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Abstract. Secure multi-party computation (MPC) is an active research area, and a wide
range of literature can be found nowadays suggesting improvements and generalizations of
existing protocols in various directions. However, all current techniques for secure MPC apply
to functions that are represented by (boolean or arithmetic) circuits over finite fields. We are
motivated by two limitations of these techniques:

– Generality. Existing protocols do not apply to computation over more general algebraic
structures (except via a brute-force simulation of computation in these structures).

– Efficiency. The best known constant-round protocols do not efficiently scale even to the
case of large finite fields.

Our contribution goes in these two directions. First, we propose a basis for unconditionally
secure MPC over an arbitrary finite ring, an algebraic object with a much less nice structure
than a field, and obtain efficient MPC protocols requiring only a black-box access to the ring
operations and to random ring elements. Second, we extend these results to the constant-
round setting, and suggest efficiency improvements that are relevant also for the important
special case of fields. We demonstrate the usefulness of the above results by presenting a novel
application of MPC over (non-field) rings to the round-efficient secure computation of the
maximum function.

1 Introduction

Background. The goal of secure multi-party computation (MPC), as introduced by Yao [40], is to
enable a set of players to compute an arbitrary function f of their private inputs. The computation
must guarantee the correctness of the result while preserving the privacy of the players’ inputs, even
if some of the players are corrupted by an adversary and misbehave in an arbitrary malicious way.
Since the initial plausibility results in this area [41, 26, 7, 11], much effort has been put into enhancing
these results, and nowadays there is a wide range of literature treating issues like improving the
communication complexity (e.g., [24, 25, 28]) or the round complexity (e.g., [1, 5, 3, 30]), and coping
with more powerful (e.g., [37, 10, 9]) or more general (e.g., [27, 20, 14]) adversaries.

A common restriction on all these results is that the function f is always assumed to be represented
by an arithmetic circuit over a finite field, and hence all computations “take place” in this field. Thus,
it is natural to ask whether MPC can also be efficiently implemented over a richer class of structures,
such as arbitrary finite rings. This question makes sense from a theoretical point of view, where it
may be viewed as a quest for minimizing the axioms on which efficient secure MPC can be based,
but also from a practical point of view, since a positive answer would allow greater freedom in the
representation of f , which in turn can lead to efficiency improvements. Unfortunately, general rings
do not enjoy some of the useful properties of fields on which standard MPC protocols rely: non-zero
ring elements may not have inverses (in fact, a ring may even not contain 1, in which case no element
is invertible), there might exist zero-divisors, and the multiplication may not be commutative. Indeed,
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already over a relatively “harmless” ring like Zm, Shamir’s secret sharing scheme [39], which serves
as the standard building block for MPC, is not secure a-priori. For instance, if m is even and if p(X)
is a polynomial over Zm hiding a secret s as its free coefficient, then the share s2 = p(2) is odd if and
only if the secret s is odd. Thus, even the most basic tools for secure MPC have to be modified before
applying them to the case of rings. A step in this direction was taken in [19, 16], where additively
homomorphic secret sharing schemes for arbitrary Abelian groups have been proposed. However,
this step falls short of providing a complete solution to our problem (which in particular requires
both addition and multiplication of shared secrets), and so the question of MPC over rings remains
unanswered.

An additional limitation of current MPC techniques which motivates the current work is related
to the efficiency of constant-round protocols. Without any restriction on the number of rounds, most
protocols from the literature generalize smoothly to allow arithmetic computation over arbitrary
finite fields. This is particularly useful for the case of “numerical” computations, involving integers
or (finite-precision) reals; indeed, such computations can be naturally embedded into fields of a
sufficiently large characteristic. However, in the constant-round setting the state of affairs is quite
different. All known protocols for efficiently evaluating a circuit in a constant number of rounds [41,
5, 12, 34] are based on Yao’s garbled circuit construction, which does not efficiently scale to arithmetic
circuits over large fields.1 The only constant-round protocols in the literature which do efficiently scale
to arithmetic computation over large fields apply to the weaker computational models of formulas [1]
or branching programs [31], and even for these models their complexity is (at least) quadratic in the
representation size. Hence, there are no truly satisfactory solutions to the problem of constant-round
MPC over general fields, let alone general rings.

Our results. In this paper, we propose a basis for obtaining unconditionally secure MPC over
arbitrary finite rings. In particular, we present an efficient MPC protocol that requires only black-box
access to the ring operations (addition, subtraction, and multiplication) and the ability to sample
random ring elements. It is perfectly secure with respect to an active adversary corrupting up to
t < n/3 of the n players, and its complexity is comparable to the corresponding field-based solutions.
This is a two-fold improvement over the classical field-based MPC results. It shows that MPC can
be efficiently implemented over a much richer class of structures, namely arbitrary finite rings, and
it shows that there exists in fact one “universal” protocol that works for any finite ring (and field).
Finally, the tools we provide can be combined with other work on MPC, and hence expand a great
body of work on MPC to rings.

On the constant-round front, we make two distinct contributions. First, we show that the fea-
sibility of MPC over black-box rings carries over to the constant-round setting.2 To this end, we
formulate and utilize a garbled branching program construction, based on a recent randomization
technique from [31]; however, as the algebraic machinery which was originally used in its analysis
does not apply to general rings, we provide a combinatorially-oriented presentation and analysis
which may be of independent interest. As a second contribution, we suggest better ways for evaluat-
ing natural classes of arithmetic formulas and branching programs in a constant number of rounds. In
particular, we obtain protocols for small-width branching programs and balanced formulas in which
the communication complexity is nearly linear in their size. The former protocols are based on the
garbled branching program construction, and the latter on a combination of a complexity result

1 It is obviously possible to apply the brute-force approach of simulating each field operation by a boolean
circuit computing it. However, this approach is unsatisfactory both from a theoretical point of view (as its
complexity grows super-linearly in the length of a field element) and from a practical point of view. The
same objection applies to the implementation of ring operations using field or boolean operations. (Due to
the lack of provable lower bounds in complexity-theory, one cannot tell for sure whether this is an inherent
phenomenon or just a limitation of currently known techniques.)

2 This is not clear a-priori, and in fact most randomization techniques used in the context of constant-round
MPC (e.g.,[1, 21, 3, 30]) clearly do not apply to this more general setting.
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from [13] with a variant of randomization technique from [3]. While the main question in this con-
text (namely, that of obtaining efficient constant-round protocols for arithmetic circuits) remains
open, our techniques may still provide the best available tools for efficiently realizing “numerical”
MPC tasks that arise in specific applications. Furthermore, these techniques may also be beneficial
in the two-party setting of [38] (via the use of a suitable homomorphic encryption scheme) and in
conjunction with computationally-secure MPC (using, e.g., [15]).

We conclude with an example for the potential usefulness of secure MPC over non-field rings.
Specifically, we show how to efficiently compute the maximum of n integers with better round
complexity than using alternative approaches.

Organization. Section 2 deals with the model. The main body of the paper has two parts corre-
sponding to our two main contributions: the first deals with general MPC over rings (Section 3) and
the other concentrates on constant-round protocols (Section 4). Finally, in Section 5 we describe an
application of MPC over non-field rings.

2 Model

We consider the secure-channels model, as introduced in [7, 11], where a set P = {P1, . . . , Pn} of
n players is connected by bilateral, synchronous, reliable secure channels. For the case of constant-
round secure computation, a broadcast channel is also assumed to be available, while it has to be
implemented otherwise. Our goal is to obtain a protocol for securely computing a function given by
an arithmetic circuit over an arbitrary ring R. (In Section 4 we will also be interested in functions
represented by formulas and branching programs over a ringR.) By default, we consider unconditional
or perfect security against an adaptive, active adversary. The reader is referred to, e.g., [8] for a
definition of secure protocols in this setting. Such a protocol is black-box if: (1) its description is
independent of R and it only makes black-box calls to the ring operations (addition, subtraction and
multiplication) and to random ring elements; and (2) its security holds regardless of the underlying
ring R, in the sense that each adversary attacking the protocol admits a simulator having only a
black-box access to R.

