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Abstract. We propose the first distributed discrete-log key generation
(DLKG) protocol from scratch which is adaptively-secure in the non-
erasure model, and at the same time completely avoids the use of in-
teractive zero-knowledge proofs. As a consequence, the protocol can be
proven secure in a universally-composable (UC) like framework which
prohibits rewinding. We prove the security in what we call the single-
inconsistent-player UC model, which guarantees arbitrary composition
as long as all protocols are executed by the same players. As an applica-
tion, we propose a fully UC threshold Schnorr signature scheme.

Our results are based on a new adaptively-secure Feldman VSS scheme.
Although adaptive security was already addressed by Feldman in the
original paper, the scheme requires secure communication, secure era-
sure, and either a linear number of rounds or digital signatures to re-
solve disputes. Our scheme overcomes all of these shortcomings, but on
the other hand requires some restriction on the corruption behavior of
the adversary, which however disappears in some applications including
our new DLKG protocol.

We also propose several new adaptively-secure protocols, which may find
other applications, like a sender non-committing encryption scheme, a
distributed trapdoor-key generation protocol for Pedersen’s commitment
scheme, or distributed-verifier proofs for proving relations among com-
mitments or even any NP relations in general.

1 Introduction

A distributed key generation protocol is an essential component in threshold
cryptography. It allows a set of n players to jointly generate a key pair, (pk, sk),
that follows the distribution defined by the target cryptosystem, without the
need for a trusted party. While the public-key pk is output in clear, the corre-
sponding secret-key sk remains hidden and is maintained in a shared manner
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among the players via a secret sharing scheme. This should allow the play-
ers to later use sk without explicitly having to reconstruct it. The distributed
key-generation for discrete-log based schemes, DLKG in short, amounts to the
joint generation of a random group element y as public-key and a sharing of its
discrete-log (DL) x = logg(y) as secret-key with regard to some given base g. A
DLKG protocol must remain secure in the presence of a malicious adversary who
may corrupt up to a minority of the players and make them behave in an arbi-
trary way. Informally, it is required that, for any adversary, y must be uniformly
distributed, and the adversary must learn nothing about x beyond y = gx.

DLKG was first addressed by Pedersen in [14]. Gennaro et al. pointed out that
Pedersen’s scheme is not secure against a rushing adversary (and even against a
non-rushing adversary) and proposed a new (statically) secure scheme [12]. Then
Frankel et al. and Canetti et al. introduced in [11] respectively [7] adaptively
secure schemes in the erasure model, and Jarecki and Lysyanskaya improved the
schemes to work in the non-erasure model and to remain secure under concurrent
composition [13].

These DLKG protocols which are secure against an adaptive adversary rely
heavily on the use of interactive zero-knowledge proofs. This poses the question
whether this is an inherent phenomenon for adaptively secure DLKG. We an-
swer this question in the negative. Concretely, we propose an adaptively-secure
distributed key-generation protocol from scratch which completely avoids the
use of interactive zero-knowledge proofs. As a consequence, the protocol can be
and is proven secure in a relaxed version of Canetti’s universally-composable
(UC) framework [4], which prohibits rewinding. We show the usefulness of our
distributed key-generation protocol by showing how it gives rise to a (fully) UC
threshold Schnorr signature scheme. To the best of our knowledge, this is the
first threshold scheme proven secure in the UC framework.

The relaxed UC framework, which we call the single-inconsistent-player (SIP)
UC framework, coincides with the original UC framework, except that the sim-
ulator is allowed to fail in case the adversary corrupts some designated player
Pj� , which is chosen at random from the set of all players and announced to (and
only to) the simulator. This relaxation still allows for a powerful composition
theorem in that protocols may be arbitrary composed, as long as all subsidiary
protocols involve the same set of players.

We stress once more that this relaxation only applies to the proposed dis-
tributed key-generation protocol but not to its application for the threshold
Schnorr signature scheme.

Our DLKG protocol (and thus the threshold Schnorr signature scheme) is
based on a new adaptively-secure version of Feldman’s famous (statically se-
cure) VSS scheme. Although adaptive security was already addressed by Feld-
man in the original paper [10], and besides the well known standard Feldman
VSS scheme he also proposed an adaptively-secure version, the proposed scheme
has several shortcomings: (1) it requires the players to be able to reliably erase
data, (2) it either proceeds over a linear number of rounds or otherwise needs to
incorporate signatures as we will point, and (3) it requires secure communica-
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tion channels (or expensive non-committing encryption schemes). We propose a
new variant of Feldman’s VSS scheme which overcomes all of these limitations.
Even though the proposed scheme is not fully adaptively secure but requires
some restriction on the corruption behavior of the adversary, this restriction is
acceptable in that it disappears in the above applications to threshold cryptog-
raphy.

