w_oids of the first and last child, if the
w_object has children. The sibling list of a node is
implemented as doubly linked list via the prev and next
fields. Op!_attr records the (name, value) pair of each
attribute of the XML element. Text data is in-lined in
the gpt_text field if the text is the only child of the
XML element; otherwise, the text data is treated as a
separate /w_object. We build a B-Tree index that maps
(tag, opt_texi) and (aftr_name, attr_value) to lw_oid.
An element is entered in this index even if the opt_text
field is empty so that this index can be used to retrieve
all XML elements with a specific tag name. We also
build a path index that maps (parent_id, tag) to child
Iw_oid.

4. Performance Study

This section evaluates the performance of the five
strategies described in Section 3 on two differemt
datasets. The first dataset models a university
department database like that described in [5]. It
contains 250 XML files, 114MB in total. Figure 4.1
presents an overall picture of the DTD for the dataset.
The arrows indicate element containment relationships.
Strong lines with a “*" indicate that there may be
multiple sub-element occurrences.

xeSeclion

Figure 4.1 DTD graph of Department dalaset

The second dataset we used is the Open Directory
Project dataset [13], which contains a comprehensive
directory of the web. The size of the ODP data set we
used is about 140 MB. Web pages are organized into
topics and each topic may contain nested sub topics.
This hierarchical information is captured by cycles in
DTD graph shown in Figure 4.2. A Topic element can
have several other Topic elements as its children. This

cycle in DTD graph will require that a path expression
query be translated into a fixed-point evaluation.

Flgure 4.2 DTD graph of the ODP dataset

Table 4.1 lists the indices used with each approach.
Table 4.2 summarizes the space consumed by each
Strategy.

documents and reconstruction incurs many random
1/0s. In the Edge approach, one SQL is used to retrieve
element id of all sub-elements. For the Auribute
approach, DTD information is required to decide which
tables that may contain sub-elements. The number of
SQL queries needed to find all sub-elements equals the
number of possible tags.

4.2 Selection Queries

Our second set of experiments measures the
performance of different types of selection queries.

Selection Query 1; Index look up

Index look up on Department data

Indices

TEXT | path index, inveried path index, (tag,data) or (ammame,
anrvalue) o elemem offset

DTD Indices on each column conmaining XML data value,
Indices on parenild and myld

Edge (1ag, data), (sourceld, ordinal), (1argetld)

ATTR | (sourceld), (targetid), (daia)

Object | (1ag, damw), (atrr_name, aur_value), path index

Table 4.1 Indices of each approach
l TEXT|DTD|Edge/ATTR]|Object

Department/Data_|I14 169.7 223]I65 [104
Dataset Indices[206 [29.3 167 Ji30 |i6a
ODP Data [145 [i126 [222 187 Tis0
Dataset Indices[212 1132 [190 is1 [192

Table 4.2 Space usage of each approach (in MB)

Our experiments were conducted using an 800 MHz
Pentium III with 256 MB memory running Linux 2.2,
We used DB2 V7.1 as the relational DBMS. The Object
strategy was implemented using Shore [4]. Both DB2
and Shore were configured to use a 30MB memory
buffer pool. There was no buffer pool for the TEXT
approach and the query processor used as much
physical memory as available (256M). The indices for
the TEXT approach were implemented using Berkley
DB [2]. For the DTD and Edge approaches, XQuery
queries were manually translated to SQL queries to be
executed by DB2.

We conducted extensive experiments to compare the
strategies. The resulls presented in this section were
obtained with cold buffer pools. More results can be
found in [17].

4.1 Reconstruct Original XML Documents

This experiment measures the time to reconstruct
documents in the original datasets. There is no
reconstruct time for the TEXT approach since the
original XML files were stored in the file system.

DTD|Edge|Attribute|Object

Departmeni Dataset] 1404{2011] 3100 78

ODP Dataset 1184]1833] 2856 Bl
Table 4.3 Reconstruction time (sec)

DTD and Edge approach clustered elements according

to lag names. Hence, the order of tuples in the tables no

longer reflects the original order of elements in XML

SQ_1A: Find Staff name whose id is ‘P_77"
FOR 35 in document()/deparimeni/Siaff
WHERE 5s/@id="P_77"

RETURN <resuli> {$s/name] </resuli>

DTD | Edge | Attribute | Object | TEXT
SQ 1A | 04 0.5 0.5 0.2] 0.3
Table 4.4 SQ_1A (time in seconds)

There is only one Sraff that satisfies the predicate in
SQ_IA. The relational database based approaches have
worse performance than objecl manager and text based
strategies due to the overhead of relational query
engine.

Index scan on ODP data

SQ_1B: select Topic description with title *Photography™.