3 Multi-Party Computation over Rings

3.1 Mathematical Preliminaries

We assume the reader to be familiar with basic concepts of group and ring theory. However, we
also make use of the notions of a module and of an algebra, which we briefly introduce here. Let
Λ be a commutative ring with 1. An (additive) Abelian group G is called a Λ-module if a number
multiplication Λ × G → G, (λ, a) 7→ λ · a is given such that 1 · a = a, λ · (a + b) = (λ · a) + (λ · b),
(λ + µ) · a = (λ · a) + (µ · a) and (λ · µ) · a = λ · (µ · a) for all λ, µ ∈ Λ and a, b ∈ G. Hence, loosely
speaking, a module is a vector space over a ring (instead of over a field). An arbitrary ring R is called
a Λ-algebra if (the additive group of) R is a Λ-module and (λ · a) · b = λ · (a · b) = a · (λ · b) holds for
all λ ∈ Λ and a, b ∈ R.3 For example, every Abelian group G is a Z-module and every ring R is a
Z-algebra; the number multiplication is given by 0 · a = 0, λ · a = a+ · · ·+ a (λ times) if λ > 0, and
λ · a = −((−λ) · a) if λ < 0. We also write λa or aλ instead of λ · a.

3 Note that even though we have two kinds of addition (addition in Λ and in R) and three kinds of multi-
plication (multiplication in Λ, in R, and number multiplication), addition is always denoted by “+” and
multiplication by “ · ” (or nothing). However, it should always be clear from the context, which addition
or multiplication is meant.
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3.2 Span Programs over Rings and Linear Secret Sharing

Monotone span programs over (finite) fields were introduced in [32] and turned out to be in a one-
to-one correspondence to linear secret sharing schemes (over finite fields). This notion was extended
in [16] to monotone span programs over (possibly infinite) rings, and it was shown that integer span
programs, i.e. span programs over Z, have a similar correspondence to black-box secret sharing (over
arbitrary Abelian groups). We briefly recall some definitions and observations.

Definition 1. A subset Γ of the power set 2P of P is called an access structure on P if ∅ 6∈ Γ and
if Γ is closed under taking supersets: A ∈ Γ and A′ ⊇ A implies that A′ ∈ Γ . A subset A of 2P is
called an adversary structure on P if its complement Ac = 2P \ A is an access structure.

Let Λ be an arbitrary (not necessarily finite) commutative ring with 1. Consider a matrix M
over Λ with, say, d rows and e columns (this will be denoted as M ∈ Λd×e), a labeling function
ψ : {1, . . . , d} → P and the target vector ε = (1, 0, . . . , 0)T ∈ Λe. The function ψ labels each row of
M with a number corresponding to one of the players. If A ⊆ P then MA denotes the restriction of
M to those rows i with ψ(i) ∈ A, and, similarly, if x denotes an arbitrary d-vector then xA denotes
the restriction to those coordinates i with ψ(i) ∈ A. In case A = {Pi}, we write Mi and xi instead
of MA and xA. Finally, im(·) denotes the image and ker(·) the kernel (or null-space) of a matrix.

Definition 2. Let M = (Λ,M,ψ, ε) be a quadruple as above, and let Γ be an access structure on P.
Then, M is called a (monotone)4 span program (over Λ) for the access structure Γ , or, alternatively,
for the adversary structure A = Γ c, if for all A ⊆ P the following holds.

• If A ∈ Γ , then ε ∈ im(MT
A ), and

• if A 6∈ Γ , then there exists κ = (κ1, . . . , κe)
T ∈ ker(MA) with κ1 = 1.

In the former case, we say that A is accepted and in the latter that A is rejected by M. If Λ = Z then
M is called an integer span program, ISP for short. Finally, size(M) is defined as d, the number of
rows of M .

By basic linear algebra, the existence of κ ∈ ker(MA) with κ1 = 1 implies that ε 6∈ im(MT
A ),

however the other direction generally only holds if Λ is a field.5

Let G be an arbitrary finite Abelian group that can be seen as a Λ-module. As a consequence,
it is well defined how a matrix over Λ acts on a vector with entries in G. Then, a span program
M = (Λ,M,ψ, ε) for an access structure Γ gives rise to a secret sharing scheme for secrets in G:
To share s ∈ G, the dealer chooses a random vector b = (b1, . . . , be)

T ∈ Ge of group elements with
b1 = s, computes s = Mb and, for every player Pi ∈ P , hands si (privately) to Pi. This is a secure
sharing of s, with respect to the access structure Γ . Namely, if A ∈ Γ then there exists an (A-
dependent) vector λ, with entries in Λ, such that MT

Aλ = ε. It follows that s can be reconstructed
from sA by sTAλ = (MAb)Tλ = bTMT

Aλ = bTε = s. On the other hand, if A 6∈ Γ then there
exists an (A-dependent) vector κ ∈ Λe with MAκ = 0 and κ1 = 1. For arbitrary s′ ∈ G define
s′ = M(b + κ(s′ − s)). The secret defined by s′ equals s′, while on the other hand s′A = sA. Hence,
the assignment b′ = b + κ(s′ − s) provides a bijection between the random coins (group elements)

4 Since we consider only monotone span programs, we omit the word “monotone”.
5 As a side remark we note that, alternatively, one could also define a span program M for a pair (Γ,A)

consisting of an access structure Γ and an adversary structure A ⊆ Γ c (not necessarily A = Γ c) by
requiring M to accept the sets in Γ and to reject the sets in A (while there is no condition on the sets
that are neither in Γ nor in A). This would lead, as can be easily seen from the rest of this section,
to a generalized notion of secret sharing in the sense that the bound between the player sets that can
reconstruct the secret (the sets in Γ ) and those that have no information about it (the sets in A) is not
tight. Furthermore, it would lead to more general necessary conditions on (Γ,A) for secure MPC [23, 35],
in contrast to the Q2 and Q3 conditions considered here.
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consistent with sA and s and those consistent with sA and s′. Therefore, sA gives no Shannon
information about s. This implies (perfect) privacy.

Note that since every Abelian group G is a Z-module, an ISP gives rise to a black-box secret
sharing scheme [16]. Furthermore, the above applies in particular to (the additive group of) a ring
R which can be seen as a Λ-algebra.

3.3 Multiplicative Span Programs and Secure MPC

The multiplication property for a span program over a field has been introduced in [14]. It essentially
requires that the product of two shared secrets can be written as a linear combination of locally
computable products of shares. However, in our setting (where, given the span program, it is not
clear from what ring R the secret and the shares will be sampled), we define the multiplication
property as a sole property of the span program.

Let Λ be a commutative ring with 1, and let M = (Λ,M,ψ, ε) be a span program over Λ for an
adversary structure A (i.e. M rejects the sets A ∈ A and accepts the sets A /∈ A).

Definition 3. The span program M is called multiplicative if there exists a block-diagonal matrix
D ∈ Λd×d such that MTDM = εε

T , where block-diagonal is to be understood as follows. Let the rows
and columns of D be labeled by ψ, then the non-zero entries of D are collected in blocks D1, . . . , Dn

such that for every Pi ∈ P the rows and columns in Di are labeled by Pi.
M is called strongly multiplicative if, for every player set A ∈ A, M restricted to the complement
Ac of A is multiplicative.

As in the case of span programs over fields (see [14]), for every adversary structure A there exists
a (strongly) multiplicative span program M over Λ for A if and only if A is Q2 (Q3), meaning that no
two (three) sets of A cover the whole player set P [27]. Furthermore, there exists an efficient procedure
to transform any span program M over Λ for a Q2 adversary structure A into a multiplicative span
program M′ (over Λ) for the same adversary structure A, such that the size of M′ is at most twice
the size of M.6

Similarly to the field case, the multiplication property allows to securely compute a sharing of
the product of two shared secrets. Indeed, let R be a finite ring which can be seen as a Λ-algebra,
and let s = Mb and s′ = Mb′ be sharings of two secrets s, s′ ∈ R. Then, the product ss′ can be
written as

ss′ = bT ε ε
Tb′ = bTMTDMb′ = (Mb)TDMb′ = sTDs′ =

n
∑

i=1

sTi Dis
′
i ,

i.e., by the special form of D, as the sum of locally computable values. Hence the multiplication
protocol from [25] can be applied: To compute securely a sharing s′′ = Mb′′ of the product ss′,
every player Pi shares pi = sTi Dis

′
i, and then every player Pi adds up its shares of p1, . . . , pn,

resulting in Pi’s share s′′i of ss′.
Given a multiplicative span program over Λ for a Q2 adversary structure A (where the mul-

tiplication property can always be achieved according to a remark above), it follows that if R is a
Λ-algebra, then any circuit over R can be computed securely with respect to a passive adversary that
can (only) eavesdrop the players of an arbitrary set A ∈ A. Namely, every player shares its private
input(s) using the secret sharing scheme described in Section 3.2, and then the circuit is securely
evaluated gate by gate, the addition gates non-interactively based on the homomorphic property of
the secret sharing scheme, and the multiplication gates using the above mentioned multiplication
protocol. Finally, the (shared) result of the computation is reconstructed. We sketch in Section 3.4
how to achieve security against an active Q3 adversary. Note that a broadcast channel can be securely
implemented using, e.g., [22]. All in all, this proves

6 A similar result concerning the strong multiplication property is not known to exist, not even in the field
case.
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Theorem 1. Let Λ be a commutative ring with 1, and let M be a (strongly)7 multiplicative span
program over Λ for a Q3 adversary structure A. Then there exists an A-secure MPC protocol to
evaluate any arithmetic circuit C over an arbitrary finite ring R which can be seen as a Λ-algebra.