Furthermore, as building blocks for the above schemes or as related construc-
tions, we also propose a sender non-committing encryption scheme, a new adap-
tively secure distributed trapdoor-key generation protocol for Pedersen’s com-
mitment scheme, as well as adaptively secure distributed-verifier zero-knowledge
proofs, which all may very well find other applications. Finally, in the full ver-
sion of this paper [3], we propose several additional applications and/or related
adaptively-secure constructions of independent interest: a simple modification
of Feldman’s adaptively-secure VSS scheme which overcomes (1) and (2) above,
though not (3), but is fully adaptively-secure, an adaptively secure version of
Pedersen’s VSS scheme as a committed VSS, a threshold version of the DSS
signature scheme in the UC model, a threshold version of the Cramer-Shoup
cryptosystem in the SIP UC model, and a common-reference-string generator
with applications to zero-knowledge proofs in the UC model.

The paper is organized as follows. Section 2 reviews the model we are con-
sidering. It includes a short introduction to the UC framework of Canetti and
the new SIP UC framework. In Sect. 3 we recall Feldman’s statically and adap-
tively secure VSS schemes, and we point out an obstacle in the dispute resolu-
tion phase of the adaptive scheme, before we construct our version in Sect. 4.
Finally, Sect. 5 shows the applications to adaptively-secure DLKG, universally-
composable threshold cryptography and distributed-verifier proofs.

Due to space limitations, many definitions and proofs could only be sketched
in this proceedings version of the paper; the formal treatment can be found in
the full version [3].

2 Preliminaries

2.1 Communication and Adversary

We consider a synchronized authenticated-link model where a message from Ps

to Pr is delivered within a constant delay and accepted by Pr if and only if it is
sent from Ps to Pr. Moreover, we assume a broadcast channel with which every
player sends a message authentically and all players receives the same message.

We consider a central adversary A which may corrupt players at will. Cor-
rupting a player Pi allows A to read Pi’s internal state and to act on Pi’s behalf
from that point on. In the non-erasure model, A additionally gains Pi’s com-
plete history. A is called t-limited if it corrupts at most t players. Furthermore,
A is called static if it corrupts the players before the protocol starts, and A is
called adaptive if it corrupts the players during the execution of the protocol,
depending on what it has seen so far.
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2.2 Canetti’s Universally Composable Framework

In order to formally specify and prove the security of our protocols, we will use
the universally composable (UC) framework of Canetti [4]. We briefly sketch
this framework here; for a more elaborate description we refer to the full ver-
sion of the paper [3] or to the literature. The UC framework allows to define and
prove secure cryptographic protocols as stand-alone protocols, while at the same
time guaranteeing security in any application by means of a general composition
theorem. In order to define a protocol π secure, it is compared with an ideal func-
tionality F . Such a functionality can be thought of as a trusted party with whom
every player can communicate privately and which honestly executes a number
of specified commands. The UC security definition essentially requires that for
every (real-life) adversary A attacking the protocol π, there exists an ideal-life
adversary S, also called simulator, which gets to attack the ideal-life scenario
where only the players and F are present, such that S achieves “the same” as A
could have achieved by an attack on the real protocol. In the framework, this is
formalized by considering an environment Z which provides inputs to and col-
lects outputs from the honest players and communicates in the real-life execution
with A and in the ideal-life execution with S. It is required that it cannot tell
the difference between the real-life and the ideal-life executions, meaning that
its respective outputs in the two cases are computationally indistinguishable.

As mentioned above, the UC framework provides a very general composition
theorem: For any protocol ρ that securely realizes functionality G in the so-called
F -hybrid model, meaning that it may use F as a subroutine, composed protocol
ρπ that replaces F with a secure protocol π also securely realizes G (in the
real-life model).