FOR 3t in document()/1opic WHERE $uTitle="Photography"
RETURN St/Descripton

SQ_IB*; select Topic description which has a sub-topic with
Title "Photography”

FOR §t in document()//lopic WHERE Su/Title = ‘Photography’
RETURN $vDescription

DTD|Edge|Attribute|Object|TEXT
SQ 1B [08]1.2 2.3 94 | 6.7
SQ 18+ 24 [10.7] 7.4 96 | 73
Table 4.5 SQ_1B and SQ_1B* (time in seconds)

For SQ_1B, objects in Object and TEXT approaches
were clustered according 10 the document order. After
the index look up using Title='Photography’, chasing
child/parent links incurred lots of random I/OQ. The
relational approaches performed much better because
tuples were clustered according to tag names. For
SQ_IB*, the cycle in DTD graph required a fixed-point
evaluation with relational approaches, thus their
running times were much worse than SQ_IB.

Selectlon Query 2: Scan Selection

Scan Selection on Department data

SQ_2A: Seleci professor id, name with salaries higher than
560,000

FOR $p in documeni()/departmenv/professor

WHERE salary($p) > 60000

RETURN $p/id, Sp/name

SIGMOD Record, Vol. 31, No. 1, March 2002

The Salary of an employee of the department is
computed by the salary() function using the Salaryinfo
sub-element of Professor.

DTD|Edge|Attribute|Object| TEXT
SQ 2A1197]18.4 13.2 25 29
Table 4.6 SQ_2A (time In seconds)

Clustering the same type of elements together (e.g. all
Professors) is important for this query. The DTD
approach has the best performance because it also
inlines Salaryinfo and personal information like id and
Name with Professor elements, while the Edge and
Altribute approaches need to perform joins to retrieve
those values. The TEXT approach has essentially the
same access pattern as the Objecl approach, except we
need to parse the professor elements to retrieve
Salaryinfo, id and name.

Scan selection on ODP data

SQ_2B: find topics that are updated in last quarier of a year.

FOR $t in document()//topic

WHERE month($t/1astupdate) >= 10

RETURN S$vDescription

SQ_2B*: find 1opics that contain a sub-topic which is updated
in last quarter of a year.

FOR $1 in document()//1opic

WHERE month(§¥/lastupdate) >= 10

RETURN SvDescriplion

DTD|Edge|Attribute|Object] TEXT
SQ 2B [5.1 [11B}] a3 45 | 31
SQ 2B*| 83 | 8O 72 47 41
Table 4.7 SQ_2B and SQ_2B* (time In seconds)

Comparing results of SQ_2B with those of SQ_2B*,
the performance of relational approaches dropped from
the best to the worst. This is because SQ_2B* requires
recursive SQL query processing.

4.3 Set Containment Queries

Set containment querles on Department data

CQ_1: Sclect ids and names of professors who have a kid named
“girl16”

FOR $p in documeni()/departmenvprofessor

WHERE $p/kid="girl 16™ RETURN $p/id, Sp/name

DTD|Edge|Attribute|Object| TEXT
CQ 1] 1.2 | 27.1 9 5.6 21
Table 4.8 CQ_1 (time In seconds)

Containment querles for ODP data
€Q_2: Find sub-topic of Topic 10366

FOR 5t in document()//Topic WHERE $t/@catid="10166"
RETURN $//Topic/Description

DTD|Edpe|Attribute]Object| TEXT
CQ 2| 18125 2.3 1 1.4
Table 4.9 CQ_2 (time in seconds)

The DTD approach exhibits good performance for both
queries because similar elements are clustered together.
The information that is needed to construct the result of

SIGMOD Record, Vol. 31, No. 1, March 2002

the query is readily available as columns of the
relational tables. The Edge and Attribute approaches
suffer from the cost of constructing query results as
tuple corresponding to a single real world object (eg. id
and name) are scattered around the tables. Since the
Object approach cluster elements in the original order
of the documenlt, the I/0 (sequential) needed to retrieve
Description by CQ_2 is confined in one Topic element.
CQ_I requires navigating from children (Kid is girll6)
to parent nodes (Professor). Traversing upward is more
likely to incur random 1/0. While the parent node id is
stored as a field of children nodes in the Object
approach, the TEXT approach must use the inverse path
index to look up the parent id, therefore the
performance suffers.

4.4 Join Queries

JoIn query on Department data

JQ_LI: Find studenis with same birthdate and zipcode.

FOR $s1 in document()/depariment/student

RETURN <resulr> FOR 352 in document()/departmenvt/student
WHERE $1/birthdate = $52/birthdate and
$sl/zipcode = $s2/2ipcode and $s1/@id '= $s2/@id
RETURN §s l/@id. $51/name, Ssz_l@id, $s2/name </resulc>

DTD|Edge|Attribute|Object | TEXT

JQ 1] 34| 35 31 30 35
Table 4.10 JQ_I (time in seconds)

JQ_1 can be directly translated into a self-join query on
the Student table with the DTD approach. For the
Object and Text approaches, we implemented a hash
join and assumed that the hash table fits in memory.
The reason that DTD approach significantly out-
performed the Object approach is that all student
information is clustered in one table, whereas for the
Object approach, the student information is scattered in
different departments.