Concerning efficiency, the communication complexity of the MPC protocol (in terms of the num-
ber of ring elements to be communicated) is polynomial in n, in the size of M, and in the number
of multiplication gates in C.

Corollary 1. Let M be a (strongly) multiplicative ISP for a Q3 adversary structure A. Then there
exists an A-secure black-box MPC protocol to evaluate any arithmetic circuit C over an arbitrary
finite ring R.

The black-box MPC result from Corollary 1 exploits the fact that every ring R is a Z-algebra.8

If, however, additional information about R is given, it might be possible to view R as an algebra
over another commutative ring Λ with 1. For example, if the exponent ` of (the additive group of)
R is given9, then we can exploit the fact that R is an algebra over Λ = Z`. In many cases, this leads
to smaller span programs and thus to more efficient MPC protocols than in the black-box case. For
instance, if the exponent of R is a prime p then R is an algebra over the field Fp, and we can apply
standard techniques to derive span programs over Fp (or an extension field). If the exponent ` is
not prime but, say, square-free, we can use Chinese Remainder Theorem to construct suitable span
programs. See also Proposition 1 for the case of a threshold adversary structure.

3.4 Achieving Security Against an Active Adversary

Following the paradigm of [14], security against an active adversary can be achieved by means of a
linear distributed commitment and three corresponding auxiliary protocols: a commitment transfer
protocol (CTP), a commitment sharing protocol (CSP) and a commitment multiplication protocol
(CMP). A linear distributed commitment allows a player to commit to a secret, however, in contrast
to its cryptographic counterpart, a distributed commitment is perfectly hiding and binding. A CTP
allows to transfer a commitment for a secret from one player to another, a CSP allows to share a
committed secret in a verifiable way such that the players will be committed to their shares, and a
CMP allows to prove that three committed secrets s, s′ and s′′ satisfy the relation s′′ = ss′, if this
is indeed the case. These protocols allow to modify the passively secure MPC protocol, sketched in
Section 3.3, in such a way that at every stage of the MPC every player is committed to its current
intermediary results. This guarantees detection of dishonest behaviour and thus security against an
active adversary. It is straightforward to verify that the field based solutions of [14] can be extended
to our more general setting of MPC over an arbitrary ring (see Appendix B). As in [14], the perfectly
secure CMP requires a strongly multiplicative span program whereas an ordinary span program
suffices for unconditional security.

3.5 Threshold Black-Box MPC

Consider a threshold adversary structure At,n = {A⊆P : |A|≤ t} with 0 < t < n.

Proposition 1. Let Λ be a commutative ring with 1. Assume there exist units ω1, . . . , ωn ∈ Λ such
that all pairwise differences ωi − ωj (i 6= j) are invertible as well. Then there exists a span program
M = (Λ,M,ψ, ε) for At,n of size n, which is (strongly) multiplicative if and only if t < n/2 (t < n/3):
the i-th row of M is simply (1, ωi, ω

2
i , . . . , ω

t
i), labelled by Pi, and ε = (1, 0, . . . , 0)T ∈ Λt+1.

7 Perfect security requires a strongly-multiplicative span program, while an (ordinary) multiplicative span
program is sufficient for unconditional security (see Section 3.4).

8 Note that the corresponding number multiplication can efficiently be computed using standard “double
and add”, requiring only black-box access to the addition in R.

9 I.e., the smallest integer ` > 0 such that ` · a = 0 for all a ∈ R.
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The resulting secret sharing scheme (with the secret and shares sampled from a Λ-module G),
formally coincides with the well known Shamir scheme [39], except that the interpolation points
ω1, . . . , ωn have to be carefully chosen (from Λ). The security of this generalized Shamir scheme has
been proven in [19, 18]. The proof below also includes the claim concerning the (strong) multiplication
property.

Proof. Let M = (Λ,M,ψ, ε) be as suggested in Proposition 1, and let A = {Pi1 , . . . , Pit+1
} ⊆ P be

a subset of cardinality t+ 1. Then, the matrix MA is a Vandermonde matrix whose determinant is
known to be det(MA) =

∏

j>k(ωij − ωik ). Hence, by the choice of the ωi’s, det(MA) is a unit and

thus MA is invertible. This implies that ε ∈ im(MT
A ), as required.

Let now A = {Pi1 , . . . , Pit} ⊆ P be a subset of cardinality t, and let NA ∈ Λt×t denote the ma-
trix consisting of the 2nd up to the last column of MA. It is not hard to see that det(NA) =
ωi1 · · ·ωit

∏

j>k(ωij −ωik). This implies, again by the choice of the ωi’s, that the first column of MA

is in the image of NA. This, however, is equivalent to the existence of a vector κ with MAκ = 0 and
κ1 = 1, which had to be shown.

Concerning the multiplication property, ifD ∈ Λn×n is a diagonal matrix with diagonal (d1, . . . , dn)
then MTDM is of the form

MTDM =
∑

i

di











1 ωi · · · ωti
ωi ω2

i · · · ωt+1
i

...
...

...
ωti ω

t+1
i · · · ω2t

i











By the above, we know that if 2t < n then there exist d1, . . . , dn such that
∑

i di(1, ωi, . . . , ω
2t) =

(1, 0, . . . , 0), and hence, choosing the diagonal of D this way, it holds that MTDM = εε
T . The

strong multiplication property can be shown similarly in case 3t < n. ut

To achieve black-box MPC over an arbitrary finite ring R, it suffices, by Corollary 1, to have
a (strongly multiplicative) ISP for the considered adversary structure At,n. Unfortunately, the ring
Λ = Z does not fulfill the assumption of Proposition 1 (except for n = 1), and hence Proposition 1
does not provide the desired ISP. However, by Lemma 1 below, it is in fact sufficient to provide a
span program over an extension ring Λ of Z, as it guarantees that any such span program can be
“projected” to an ISP.10 The remaining gap is then closed in Lemma 2 by exhibiting an extension
ring Λ of Z that satisfies the assumption of Proposition 1.

Lemma 1. Let f(X) ∈ Z[X ] be a monic, irreducible polynomial of non-zero degree m, and let Λ be
the extension ring Λ = Z[X ]/(f(X)) of Z. Then, any span program M over Λ can be (efficiently)
transformed into an integer span program M̄ for the same adversary structure such that size(M̄) =
m · size(M). Furthermore, if M is (strongly) multiplicative then this also holds for M̄.

The first part of this lemma appeared in [16]. A full proof of Lemma 1, also covering the multi-
plication property, is given in Appendix A. For a proof of Lemma 2 below we refer to [19].

Lemma 2. Consider the polynomials ωi(X) = 1 + X + · · · + X i−1 ∈ Z[X ] for i = 1, . . . , n. Then
ω1(X), . . . , ωn(X) and all pairwise differences ωi(X) − ωj(X) (i 6= j) are invertible modulo the
cyclotomic polynomial Φq(X) = 1 +X + · · · +Xq−1 ∈ Z[X ], where q is a prime greater than n.

10 Alternatively, one could also “lift” R to an extension ring S ⊇ R which can be seen as an algebra over
Λ ⊇ Z, and then do the MPC over S, using some mechanism that ensures that the inputs come from
the smaller ring R. This approach, which has also been used in [19] in the context of secret sharing over
arbitrary Abelian groups, would lead to a somewhat more efficient implementation of the MPC protocols;
however, we feel that our approach serves better conceptual simplicity.
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Hence, if t < n/3 then by Proposition 1 there exists a strongly-multiplicative span program M
for the threshold adversary structure At,n over the extension ring Λ = Z[X ]/(Φq(X)) where q > n.
The size of M is n, and q can be chosen linear in n by Bertrand’s Postulate. Together with Lemma 1,
this implies a strongly-multiplicative ISP of size O(n2), and hence Corollary 1 yields

Corollary 2. For t < n/3, there exists an At,n-secure black-box MPC protocol to evaluate any
arithmetic circuit C over an arbitrary finite ring R.