2.3 Single-Inconsistent-Player UC Framework

The single-inconsistent-player (SIP) technique of [7] is often used to achieve
both adaptive security and efficiency. A protocol in the SIP model is secure
(i.e. securely simulatable in the classical model of computation) if the adversary
does not corrupt a designated player which is chosen independently at random
before the protocol starts. Using the terms of the UC framework, it means that
the simulator S is given as input the identity of a randomly chosen player Pj� ,
and S is required to work well as long as Pj� is uncorrupt. In the case of t-
limited adversary with t < n/2, this reduces S’s success probability by a factor
of 1/2. This still guarantees security in that whatever A can do in the real-
life model, S has a good chance in achieving the same in the ideal-life model.
Indeed, in the classical sense, a simulator is considered successful if it works
better than with negligible probability. However, with such a simulator S, the
composition theorem no longer works in its full generality. To minimize the
effect of the SIP approach, we have to limit the set of players to be the same
in all subsidiary protocols. This way, Pj� can be sampled once and for all, and
the condition that Pj� remains uncorrupt applies to (and either holds or does
not hold) simultaneously for all protocols. With this limitation, the composition
theorem essentially works as before. See also the full version of the paper [3].
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2.4 Some Functionalities

We briefly introduce some functionalities we use throughout the paper. For for-
mal descriptions and more elaborate discussions, we refer to [3].

Secure-Message-Transmission Functionalities: The secure-message-transmission
functionality, as defined in [4], is denoted by FSMT. On receiving (send, sid, Pr, m)
from Ps, FSMT sends (sid, Ps, m) to Pr and (sid, Ps, Pr) to the (ideal-life) adversary
S and halts. If the length of m may vary, it is also given to S.

Due to some subtle technicalities, FSMT cannot be securely realized in a syn-
chronized communication model against an active adversary. The reason is that
in any (interactive) candidate realization πSMT, the adversary A can corrupt the
sender during the execution of the protocol and change the message m to be se-
curely transmitted (or abort the protocol), while this cannot be achieved by S.
Indeed, once FSMT is invoked it is always completed with the initial input (and
the output is delivered to the receiver). To overcome this problem, we introduce
spooled SMT. This is captured by FSSMT, which first spools the sent message m
and only delivers the spooled message m (or a possibly different m in case of a
corrupt Ps) when receiving another (the actual) send command from Ps. This
allows S to change m after FSSMT has been launched simply by corrupting Ps

after the spool- but before the send-command.
FSSMT can be realized over a public network using non-committing encryption

as introduced by Canetti et al. in [6]. However, this is rather expensive as the best
known schemes [9] still bear a ciphertext expansion O(κ). Instead, our results
are based on efficient though not fully adaptively secure realizations.

In our construction, we will also use an extended version of the FSSMT function-
ality which allows Ps, in case of a dispute, to convince the other players of the
message m sent to Pr. This is specified by FSSMTwO, spooled SMT with opening,
which works as FSSMT except that it additionally allows an open-command sent
from Ps (and only from Ps), upon which it announces the transmitted message
m to all players.

Committed-VSS Functionalities: An advantage of using Feldman and Pedersen
VSS in protocol design is that besides producing a (correct) sharing, they also
commit the dealer to the shared secret. Often, this commitment can be and
is used in upper-level protocols. However, in the definition of UC-secure VSS
given in [4], such a commitment is hidden in the protocol and not part of the
functionality, and thus not available for external protocols. We introduce the
notion of committed VSS to overcome this inconvenience.

Let comK : SK ×RK → YK be a (efficiently computable) commitment func-
tion, indexed by a commitment key K. Typically, K is sampled by a poly-time
generator (on input the security parameter). A commitment for a secret s ∈ SK

is computed as y = comK(s; r), where we use the semicolon ’;’ to express that
the second argument, r, is chosen randomly (from RK) unless it is explicitly
given.

A committed VSS (with respect to commitment scheme comK) is specified
by functionality F comK

VSS , which sends (shared, sid, Pd, comK(s; r)) to all players
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and S on receiving (share, sid, (s, r)) from Pd, the dealer, and later, on receiving
(open, sid) from t+1 distinct players, it sends (opened, sid, s) to all players and S.

Due to the same technical problem as above, if the dealer may be adaptively
corrupted, we need to incorporate spooling into the committed VSS function-
ality: F comK

SVSS
first spools (s, r) (and gives comK(s; r) to S) before awaiting and

executing the actual share-command (for the original or a new s).
We would like to mention that for certain candidate protocols πVSS for com-

mitted VSS (with spooling), whose security relies on the commitment scheme
comK , the generation of the key K needs to be added to the VSS functionality
in order to be able to prove πVSS secure in the UC framework. This is for instance
the case for Pedersen’s VSS scheme as discussed in [3].