Join on ODP data

JQ_2: Rerrieve descpritions for same subrtopic of lllinois and
Wisconsin

FOR Sit in documeni()//Topic[@id="1llinois'}//Topic

RETRUN FOR $wt in document()/Topic[@id="Wisconsin"}//Topic
WHERE $ivTitle = Swi/Title

RETURN JSivDescription, $wt/Description

DTD|Edge|Attribute|Object TEXT
JQ 2| 15| 17 15 1 1
Table 4.11 JQ_2 (time In seconds)

JQ_2 consists of fixed-point evaluation of both sides of
the join operator. The cost of evaluating the recursive
query with Edge and Attribute approaches is high. We
examined the execution plan and found the execution
plan is sub-optimal because it is hard to estimate the
size of the outpul of fixed-point evaluation.

4.5 Summary

Our experiments demonstrated that there are three
forms of desirable clustering when storing XML files.

1. Clustering elements corresponding to Lthe same
real world object. For example, storing a
student's id and name together.

2. Clustering the same kind of elements logether.
For example, storing all student elements
together.

3. Clustering elements using the same order as in
the original text XML files

The Relational-DTD approach uses strategies 1 and 2
aggressively. DTD information helps to produce much
more compact data represemation. The drawback of this
approach is that it cannot handle XML documents
without DTD. Fortunately, in many XML application
such as E-business information exchange, well agreed
upon DTDs have begun to appear. Using a relational
database system has several other advantages including
portability and scalability. In addition, since a
significant fraction of the data on the web currently
resides in relational database systems, using a relational
DBMS 1o store XML documents makes it possible to
query both rypes of data wilh one system and one query
language.

Both Edge approach and Atribute approach exploil
clustering strategy 2. Unfortunately, the benefils of
clustering strategy | are |ost. This results in much
worse performance when the query must apply
predicales related to several sub-elements and when
constructing result documents. The parent-children
relationship between XML elements are captured by
SQL joins. This produces very complex SQL queries
involving lens of joins for complex path expressions
that make it difficult for the relational database query
optimizer lo produce a correct plan. The number of
joins also makes these approaches sensitive lo
complexity of path expression. The Auribute approach
has more compact data representation than Edge
approach. On the other hand, Attribute approach needs
DTD information in order to reconstruct an clement.
The reconstruction cost is higher due to more SQL
queries needed to feich all sub-elements.

The Object approach uses clustering strategy 3. Since
elements corresponding to one real world object are
frequently clustered together in the original XML
document, strategy 3 shares some of the benefits of
strategy 1. While strategy 3 provides very good
performance when reconstructing query results, the fact
that similar objects (elements with same tag name) are
not clustered adds significant overhead to query
processing when compared with the DTD approach.

5. Conclusion

This paper explores several different strategies for
storing XML documents; in the file system, in a
relational database system and in an object manager.

10

We evalualed the performance of each strategy using a
set of queries. Our results clearly indicate that DTD
information is vital to achieve good performance and
compact dava representation. When DTD is available,
the DTD approach has compact data representation and
excellent performance across different datasets and
different queries.

On the other hand, there are applications that need to
handle XML files without DTDs or XML files used as a
Markup Language. When DTD has cycles, a path
express in XQuery will be translated into recursive SQL
queries. Our results showed object storage manager
based approaches can oul perform relational approach
on fixed-point evaluation.

With proper indices, the TEXT approach can achieve
similar performance to the Object manager based
approach. However, the cost of maintaining indices will
make this approach only useful when update frequency
is low.

References

[1] S. Abiteboul, S. Cluet, et al. Querying and updaiing
the file. VLDB 1993

[2] Berkley DB roolkit. hitp://www .sleepycat.com

[3] P. Buneman, Semi-structured dara, PODS 1997

[4] M. Carey, D. DeWiu, et al. Shoring Up Persistent
Applications, SIGMOD 1994

[5] M. Carey, D. DeWin, el al. The BUCKY Objecr-
Relational Benchmark, SIGMOD 1997

(6] IBM DB2 XML Extender.
http://www4.ibm.com/software/data/db2/exienders/

(7] A. Deutsch, M. F. Fernandez, et al. Sioring Semi-
structured Data with STORED, SIGMOD 1999

(8] Excelon. http://www .odi.com/excelon

[9] D. Florescu, D. Kossman, Storing and Querying
XML Data using an RDMBS. |[EEE Data Engineering
Bulletin 22(3), 1999

[10] C. Kanne, G. Moerkotte, Efficient storage of XML
daia, ICDE 2000

[11]J. McHugh, S. Abiteboul, R. Galdman, et al. Lore:
A Darabase Management Svsiem for Semi-siruciured
Data, SIGMOD Record 26(3) (1997)

[12] Microsoft SQL Server 2000 Books Online, XML
and Internet suppont.

[13] Open Directory Project. htip://www.dmoz.org/.
[14] Oracle XML SQL Utilities.
http://otn.oracle.com/tech/mxl/oracle_xsu/.

[15] POET, hiip://www.poet.com/.

[16] J. Shanmugasundaram, K. Tufte, et al. Relational
Darabases for Querying XML Documenis: Limitations
and Opportunities. VLDB 1999.

[17] http:/fwww.cs.wisc.eduw/~fian/paper/xmisiore.pdf.,

SIGMOD Record, Vol. 31, No. 1, March 2002