A span program for At,n of size 2n over an extension ring Λ of Z of degree logarithmic in n was
presented in [16], leading to an ISP of size O(n logn). As this construction too is related to Shamir’s
scheme, it is not hard to see that also this ISP is (strongly) multiplicative if and only if t < n/2
(t < n/3). Hence, it gives rise to another instantiation of the MPC protocol claimed in Corollary 2. It
turns out that using a broadcast protocol with optimal message complexity O(n2) (but O(n) rounds),
e.g. [6], this MPC protocol requires O(|C|n6 logn) elements of R to be communicated, where |C|
denotes the number of multiplication gates in C. Hence, the communication complexity coincides
asymptotically with the classical protocols of [7, 2, 24], up to a possible loss of a factor log n, which is
due to the fact that over large fields there exist threshold span programs of size n. Furthermore, our
protocol is compatible with improvements to the communication complexity of non-black-box MPC
over fields [29, 28].

4 Constant-Round Protocols

In this section we present constant-round MPC protocols over arbitrary rings. Our motivation is
twofold. First, we complement the results of the previous section by showing that they carry over in
their full generality to the constant-round setting. This does not immediately follow from previous
work in the area. Second, we point out some improvements and simplifications to previous constant-
round techniques, which also have relevance to the special case of fields. In particular, we obtain
constant-round protocols for small-width branching programs and balanced formulas in which the
communication complexity is nearly linear in their size.

4.1 Randomizing Polynomials over Rings

The results of the previous section may be viewed as providing a general “compiler”, taking a de-
scription of an arithmetic circuit C over some ring R and producing a description of an MPC protocol
for the functionality prescribed by C. While the communication complexity of the resultant protocol
is proportional to the size of C, its round complexity is proportional to its multiplicative depth.11 In
particular, constant-degree polynomials over R can be securely evaluated in a constant number of
rounds using black-box access to R. The notion of randomizing polynomials, introduced in [30], pro-
vides a convenient framework for representing complex functions as low-degree polynomials, thereby
allowing their round-efficient secure computation. In the following we generalize this notion to apply
to any function f : Rn → D, where R is an arbitrary ring and D is an arbitrary set.12

A randomizing polynomials vector over the ring R is a vector p = (p1, . . . , ps) of s multivariate
polynomials over R, each acting on the same n+m variables x = (x1, . . . , xn) and r = (r1, . . . , rm).
The variables x are called inputs and r are called random inputs. The complexity of p is the total
number of inputs and outputs (i.e., s + n + m). Its degree is defined as the maximal degree of its

11 Multiplicative depth is defined similarly to ordinary circuit depth, except that addition gates and multi-
plications by constant do not count.

12 In this section the parameter n is used to denote an input length parameter rather than the number of
players. The input, taken from Rn, may be arbitrarily partitioned among any number of players.
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s entries, where both ordinary inputs and random inputs (but not constants) count towards the
degree.13

Representation of a function f by p is defined as follows. For any x ∈ Rn, let P (x) denote the
output distribution of p(x, r), induced by a uniform choice of r ∈ Rm. Note that for any input x,
P (x) is a distribution over s-tuples of ring elements. We say that p represents a function f if the
output distribution P (x) is “equivalent” to the function value f(x). This condition is broken into
two requirements, correctness and privacy, as formalized below.

Definition 4. A randomizing polynomials vector p(x, r) is a said to represent the function f : Rn →
D if the following requirements hold:

• Correctness. There exists an efficient14 reconstruction algorithm which, given only a sample
from P (x), can correctly compute the output value f(x).

• Privacy. There exists an efficient simulator which, given the output value f(x), can emulate the
output distribution P (x).

We will also consider the relaxed notion of δ-correct randomizing polynomials, where the reconstruc-
tion algorithm is allowed to output “don’t know” with probability δ (but otherwise must be correct).

The application of randomizing polynomials to secure computation, discussed in [30], is quite straight-
forward. Given a representation of f(x) by p(x, r), the secure computation of f can be reduced to
the secure computation of the randomized function P (x). The latter, in turn, reduces to the secure
computation of the deterministic function p′(x, r1, . . . , ra)

def

=p(x, r1 + . . .+ ra), where a is the size of
some set A 6∈ A, by assigning each input vector rj to a distinct player in A and instructing it to pick
rj at random. Note that the degree of p′ is the same as that of p. Moreover, if the reconstruction
procedure associated with p requires only black-box access to R, then this property is maintained by
the reduction. Hence, using the results of the previous section, the problem of getting round-efficient
MPC over rings reduces to that of obtaining low-degree representations for the functions of interest.

In the following we describe two constructions of degree-3 randomizing polynomials over rings,
drawing on techniques from [31, 3].

4.2 Branching Programs over Rings

Branching programs are a useful and well-studied computational model. In particular, they are
stronger than the formula model (see Section 4.3). We start by defining a general notion of branching
programs over an arbitrary ring R.

Definition 5. A branching program BP on inputs x = (x1, . . . , xn) over R is defined by: (1) a
DAG (directed acyclic graph) G = (V,E); (2) a weight function w, assigning to each edge a degree-1
polynomial over R in the input variables. It is convenient to assume that V = {0, 1, . . . , `}, where `
is referred to as the size of BP, and that for each edge (i, j) ∈ E it holds that i < j. The function
computed by BP is defined as follows. For each directed path φ = (i1, i2, . . . , ik) in G, the weight of
φ is defined to be the product w(i1, i2) ·w(i2, i3) · . . . ·w(ik−1, ik) (in the prescribed order). For i < j,
we denote by W (i, j) the total weight of all directed paths from i to j (viewed as a function of x).
Finally, the function f : Rn → R computed by BP is defined by f(x) = W (0, `)(x). We refer to
W (0, `) as the output of BP.

Note that, using a simple dynamic programming algorithm, the output of BP can be evaluated from
its edge weights using O(|E|) black-box ring operations.

13 It is crucial for the MPC application that random inputs count towards the degree.
14 The efficiency requirement can only be meaningfully applied to a family of randomizing polynomials,

parameterized by the input size n and the ring R.
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To represent a branching program by randomizing polynomials, we rely on a recent construction
from [31].15 However, applying this construction to general rings requires a different analysis. In par-
ticular, the original analysis relies on properties of the determinant which do not hold in general over
non-commutative rings. Below we provide a more combinatorial interpretation of this construction,
which may be of independent interest.

How to garble a branching program. Given a branching program BP = (G,w) of size `, we
define a randomized procedure producing a “garbled” branching program B̃P = (G̃, w̃) of the same
size `. The graph G̃ will always be the complete DAG, i.e., each (i, j) where 0 ≤ i < j ≤ ` is an edge
in G̃. We will sometimes also view G as a complete graph, where w(i, j) = 0 if (i, j) is not originally
an edge. The randomization of BP proceeds in two phases.

Main phase. Let rij , 0 ≤ i < j < `, be
(

`
2

)

random and independent ring elements. Each rij naturally
corresponds to an edge. The main randomization phase modifies each original weight w(i, j) as
follows: first, if j < `, it increases it by rij . Then, regardless of whether j = `, it decreases it by
rih ·w(h, j) for each h lying strictly between i and j. That is, the updated weights w′(i, j) obtained
at the end of this phase are defined by

w′(i, j) =

{

w(i, j) + rij −
∑j−1

h=i+1 rih · w(h, j), j < `

w(i, j) −
∑j−1

h=i+1 rih · w(h, j), j = `

Note that each w′(i, j) is a degree-2 polynomial in the inputs x and the random inputs rij .

Cleanup phase. In the main phase the weights of the edges entering ` were not fully randomized. In
some sense, these edges served as “garbage collectors” for the randomization of the remaining edges.
To eliminate the unwanted residual information about x, the following operation is performed. Let
r′1, . . . , r

′
`−1 be independent random ring elements. The new weights w̃ are the same as w′ for (i, j)

such that j < `, and else are defined by:

w̃(i, `) =

{

w′(i, `) −
∑`−1

j=i+1 w
′(i, j) · r′j , i = 0

w′(i, `) + r′i −
∑`−1

j=i+1 w
′(i, j) · r′j , i > 0

Note that the weights w̃(i, `) are degree-3 polynomials in x, r, r′ and the remaining weights are all
of degree 2. Still, each weight w̃ is of degree 1 in x, and hence any fixed choice of r, r′ indeed makes
B̃P a branching program according to our definition.