2.5 The Discrete-Log Setting

Let κ be a security parameter and q be a prime of size κ. Let Gq denote a group
of order q, and let g be its generator. We use multiplicative notation for the
group operation of Gq. Some of our constructions require Gq to be the order-q
multiplicative subgroup of Z

∗
p with prime p = 2q + 1. Unless otherwise noted,

all arithmetics are done in Zq or Gq and should in each case be clear from the
context.

Throughout, we assume that such (Gq, q, g) is given to all players, and that
the Decision Diffie-Hellman problem for (Gq , q, g) is intractable, meaning that
the respective uniform distributions over DH = {(gα, gβ, gγ) ∈ Gq

3 | α · β = γ}
and RND = Gq

3 are computationally indistinguishable. This assumption im-
plies the discrete-log assumption for (Gq, q, g): given a random h = gω, it is
computationally infeasible to compute ω.

3 The Original Feldman VSS

The Basic Scheme: Let α1, . . . , αn ∈ Zq be distinct and non-zero. In order to
share a (random) secret s ∈ Zq, the dealer selects a Shamir sharing polynomial
f(X) = s + a1X + · · · + atX

t ∈ Zq[X ] and sends sj = f(αj) privately to Pj .
Additionally, he broadcasts C0 = gs as well as Ck = gak for k = 1, . . . , t. Each
player Pj now verifies whether

gsj =
t∏

k=0

C
αk

j

k . (1)

If it does not hold for some j, then player Pj broadcasts an accusation against
the dealer, who has to respond by broadcasting sj such that (1) holds. If he
fails, then the execution is rejected, while otherwise Pj uses the new sj as his
share. Correct reconstruction is achieved simply by filtering out shares that do
not satisfy (1).

This scheme is proved secure against a static adversary: Assume that A
corrupts Pj1 , . . . , Pjt . Given C0 = gs, the simulator S simply chooses random
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shares sji ∈ Zq (i = 1 . . . t) for the corrupted players, and it computes C1, . . . , Ct

with the right distribution from gs and gsj1 , . . . , gsjt ’s by applying appropriate
Lagrange interpolation coefficients “in the exponent”. Informally, this shows that
A learns nothing about s beyond gs.

This simulation-based proof though fails completely if the adversary may
corrupt players adaptively, i.e., during or even after the execution of the protocol.
The problem is that given C0 = gs, S needs to come up with C1, . . . , Ct such
that if A corrupts some player Pj at some later point, S can serve A with sj

such that (1) is satisfied. However, it is not known how to successfully provide
such sj for any dynamic choice of j without knowing s, unless A corrupts the
dealer to start with.

Adaptive Security with Erasure: Feldman addressed adaptive security by pro-
viding a set-up phase where the dealer assigns a private X-coordinate αj ∈
{1, . . . , n} to every Pj . Additionally, he needs to convince the players of the
uniqueness of their αj . This is done in the following way. Let E be a semantically-
secure public-key encryption function, with public-key chosen by the dealer.

1. The dealer computes an encryption Aj = E(j; rj) (with random rj) for
every j ∈ {1, . . . , n}, and he chooses α1, . . . , αn as a random permutation
of 1, . . . , n. Then, he broadcasts A1, . . . , An ordered in such a way that Aj

appears in αj-th position, and he privately sends (αj , rj) to Pj .
2. Each Pj locates Aj in position αj and verifies whether Aj = E(j; rj) and, if

it holds, erases rj . The dealer erases r1, . . . , rn, too.

After the erasure is completed, the dealer performs the basic Feldman VSS with
X-coordinates α1, . . . , αn. We stress that it is important that the erasures of the
rj ’s must be done before entering to the sharing phase. On reconstruction, each
player broadcasts (αj , sj).

Since each Aj can be opened only to j, player Pj is convinced of the unique-
ness of αj . Simulation against an adaptive adversary is argued separately for
each phase. If a player gets corrupted in the set-up phase, the simulator S just
honestly gives the internal state of the corrupt player to the adversary. Nothing
needs to be simulated. Then, the sharing phase is simulated similar as for the
static adversary, except that, since S does not know which players will be cor-
rupted, it predetermines shares for a random subset of size t of the X-coordinates
{1, . . . , n}, and whenever a player Pj gets corrupted one of these prepared X-
coordinates is assigned to Pj as his αj . Since rj has already been erased, it is
computationally infeasible to determine whether Ai in position αj is an encryp-
tion of j or not.

An Obstacle in Dispute Resolution: We identify a problem in the dispute reso-
lution of the above scheme1. Suppose that honest Pj accuses the dealer, and that

1 No dispute resolution procedure is shown in [10]. It is said that a player simply
rejects the dealer when he receives an incorrect share (and the dealer is disqualified
if more than t + 1 players rejects). But this works only if t < n/3.
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instead of publishing correct (αj , sj), the corrupt dealer responds by publishing
(αi, si) of another honest player Pi. Since rj and ri have been already erased,
both Pj and Pi have no way to prove that the published αi is different from the
original assignment.

To efficiently settle such a dispute, digital signature scheme will be needed.
That is, the dealer sends αj with his signature in the set-up phase. This allows
Pj to publish the signature when he accuses the dealer in the sharing phase.
Without using digital signatures, O(t) additional rounds are needed to settle the
dispute: If Pi observes that his (αi, si) is published to respond to the accusation
from Pi, Pi also accuses the dealer and the dealer publishes the data for Pi this
time. After repeating this accuse-then-publish process at most t + 1 times, the
dealer either gets stuck or exposes t + 1 correct shares.

4 Adaptive Security Without Overheads and Erasures

The goal of this section is an adaptively secure Feldman VSS that provides (1)
security without the need for reliably erasing data, (2) efficient dispute resolution
without digital signatures, and (3) efficient realization over a public network, i.e.
without secure channels (or expensive non-committing encryptions).

The first two goals are achieved by a simple modification of the original Feld-
man VSS. The idea is to replace the encryption function E with instantiations
of a trapdoor commitment scheme with certain properties whose commitment
keys are provided separately from each player so that the trapdoors are not
known to the dealer. We show this modified Feldman VSS and the security
proof in [3]. Since Pedersen’s commitment scheme turns out to be good enough
for this purpose, we have a scheme that meets (1) and (2) solely under the DL
assumption. Furthermore, the modified scheme is more efficient in the number
of communication rounds over the original adaptively-secure Feldman VSS.

Hence, what the secure-channels model is concerned, we are done. Unfortu-
nately, we do not know how to efficiently implement the above scheme efficiently
over a public network, even when limiting the power of the adversary as we do in
Sect. 4.2 below. Therefore, we design a new scheme which allows to seamlessly
install our efficient components for public communication presented later.

4.1 Construction in a Hybrid Model

Our approach is to let each player Pj select a random non-zero X-coordinate
αj ∈ Zq and send it privately to the dealer. When corrupted, a simulated player
reveals a (fake) X-coordinate that has been prepared in advance to be consistent
with the transcript, as in Feldman’s approach. On the other hand, in case of a
dispute, each player Pj should be able to convince the other players of his αj . This
is achieved by initially sending αj to the dealer using secure message transmission
with opening, as specified in Sect. 2.4 by functionality FSSMTwO. The scheme is
detailed in Fig. 1 in the (FSSMTwO, FSSMT)-hybrid model.

Consider Feldman’s commitment scheme fcomg with base g: a commitment
for a secret s ∈ Zq is computed as fcomg(s; r) = fcomg(s) = gs (without using r).
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[Sharing Phase]

F-1. Each Pj selects αj ← Z
∗
q and sends αj to the dealer via FSSMTwO. The dealer

replaces any αj that happens to be 0 by αj = 1.
F-2. The dealer selects f(X) = a0 + a1X + · · ·+ atX

t ← Zq[X] where a0 = s and
computes Ck = gak for k = 0, . . . , t and broadcasts (C0, . . . , Ct). For every
Pi he sends si = f(αi) by using FSSMT.

F-3. Each Pj verifies gsj =
∏t

k=0 C
αk

j

k and broadcasts verified if it holds. Otherwise,
Pj broadcasts accuse dealer. For every accusation, the following sub-protocol
is executed in parallel.
(a) Pj sends (open, sid) to FSSMTwO and every player receives αj . If αj = 0,

then it is replaced by αj = 1.
(b) The dealer broadcasts corresponding sj .
(c) If (αj , sj) satisfies the verification predicate, then Pj accepts (αj , sj) as

his share, otherwise the players output a default sharing of s = 0. (Note
that the players have agreement on the published values αj and sj).