We define a randomizing polynomials vector p(x, r, r′) representing BP by the concatenation of
all

(

`+1
2

)

weights w̃. It has degree 3 and complexity O(`2). It can be evaluated using O(|E|`) ring
operations assuming that each original weight w depends on a single input variable. We now prove
its correctness and privacy.

Correctness. It suffices to show that on any input x, the value of B̃P equals that of BP, for any choice
of r, r′. For this, it suffices to show that the positive and negative contributions of each random input
cancel each other. Consider the effect of a specific random input rij in the main phase. It is involved
in two types of operations: (1) it is added to w(i, j); and (2) rij ·w(j, k) is subtracted from each weight
w(i, k) such that k > j. We now compare the contribution of (1) and (2) to the output W (0, `). Since
(1) affects exactly those paths that traverse the edge (i, j), the positive contribution of (1) is

W (0, i) · rij ·W (j, `).

15 The goal of [31] is to obtain perfectly-secure MPC protocols with a constant number of rounds in the
worst case. The fact that the same construction is useful in the current context as well may be viewed as
a fortunate coincidence.
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(Note that, by the distributive law, the above expression covers exactly all directed paths from 0 to
` passing through (i, j).) Similarly, the negative contribution of (2) is:

∑

k>j

W (0, i) · (rij · w(j, k)) ·W (k, `) = W (0, i) · rij
∑

k>j

w(j, k) ·W (k, `)

= W (0, i) · rij ·W (j, `)

Hence, the positive and negative contributions of each rij exactly cancel each other, as required. A
similar argument applies to the cleanup phase operations involving r′i (details omitted). To conclude,
it suffices for the reconstruction procedure to evaluate the garbled branching program B̃P(x, r, r′),
which requires O(`2) ring operations.

Privacy. We argue that, for any fixed x, the distribution of w̃ induced by the random choice of r, r′ is
uniform among all weight assignments having the same output value as BP on x. First, note that the

number of possible choices of r, r′ is |R|(
`

2)+(`−1), which is exactly equal to |R|(
`+1

2 )−1, the number of
possible weight assignments in each output class.16 It thus suffices to prove that, for any fixed weight

assignment w, the effect of r, r′ on w (as a function from R(`+1

2 )−1 to R(`+1

2 )) is one-to-one. Consider
two distinct vectors of random inputs, (r, r′) and (r̂, r̂′). Order each of them by first placing the rij
entries in increasing lexicographic order and then the r′i entries in decreasing order. Consider the
first position where the two ordered lists differ. It is not hard to verify that if the first difference is
rij 6= r̂ij , where j < `, then the weight of (i, j) will differ after the main phase. (Note that since j < `,
this weight is untouched in the cleanup phase.) The second case, where the first difference is r′i 6= r̂′i,
is similar. In this case the two random inputs will induce the same change to the weight of (i, `) in
the main phase, and a different change in the cleanup phase. Thus, the garbled weight function is
indeed uniformly random over its output class. Given the above, a simulator may proceed as follows.
On output value d ∈ R, the simulator constructs a branching program BP with w(0, `) = d and
w(i, j) = 0 elsewhere, and outputs a garbled version B̃P of BP.

Combining the above with the results of the previous section, we have:

Theorem 2. Let BP be a branching program over a black-box ring R, where BP has size ` and m
edges. Then BP admits a perfectly secure MPC protocol, communicating O(`2) ring elements and
performing O(m`) ring operations (ignoring polynomial dependence on the number of players). The
protocol may achieve an optimal security threshold, and its exact number of rounds corresponds to
that of degree-3 polynomials.

Trading communication for rounds. For large branching programs, the quadratic complexity
overhead of the previous construction may be too costly. While this overhead somehow seems justified
in the general case, where the description size of BP may also be quadratic in its size `, one can
certainly expect improvement in the typical case where BP has a sparse graph. A useful class of such
branching programs are those that have a small width. BP is said to have length a and width b if
the vertices of its graph G can be divided into a levels of size≤ b each, such that each edge connects
two consecutive levels. For instance, for any binary regular language, the words of length n can be
recognized by a constant-width length-n branching program over Z2 (specifically, the width is equal
to the number of states in the corresponding automaton).

For the case of small-width branching programs, we can almost eliminate the quadratic overhead
at the expense of a moderate increase in the round complexity. We use the following recursive
decomposition approach. Suppose that the length of BP is broken into s segments of length a/s
each. Moreover, suppose that in each segment all b2 values W (i, j) such that i is in the first level

16 Indeed, among the |R|(
`+1

2 ) possible ways of fixing the weights, there is an equal representation for each
output. A bijection between the weight functions of two output values d1, d2 can be obtained by adding
d1 − d2 to the weight of (0, `).
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of that segment and j is in the last level are evaluated. Then, it is not hard to see that the output
of BP can be computed by a branching program BP′ of length s and width b, such that the edge
weights of BP′ are the b2s weights W (i, j) as above. Thus, the secure computation of BP can be
broken into two stages: first evaluate in parallel b2s branching programs17 of length a/s and width
b each, producing the weights W (i, j), and then use these weights as inputs to the length-s, width-b
branching program BP′, producing the final output. This process requires to hide the intermediate
results produced by the first stage, which can be done with a very small additional overhead. In fact,
a careful implementation (following [3]) allows the second stage to be carried out using only a single
additional round of broadcast.

If the width b of BP is constant, an optimal choice for s is s = O(a2/3), in which case the
communication complexity of each of the two stages becomes O(a4/3). This is already a significant
improvement over the O(a2) complexity given by Theorem 2. Moreover, by recursively repeating this
decomposition and tuning the parameters, the complexity can be made arbitrarily close to linear
while maintaining a (larger) constant number of rounds. In particular, this technique can be used
to obtain nearly-linear perfect constant-round protocols for iterated ring multiplication or for Yao’s
millionaires’ problem [40], both of which admit constant-width linear-length branching programs.

4.3 Arithmetic Formulas

An arithmetic formula over a ring R is defined by a rooted binary tree, whose leaves are labeled by
input variables and constants (more generally, by degree-1 polynomials), and whose internal nodes,
called gates, are labeled by either ‘+’ (addition) or ‘×’ (multiplication). If R is non-commutative,
the children of each multiplication node must be ordered. A formula is evaluated in a gate-by-gate
fashion, from the leaves to the root. Its size is defined as the number of leaves and its depth as the
length of the longest path from the root to a leave. A formula is balanced if it forms a complete
binary tree.

We note that the branching program model is strictly stronger than the formula model. In par-
ticular, any formula (even with gates of unbounded fan-in) can be simulated by a branching program
of the same size. Thus, the results from Section 4.2 apply to formulas as well.

We combine a complexity result due to Cleve [13] with a variant of a randomization technique
due to Beaver [3] (following Kilian [33] and Feige et al. [21]) to obtain an efficient representation
of formulas by degree-3 randomizing polynomials. If the formula is balanced, the complexity of this
representation can be made nearly linear in the formula size. However, in contrast to the previous
construction, the current one will not apply to a black-box ring R and will not offer perfect correctness.
Still, for the case of balanced arithmetic formulas, it can provide better efficiency.

From formulas to iterated matrix product. In [13], it is shown that an arithmetic formula

of depth d over an arbitrary ring R with 1 can be reduced to the iterated product of O((2d)1+
2
b )

matrices of size c = O(2b) over R, for any constant b. Each of these matrices is invertible, and its
entries contain only variables or constants.18 The output of the formula is equal to the top-right
entry of the matrix product. Note that if the formula is balanced, then the total size of all matrices
can be made nearly linear in the formula size.

Next, we consider the problem of randomizing an entry of an iterated matrix product as above.
Having already established the possibility of constant-round MPC over black-box rings, we focus
on efficiency issues and restrict our attention to the special case of fields. Indeed, the following
construction does not apply to black-box rings (though may still apply with varied efficiency to
non-field rings). In what follows we let K denote a finite field, Kc×c the set of c × c matrices over
K, and GLc(K) the group of invertible c× c matrices over K.

17 It is possible to avoid the b2 overhead by modifying the garbled branching program construction so that
all weights W (i, j) in each segment are evaluated at once.