[Reconstruction Phase]

Each Pj broadcasts (αj , sj), identifies Q ⊆ {1, . . . , n}, |Q| ≥ t + 1, so that (αi, si)
satisfies the verification predicate for all i ∈ Q, reconstructs secret s by Lagrange
interpolation with regard to Q, and then outputs s.

Fig. 1. Adaptively secure Feldman-VSS πXFVSS in (FSSMTwO, FSSMT)-hybrid model.

Proposition 1. Protocol πXFVSS shown in Fig. 1 securely realizes F fcomg
SVSS in the

(FSSMTwO, FSSMT)-hybrid model against t-limited adaptive adversary for t < n/2.

The proof is given in [3]. Essentially, it uses the same idea as Feldman’s version:
the simulator prepares (random) shares s̃1, . . . , s̃t for t X-coordinates α̃1, . . . , α̃t

and assigns to every newly corrupt player Pj one of these X-coordinates as αj

and the corresponding share as sj.

4.2 Efficient Composition to the Real-Life Protocol

This section provides protocols that realize FSSMT and FSSMTwO over the public
network with broadcast, i.e., without secure channels. Then, by applying the
composition theorem, one can have adaptively secure Feldman VSS as a real-life
protocol. As we shall see, these realizations are efficient but have some limitation
on the adversary, which though can be successfully overcome in our applications.

Our constructions require an efficient bidirectional mapping between Zq and
Gq while the DDH problem should be hard to solve. This is the case when Gq is
the order-q multiplicative subgroup of Z

∗
p with prime p = 2q+1. Indeed, encoding

Zq → Gq can be done by m �→M = m2 mod p, where m ∈ Zq is identified with
its representant in {1, . . . , q}. This encoder is denoted by M = Encode(m) and
the corresponding decoder by m = Decode(M).

Receiver Non-committing Message Transmission: By πRNC, we denote a proto-
col that realizes FSMT (or FSSMT) with receiver non-committing feature. That is,
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remains secure even if the receiver is adaptively corrupted (in the non-erasure
model), while the sender may only be statically corrupted. Note that with such a
restriction on the sender, FSMT can be realized (without spooling). We review the
construction by [13] (adapted to accept messages m ∈ Zq), which is originally
designed in a classical model but can fit to the UC model. A proof is given in
the full version of the paper [3].

A-0. (Initial step) Sender Ps chooses h← Gq and sends it to receiver Pr.
A-1. Pr selects z1, z2 ← Zq, computes y = gz1hz2 , and sends y to Ps.
A-2. Ps computes u = gr, v = hr and c = Encode(m) yr, where r ← Zq, and

sends (u, v, c) to Pr.
A-3. Pr computes m = Decode(cu−z1v−z2).

Fig. 2. Protocol πRNC for receiver non-committing transmission.

Lemma 1. Under the DDH assumption, protocol πRNC securely realizes FSMT

(or FSSMT) against an adaptive adversary if the sender is only statically corrupt
and S is aware of � with Encode(m) = g�.

The assumption that the ideal-life adversary S is aware of the DL of Encode(m)
seems quite restrictive for πRNC to be a general stand-alone tool. It is however
acceptable for our purpose as m will be chosen by S in an upper-level protocol
(playing the role of the to-be-corrupted sender) such that it knows the DL of
Encode(m). We stress that this assumption does not mean at all that S is given
any kind of power to solve the DL problem.

Sender Non-committing Message Transmission with Opening: A protocol πSNC

that realizes FSSMT with sender non-committing feature follows easily from πRNC.
The receiver Pr simply uses πRNC to securely send a randomly chosen k ∈ Gq

to the sender Ps (precisely, Pr sends the message Decode(k) ∈ Zq), and then
Ps sends e = kEncode(m) to Pr , who computes m as m = Decode(ek−1).
We also consider the following variant of πSNC, which we denote by πSNCwO. All
communication is done over the broadcast channel, and in an additional phase,
the opening phase, the sender Ps publishes z1 and z2, privately sampled for
the secure transmission of m, and every player verifies whether gz1hz2 = y and
computes k = cu−z1v−z2 and m = Decode(ek−1).

Lemma 2. Under the DDH assumption, protocol πSNC securely realizes FSSMT and
πSNCwO securely realizes FSSMTwO against an adaptive adversary if the receiver is
only statically corrupt and S is aware of � with Encode(m) = g�.

The proof of Lemma 2 is similar to that of Lemma 1, although slightly more
involved. For completeness, it is included in [3].

Composition with the Efficient Realizations: We now show that when the func-
tionalities FSSMTwO and FSSMT in the hybrid-protocol πXFVSS are implemented by
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πSNCwO and πRNC, respectively, then the composed protocol securely realizes F fcomg
VSS

(or F fcomg
SVSS ) in some weakened sense as stated below.

Theorem 1. Implementing the functionality FSSMTwO in step F-1 of the hybrid-
protocol πXFVSS from Fig. 1. by πSNCwO and FSSMT in step F-2 by πRNC results in a
secure realization of F fcomg

VSS (or F fcomg
SVSS ) in the real-life model, assumed that (1)

the adversary corrupts the dealer only statically, and (2) the adversary corrupts
players only before the reconstruction phase.

Proof. The claim follows essentially from Proposition 1, Lemma 1 and 2, and
the composition theorem. It remains to show that the assumptions for Lemma 1
and 2 are satisfied. By assumption (1) it is guaranteed that the receiver in πSNC

and the sender in πRNC (which in both cases is the dealer) is only statically cor-
rupt. Furthermore, by (2) and the way S works in the proof of Proposition 1, the
messages, which are supposedly send through FSSMTwO and FSSMT and for which S
has to convince A as being the messages sent through FSSMTwO respectively FSSMT

are the values α̃1, . . . , α̃t and s̃1, . . . , s̃t, all chosen randomly from Zq (respec-
tively Z

∗
q) by S. Hence, S could sample them just as well by choosing � ← Zq

and computing Decode(g�) such that the conditions for Lemma 1 and 2 are
indeed satisfied. Finally, as the dealer may only be statically corrupted, we do
not need to care about spooling. Thus F fcomg

VSS and F fcomg
SVSS are equivalent here. ��

5 Applications to Threshold Cryptography

In this section, we propose several applications of the adaptively-secure Feldman
VSS scheme from the previous section. Our main applications are a DLKG proto-
col and a UC threshold Schnorr signature scheme, though we also propose some
related applications which might be of independent interest like a trapdoor-key
generation protocol for Pedersen’s commitment scheme and distributed-verifier
UC proofs of knowledge. Interestingly, even though our Feldman VSS scheme
has restricted adaptive security, the applications remain fully adaptively secure
in the (SIP) UC model and do not underly restrictions as posed in Theorem 1.

To simplify terminology, from now on when referring to protocol πXFVSS, we
mean πXFVSS from Fig. 1 with FSSMTwO and FSSMT replaced by πSNCwO and πRNC as
specified in Theorem 1. Furthermore, it will at some point be convenient to use
a different basis, say h, rather than the public parameter g in the core part of
πXFVSS, such that for instance hs will be published as C. This will be denoted by
πXFVSS[h], and obviously securely realizes F fcomh

VSS
. We stress that this modification

is not meant to affect the sub-protocols πSNCwO and πRNC.

5.1 How to Generate the First Trapdoor Commitment-Key

In many protocols, a trapdoor commitment-key is considered as given by some
trusted party so that the trapdoor information is unknown to any player. If the
trusted party is replaced with multi-party computation, as we usually do, the
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protocol should be designed not to use any common trapdoor commitment-key.
In this section, we show a protocol that meets this requirement.

The players execute protocol πHGEN in Fig. 3. We assume that it is triggered
by a player Pi who sends init to all players. The protocol outputs a (trapdoor)
commitment-key h ∈ Gq for Pedersen’s commitment scheme. Note that the
corresponding trapdoor logg h =

∑
j∈Q χj is not shared among the players (in

the usual way).

H-1. Every Pj chooses χj ← Zq and sends (share, sid, χj) to F fcomg
VSS . Let Q be the

set of players whose (shared, sid, Pj , Yj) is published by F fcomg
VSS . Remember

that Yj = fcomg(χj) = gχj .
H-2. Every player outputs h =

∏
j∈Q Yj .

Fig. 3. Commitment-key generation protocol πHGEN in F fcomg
VSS -hybrid model.