18 The requirement that R has 1 can be dispensed with by using an appropriate extension of R.
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Randomizing an iterated product of invertible matrices. Kilian [33], in the context of
secure two-party computation, suggested the following approach for randomizing an iterated group
product (formulated here for GLc(K)). Given k matrices M1,M2, . . . ,Mk ∈ GLc(K), learning their
iterated product M1M2 · · ·Mk is equivalent to learning the k-tuple

(M1S1 , S
−1
1 M2S2 , S

−1
2 M2S3, . . . , S

−1
k−2Mk−1Sk−1 , S

−1
k−1Mk), (1)

where S1, . . . , Sk−1 are independent, random matrices from GLc(K). The k-tuple of randomized ma-
trices produced by (1) are uniformly random subject to the requirements that they are all invertible
and their product is equal to the original product. This approach was adapted to the multi-party
setting in [1], where special-purpose MPC protocols for generating secret invertible matrices and for
inverting matrices were devised. To eliminate the interaction required for matrix inversion, Beaver [3]
suggested to modify (1) by randomizing M1 · · ·Mk as:

(M1S1 , S2S1 , S2M2S3 , S4S3 , S4M3S5, . . . , S2k−2S2k−3 , S2k−2Mk), (2)

where S1, . . . , S2k−2 are again random invertible matrices. It is easy to verify that the original product
can be recovered from (2) by first inverting every other matrix and then multiplying the 2k − 1
matrices (in fact, (2) may be obtained by first applying (1) to the product M1IM2I · · ·Mk−1IMk and
then inverting every other matrix). Note that both (1) and (2) reveal all entries of the product matrix,
whereas we would like to reveal only the top-right entry and eliminate all additional information. To
get around a similar problem, Feige et al. [21] construct two carefully chosen distributions on c× c
matrices, DL, DR, such that DLMDR reveals only the top-right entry of M . This procedure was
used in [21, 3] to randomize nondeterministic branching programs, and applies in our context as well.
Thus, by applying (1) or (2) to the product DLM1 · · ·MkDR, only the top-right entry of M1 · · ·Mk

is revealed.
While (2) eliminates the need for secure matrix inversion, it still requires matrix inversion for

reconstructing the original product. This operation cannot be applied for general matrices over a
black-box ring. Moreover, generating the invertible matrices Si still requires a separate subprotocol
which incurs additional interaction.

We suggest two modifications to the above randomization technique. First, we convert it to the
randomizing polynomials framework, by using totally random matrices Si instead of invertible ones.
This allows to eliminate the additional interaction required for generating secret invertible matrices.
It is clear that when the fraction of c× c matrices over R that are singular is small, this modification
will have little effect on the privacy or the correctness. We show that, in fact, perfect privacy is always
maintained. However, for the error probability δ to be small, it is still required that the fraction of
invertible matrices be large, and in particular R must be large. This is another “non-black-box”
aspect of the current approach. (A similar problem arises if an interactive protocol for generating
invertible matrices is used, as in [1, 3].)

A second modification is the use of a simpler and more efficient alternative to the technique
from [21] for eliminating all but one entry in the matrix product. Specifically, instead of appending
the (nontrivial) matrix distributions DL and DR to (1) or (2), it suffices to remove all rows except
the first in M1, and all columns except the last in Mk. (Note that it is not clear a-priori that this
modification indeed eliminates all unwanted information.) While the efficiency advantage gained by
this simplification is quite minor in the current context, it may be more significant in others. For
instance, it allows to securely compute the inner-product of two n-vectors in the non-interactive
model of [21] with O(n) communication complexity (rather than O(n2)).19

The above discussion is captured by the following proposition.

19 This is achieved by reducing the inner product to the product of two matrices, and applying the optimized
version of (1).
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Proposition 2. Let M2, . . . ,Mk−1 ∈ GLc(K), let M̂1 be a nonzero row vector and M̂k a nonzero
column vector. Suppose that at most a (δ/2k)-fraction of the c × c matrices over K are singular.
Then,

(M̂1S1 , S2S1 , S2M2S3 , S4S3 , S4M3S5, . . . , S2k−2S2k−3 , S2k−2M̂k), (3)

where S1, . . . , S2k−2 are uniformly random matrices, is a δ-correct degree-3 representation for the
iterated product M̂1M2 · · ·Mk−1M̂k.

To prove Proposition 2 we rely on the following two lemmas.

Lemma 3. Let K be a field. For any x, y ∈ Kc \ {0} and M ∈ GLc(K), there exist X,Y ∈ GLc(K)
such that the first row of X is xT , the first column of Y is y, and XMY is a canonical matrix
depending only on xT y.

Proof. Consider first the case where xT y = c 6= 0. Pick the remaining c− 1 rows of X so that they
form a basis for the space (My)⊥. Since x is not in this space, X is invertible as required. Now, fix
each jth column of Y , 2 ≤ j ≤ c, as the unique solution z to the equation XMz = cej , where ej is
the jth unit vector. It follows that XMY = cI , where cI depends only on c as required, and that Y
is invertible.

The case xT y = 0 is handled similarly. In this case x ∈ (My)⊥. We pick the next c− 2 rows of X
so that together with x they form a basis for (My)⊥. The last row of X is picked so that its inner
product with My is 1. This guarantees that X is invertible. Now, each jth column of Y , 2 ≤ j ≤ c,
is fixed as the unique solution z to the equation XMz = ec−j+1. It follows that in this case XMY
is always the “mirror image” of the unit matrix. ut

Lemma 4. Let M1, . . . ,Mk ∈ GLc(K), and let S1, . . . , S2k−1 be random and independent matrices
in Kc×c. Then, the distribution of

(M1S1 , S2S1 , S2M2S3 , S4S3 , S4M3S5, . . . , S2k−2S2k−3 , S2k−2Mk) (4)

can be efficiently simulated given M1M2 · · ·Mk.

Proof. We first describe the simulator and then prove its correctness. The simulator lets M =
M1M2 · · ·Mk, picks random and independent matrices S ′

1, . . . , S
′
2k−2 ∈ Kc×c, and outputs

(S′
1 , S

′
2S

′
1 , S

′
2S

′
3 , S

′
4S

′
3 , S

′
4S

′
5, . . . , S

′
2k−2S

′
2k−3 , S

′
2k−2M). (5)

To see that (4) and (5) are equally distributed, let Pi =
∏i
j=1 Mi, and let σ : (Kc×c)

2k−2
→

(Kc×c)
2k−2

be the bijection defined by

σ(S1 , . . . , S2k−2) = (P1S1 , S2P
−1
1 , P2S3 , S4P

−1
2 , P3S5 , . . . , S2k−2P

−1
k−1).

It is easy to verify that (4) and (5) take identical values when (S ′
1, . . . , S

′
2k−2) = σ(S1, . . . , S2k−2). ut

Proof of Proposition 2: It follows from Lemma 3 that M̂1, M̂k can be completed toM1,Mk ∈ GLc(K)
such that the product M1 · · ·Mk contains no more information than (and can be simulated from)
M̂1M2 · · ·Mk−1M̂k. The privacy part of Proposition 2 follows from Lemma 4 and from the fact
that (3) is a restriction of (4). The correctness follows by noting that if all random matrices Si
are invertible, then the desired product can be reconstructed from (3) by inverting every second
matrix and multiplying the matrices together. Moreover, the probability of the bad event in which
some matrix Si is singular is bounded by (δ/2k)(2k − 2) < δ, and the reconstruction algorithm can
recognize this event by testing whether all k − 2 middle matrices are invertible. ut

Note that if the field K is small, the correctness probability can be boosted by working over an
extension field (thereby increasing the probability of picking invertible matrices).

Combining Proposition 2 with Cleve’s reduction, we have:
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Theorem 3. Let F be an arithmetic formula of depth d over a finite field K. Then, F admits a

constant-round MPC protocol communicating 2d+O(
√
d) field elements (i.e., s · 2O(

√
log s) elements if

F is a balanced formula of size s). The protocol can either have a minimal round complexity (corre-
sponding to degree-3 polynomials) with O(|K|−1) failure probability, or alternatively achieve perfect
correctness and privacy in an expected constant number of rounds (where the expected overhead to
the number of rounds can be made arbitrarily small).

5 Application: Securely Computing the Maximum Function

Aside from its theoretical value, the study of MPC over non-field rings is motivated by the possibility
of embedding useful computation tasks into their richer structure. In this section we demonstrate
the potential usefulness of this approach by describing an application to the round-efficient secure
computation of the maximum function.

Suppose there are n players, where each player Pi holds an integer yi from the set {0, 1, . . . ,M}.
(We consider M to be a feasible quantity.) Our goal is to design a protocol for securely evaluating
max(y1, . . . , yn) with the following optimization criteria in mind. First, we would like the round
complexity to be as small as possible. Second, we want to minimize the communication complexity
subject to the latter requirement.

Our solution proceeds as follows. Let k be a (statistical) security parameter, and fix a ring
R = ZQM where Q is a k-bit prime. We denote the elements of R by 1, 2, . . . , QM = 0. Consider the
degree-2 randomizing polynomial

p(x1, . . . , xn, r1, . . . , rn) =

n
∑

i=1

rixi

over R. It is not hard to verify that: (1) the additive group of R has exactly M + 1 subgroups, and
these subgroups are totally ordered with respect to containment;20 and (2) the output distribution
P (x1, . . . , xn) is uniform over the maximal (i.e., largest) subgroup generated by an input xi. Specif-
ically, P (x1, . . . , xn) is uniform over the subgroup generated by Qj , where j is the maximal integer
from {0, 1, . . . ,M} such that Qj divides all xi.

We are now ready to describe the protocol. First, each player i maps its input yi to the ring
element xi = QM−yi . Next, the players securely sample an element z from the output distribu-
tion P (x1, . . . , xn). This task can be reduced to the secure evaluation of a deterministic degree-2
polynomial over R (see Section 4.1). Finally, the output of the computation is taken to be the in-
dex of the minimal subgroup of R containing z; i.e., the output is 0 if z = 0 and otherwise it is
M − max{ j : Qj divides z}. Note that the value of z reveals no information about the inputs yi
except what follows from their maximum, and the protocol produces the correct output except with
probability 1/Q ≤ 2−(k−1). We stress that an active adversary (or malicious players) cannot gain
any advantage by picking “invalid” inputs x∗i to the evaluation of P . Indeed, any choice of x∗i is
equivalent to a valid choice of xi generating the same subgroup.

We turn to analyze the protocol’s efficiency. Recall that our main optimization criterion was the
round complexity. The protocol requires the secure evaluation of a single degree-2 polynomial over R.
Using off-the-shelf MPC protocols (adapted to the ring R as in Section 3), this requires fewer rounds
than evaluating degree-3 polynomials or more complex functions.21 The communication complexity
of the protocol is linear in M and polynomial in the number of players. In Appendix C we discuss
several alternative approaches for securely evaluating the maximum function. All of these alternatives

20 This should be contrasted with the field of the same cardinality, which has 2M partially ordered additive
subgroups.

21 The exact number of rounds being saved depends on the specific setting, e.g. on whether a broadcast
channel is available.
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either require more rounds, require a higher communication complexity (quadratic in M), or fail to
remain secure against an active adversary.
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A Proof of Lemma 1

Proof of Lemma 1: Write α = X ∈ Λ (the residue class of X modulo f(X)). Then for each λ ∈ Λ,
there exists a unique coordinate vector

−→
λ = (λ0, . . . , λm−1)

T ∈ Z
m such that λ = λ0 +λ1 ·α+ · · ·+

λm−1 ·αm−1. In other words, {1, α, . . . , αm−1} is a basis for Λ when viewed as a Z-module. For each

µ ∈ Λ there exists a matrix in Z
m×m, denoted as [µ], such that [µ]

−→
λ =

−→
µλ (the coordinate vector of

µλ) for every λ ∈ Λ. The columns of [µ] are simply the coordinate vectors of µ, µ ·α, . . . , µ ·αm−1. If
µ ∈ Z, then [µ] is a diagonal matrix with µ’s on the diagonal. Furthermore, for all λ, µ ∈ Λ, we have
the identities [λ+ µ] = [λ] + [µ] and [λµ] = [λ][µ].

Consider a span program M = (Λ,M,ψ, ε) over Λ for an adversary structure A. Write d (resp.
e) for the number of rows (resp. columns) of M . First, we define an integer span program M̃ =
(Z, M̃ , ψ̄, ε̃) as follows. Construct M̃ ∈ Z

md×me from M by replacing each entry µ ∈ Λ in M by the
matrix [µ]. The labeling ψ is extended to ψ̄ in the obvious way, i.e., if a row in M is labelled by a
player Pi, then the rows that it is substituted with in M̃ are labelled by the same player Pi. The
corresponding target vector is defined by ε̃ = (1, 0 . . . , 0)T ∈ Z

me.
We verify that M̃ is a span program for the same adversary structure A (however, it is not

necessarily (strongly) multiplicative, even if M is). First, consider a set A 6∈ A. By definition,
there exists a vector λ = (λ1, . . . , λdA

)T ∈ ΛdA such that MT
Aλ = ε, respectively λ

TMA = ε
T ,
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where dA denotes the number of rows of MA. Using the identities stated above and carrying out
the matrix multiplication “block-wise”, it follows that ([λ1], . . . , [λdA

])M̃A = ([1], [0], . . . , [0]). Hence,
if λ̄

T ∈ Z
mdA denotes the first row of the matrix ([λ1], . . . , [λdA

]) then λ̄
T M̃A = ε̃

T , respectively
M̃T
A λ̄ = ε̃. Now, consider a set A ∈ A. Hence, there exists κ = (κ1, κ2, . . . , κe)

T ∈ Λe such that
κ1 = 1 and MAκ = 0 ∈ ΛdA . Using similar reasoning as above, it follows that

M̃A







[κ1]
...

[κe]






=







[0]
...

[0]







Hence, if κ̃ ∈ Z
me denotes the first column of the matrix derived from κ in the above equation, then

the first m entries of κ̃ are 1, 0, . . . , 0 (since κ1 = 1) and M̃Aκ̃ = 0.
The claimed span program M̄ = (Λ, M̄, ψ̄, ε̄) is now constructed from M̃ by deleting the 2nd up to
m-th leftmost columns of M̃ and the corresponding coordinates of ε̃. M̄ still accepts the sets A 6∈ A
and, by the special form of the vector κ̃ above, rejects every set A ∈ A.

Concerning multiplication, note first that for any fixed δ ∈ Λ there exists a matrix in Λm×m,
denoted as JδK, such that for all λ, µ ∈ Λ the first coordinate of (the coordinate vector of) λδµ equals
−→
λ T JδK−→µ . The (i, j)-th entry of JδK is given by the first coordinate of (the coordinate vector of)
δαi−1αj−1, as can easily be verified. It is also easy to verify that [λ]T JδK[µ] = JλδµK.
Let now D ∈ Λd×d be a block-diagonal matrix as required in Definition 3 such that MTDM = εε

T .
Recall that M̃ has been constructed fromM by replacing every entry µ by [µ]. Construct D̄ ∈ Z

md×md

from D by replacing every entry δ of D by JδK. It follows that M̃T D̄M̃ = E′, where E′ has the matrix
J1K in the upper left corner and zeros elsewhere, and where J1K itself has a 1 in the upper left courner.
Therefore, the matrix M̄ , which is constructed from M̃ by removing the 2nd up to the m-th first
columns, fulfills M̄T D̄M̄ = ε̄ε̄

T , as required.
The corresponding claim concerning the strong multiplication property follows by applying the above
to MAc , where Ac is the complement Ac = {1, . . . , n} \A of a set A ∈ A. ut

B Building Blocks for Actively Secure MPC

In this section, we present the protocols discussed in Section 3.4 that allow the MPC protocol to
withstand active attacks: a linear distributed commitment, and the auxiliary protocols CTP, CSP
and CMP. They are straight-forward generalizations of the field-based protocols presented in [14].

Throughout the section, let Λ be a commutative ring with 1, and let M = (Λ,M,ψ, ε) be a span
program for a Q3 adversary structure A. For the perfectly secure CMP, we additionally require M
to be strongly multiplicative. Finally, let R be an arbitrary finite Λ-algebra. The following protocols
are secure with respect to an adversary corrupting the players of an arbitrary set A ∈ A.

Linear Distributed Commitment. A commitment C of a secret s ∈ R is defined to be a correct
sharing s = Mb of s, distributed among the players. To open such a commitment C, the commiter
reveals the corresponding sharing vector b and every player reveals his share si, and the opening is
accepted if and only if Mib = si for all players Pi, except those of a set A ∈ A. The hiding property
follows from the privacy of the secret sharing scheme, and the binding property can be verified using
the Q3 property of A. To commit to a secret s, the commiter has to share s in such a way that the
sharing is guaranteed to be correct. This can be achieved as follows. Instead of the vector b, the
dealer/commiter chooses a random symmetrical matrix B with the secret s in the upper left corner
and sends Ui = MiB to player Pi. By pairwise checking, public complaining and accusing it is then
enforced that MjU

T
i = UjM

T
i for every pair Pi, Pj of honest players. This then implies that there

exists a vector b such that si = Mib for every honest player Pi, where si denotes the first column
of Ui, meaning that the honest players hold a correct sharing of some secret s. Indeed, if A collects
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the honest players, then MAU
T
A = UAM

T
A implies that

sA = UAε = UAM
T
Aλ = MAU

T
Aλ = MAb

for λ such that MT
Aλ = ε, and for b = UTAλ.

Commitment Transfer Protocol. The purpose of a CTP is to allow a player Pj to transfer a
commitment C of a secret s, which in our case is a correct sharing s = Mb of s, to another player
Pk. It must be guaranteed that this protocol leaks no information to the adversary if Pj and Pk are
honest, but also that the new commitment contains the same value as the old, even if Pj and Pk are
both corrupt.

If, for every set A 6∈ A, the span program fulfills the stronger condition im(MT
A ) = Λe (rather

than ε ∈ im(MT
A ))22, then the CTP works as simple as with cryptographic commitments. Namely,

to transfer a commitment C to Pk, C is opened privately to Pk. In our case, this means that Pj
sends b and every Pi sends si privately to Pk, and Pk accepts the opening if (and only if) si = Mib

holds except for players Pi of a possibly corrupted player set A ∈ A. Pk’s commitment for s is now
the same sharing s, and b is the corresponding “opening information”.

However, in the general case, this would not lead to a secure CTP, as the adversary could achieve
that an honest player Pk cannot correctly open the commitment that has been transfered to him
by a corrupted player Pj , making him look like a cheater. This can be overcome as follows (see also
[14]). Pk does not adopt Pj ’s commitment C but he generates a new commitment C ′ for s by the
commit protocol, and he opens the difference C ′ − C to zero (and if he does not succeed, Pj has to
open C ′ in public).

Commitment Sharing Protocol. A CSP allows a dealer, who is committed to a secret s, to share
s such that every player will be committed to his share, and, on the other hand, it is guaranteed
that indeed s is correctly shared. A CSP can generically be constructed from the linear distributed
commitment and the corresponding CTP. Namely, the dealer chooses a random sharing vector b

with s as first entry and commits to the random entries (he is already committed to s), and he
transfers the resulting commitments for the shares s = Mb to the corresponding players, using the
CTP. Clearly, this works similarly if the sharing should be with respect to a different span program
matrix M∗.

Commitment Multiplication Protocol. A CMP allows a player, who is committed to secrets
s, s′ and to the product s′′ = ss′, to prove that indeed s′′ = ss′. The first solution is based on an
ordinary span program, but is “only” unconditionally secure, while the second is perfectly secure but
requires a strongly multiplicative span program.

Unconditional CMP: Let C, C ′ and C ′′ be the commitments of s, s′ and s′′ = ss′, respectively. In
order to prove that s′′ = ss′, the prover chooses a random d ∈ R, and commits to d and ds′. Let D
and E denote the resulting commitments. The players jointly generate a random challenge c ∈ {0, 1}
using standard techniques. Then, the prover opens the commitment c ·C +D to r = cs′ + d and the
commitment r · C ′ −E − c · C ′′ to 0. The proof is accepted if both openings are accepted.

It is easy to see that the opened values give no extra information to the adversary, while the proof
is rejected if s′′ 6= ss′ except with probability 1/2, which can be made negligibly small by repetition.

Perfect CMP: First,we introduce some new notation. Let x = (x1, . . . , xm) and y = (y1, . . . , ym)
be two row (or column) vectors over an arbitrary ring R. Then x ⊗ y denotes the row (or column)
vector consisting of all products xiyj :

x ⊗ y = (x1y1, . . . , x1ym;x2y1, . . . , x2ym; . . . . . . ;xmy1 . . . , xmym)

22 This e.g. holds for threshold span programs resulting from Proposition 1.

19



Let additionally ϕ : {1, . . . ,m} → P be a labelling function. Then x⊗ϕy denotes the row (or column)
vector consisting of all products xiyj with ϕ(i) = ϕ(j):

x ⊗ϕ y = (x1 ⊗ y1, . . . ,xn ⊗ yn)

Now, the perfectly secure CMP is based on the fact that if M = (Λ,M,ψ, ε) is strongly multi-
plicative, then there exists a span program M∗ such that

1. if s and s′ are sharings of s and s′ with respect to M, then s′′ = s⊗ψ s′ is a sharing of s′′ = ss′

with respect to M∗, and
2. if a set A is rejected by M, then Ac = P \A is accepted by M∗.

For instance, in the threshold case, when s and s′ have been shared using two polynomials of degree t,
multiplying corresponding shares of s and s′ yields a sharing of ss′, but with respect to a polynomial
of degree 2t. In general, M∗ = (Λ,M∗, ψ∗, ε∗) is constructed as follows. For every Pi ∈ P , and for
every pair of (not necessarily different) rows m and m′ of M that are labeled by Pi, let m⊗m′ be
a row of M∗, labeled by Pi. It is not hard to verify that condition 1. follows by construction and 2.
from the strong multiplication property.

The CMP now works as follows. The prover shares s and s′ with respect to M using the CSP,
resulting in sharings s = Mb and s′ = Mb′, respectively, and commitments for all shares. Further-
more, again using CSP, he shares s′′ = ss′ with respect to M∗, resulting in a sharing s′′ = M∗b′′ and
corresponding commitments. However, he chooses b′′ in such a way that s′′ = s ⊗ψ s′. Every player
Pi now verifies whether indeed s′′i = si⊗ s′i, and, in case this does not hold, shows the dishonestness
of the dealer by opening the commitments for si, s′i and s′′i . If no such triple is opened, the proof
is accepted. Therefore, if the proof is accepted, then s′′Ac = sAc ⊗ψ s′Ac , where A ∈ A collects the
corrupted players, and since Ac is accepted by M∗, the secret “behind” s′′Ac is uniquely defined and
thus equal to ss′.

C Alternative Protocols for the Maximum Function

In this section we survey some alternatives to the protocol for the maximum function from Section 5,
none of which matches both its round complexity and its communication complexity.

We start by noting that with a higher round complexity it is possible to obtain much better
asymptotic communication complexity. In fact, using techniques from [36] it is possible to obtain a
protocol with a poly-logarithmic number of rounds and with communication complexity as low as
poly(n, log logM). Settling for poly(n, logM) communication, it is possible to obtain protocols whose
round complexity corresponds to that of degree-3 polynomials [30, 31]. Using a careful implementation
of the protocol from [5], it is possible to obtain a computationally secure protocol with the same
round complexity (corresponding to degree-3 polynomials) and with somewhat better asymptotic
communication complexity (logarithmic in M instead of poly-logarithmic). However, our goal here
is to use even fewer rounds by reducing the secure evaluation of the maximum function to that of
degree-2 polynomials.

To this end, let X denote an M × n matrix over FQ, where the ith column of X is “owned” by
player Pi. Consider the following degree-2 randomizing polynomials vector over FQ:

p(X, r) = Xr,

where r is a column vector of n random inputs. If each player Pi picks the ith column of X so that its
first yi entries are 1 and the remaining entries are 0, the output distribution P (X) will contain random
field elements in its first max(y1, . . . , yn) entries, and 0 in the remaining entries. This apparently gives
a satisfactory solution to the problem. Unfortunately, the security of the corresponding protocol can
be broken by malicious players who do not follow the above procedure for picking their columns of
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X . For instance, suppose that P1 lets the first column of X be (0, 1, 0, 0, . . . , 0). If all the remaining
inputs are 0, the output will reveal that (with high probability) some player has cheated. However,
using this strategy, P1 is still able to simultaneously achieve the following: (1) learn whether all of
the remaining inputs are 0; (2) set the maximum to 2 in case that the maximum of the remaining
inputs is 1. Note that each of (1) and (2) can be separately achieved in an ideal evaluation of the
maximum function (by picking the input to be 0 or 2, respectively), but it is impossible to achieve
both simultaneously.

The above security flaw can be fixed as follows. Let f(X) be a function returning the index of
the bottom-most non-zero row of X . The secure evaluation of the maximum function reduces to the
secure evaluation of f(X), where again player Pi is free to determine the ith column of X . Now, f
can be represented by the degree-2 polynomial vector p = (p0, ..., pM ), where pj is a random linear
combination of the (j + 1)n entries in the last j + 1 rows of X , and each pj uses a disjoint set of
random inputs. This gives a fully secure solution to the maximum function with the desired round
complexity. However, the number of random inputs in the above representation is quadratic in M ,
resulting in quadratic communication complexity.

To summarize, all the alternative solutions we have presented either require more rounds, require
a higher communication complexity, or fail to be secure against an active adversary.
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