Unfortunately, one cannot expect h to be random as a rushing party can affect
its distribution. However, the protocol inherits the following two properties which
are sufficient for our purpose. (1) A simulator that simulates πHGEN can compute
the DL of h, and (2) given Y ∈ Gq, a simulator can embed Y into h so that
given logg h, the simulator can compute logg Y . The latter in particular implies
that the adversary is not able to compute the trapdoor logg h.

Our idea for formally capturing such a notion is that the ideal functionality
challenges the adversary S by sending a random h′ ∈ Gq and allows S to ran-
domize it so that h′ is transformed into h such that S knows the trapdoor for h
if and only if it knows it for h′. This clearly captures (1) and (2) above.

Definition 1 (Commitment-Key Generation Functionality: FHGEN).
1. On receiving (generate, sid) from Pi, choose h′ ← Gq and send (h′, Pi) to S.
2. On receiving γ ∈ Zq from S, compute h = h′gγ and send (com-key, sid, h) to

all players and S.
Proposition 2. Protocol πHGEN in Fig. 3 securely realizes FHGEN against t-limited
adaptive adversary for t < n/2 in the F fcomg

VSS -hybrid SIP UC model.

The proof is given in the full version of the paper. Essentially, on receiving (h′, Pi)
from FHGEN, S simulates the SIP Pj� ’s call to F fcomg

VSS with input h′, and it sends
γ =

∑
j �=j� χj to FHGEN.

We claim that F fcomg
VSS in πHGEN can be securely realized by the protocol πXFVSS

from Theorem 1. This may look contradictory since πXFVSS is secure only against
static corruption of the dealer as stated in Theorem 1, while in πHGEN every
player acts as a dealer and may be adaptively corrupted. However, looking at
the proof, except for the run launched by the SIP Pj� , S simulates all runs of
F fcomg

VSS honestly with true inputs. Hence, for these simulations, the situation is
exactly as in the case where the dealer is statically corrupted and the secret is
known to the simulator at the beginning. Furthermore, the reconstruction phase
of F fcomg

VSS is never invoked in πHGEN. Thus, the following holds.
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Theorem 2. Implementing F fcomg
VSS in πHGEN of Fig. 3 by πXFVSS results in a secure

realization of FHGEN against t-limited adaptive adversary for t < n/2 in the (real-
life) SIP UC model.

5.2 DL-Key Generation

This section constructs an adaptively secure protocol for DLKG, whose function-
ality is defined below. Clearly, from such a key-generation protocol (respectively
functionality), one expects that it outputs a public-key y and in some hidden way
produces the corresponding secret-key x (typically by having it shared among
the players), such that x can be used to do some cryptographic task like signing
or decrypting if enough of the players agree [16]. However, as we want to view
our protocol as a generic building block for threshold schemes, we simply require
that the secret-key x can be opened rather than be used for some specific task.
In Sect. 5.3 we then show a concrete example threshold scheme based on our
DLKG protocol.

Definition 2 (Threshold DL Key Generation Functionality: FDLKG).

1. On receiving (generate, sid) from Pi, select x ← Zq, compute y = gx, and
send (key, sid, y) to all players and S.

2. On receiving (open, sid) from t+1 players, send (private, sid, x) to all players
and S.

Our realization of FDLKG is illustrated in Fig. 5 below, and makes use of (or-
dinary) Pedersen’s VSS scheme given in Fig. 4.

[Sharing Phase]

P-1. The dealer selects f(X) = a0 + a1X + · · · + atX
t ← Zq[X] and f ′(X) =

b0 + b1X + · · · + btX
t ← Zq[X] where a0 = s. Let r = b0. The dealer then

computes and broadcasts C = C0 = gshr and Ck = gakhbk for k = 1, . . . , t,
and he sends si = f(i) and ri = f ′(i) to Pi using FSSMT.

P-2. Each Pi verifies whether gsihri = Ei where Ei =
∏t

k=0 Cik

k . Pi broadcasts
verified if it holds and else initiates the accusation sub-protocol which is the
same as that of Feldman VSS with obvious modification.

[Reconstruction Phase]

Every player Pi publicly opens Ei to si. The secret s is reconstructed using La-
grange interpolation from the correctly opened si’s.

Fig. 4. Pedersen’s VSS scheme: PedVSSg,h(s)→ (s1, . . . , sn, r,C).

We do not prove Pedersen’s VSS secure in the UC framework, and in fact it
is not (as a committed VSS against an adaptive adversary). The only security
requirement we need is covered by the following well-known fact.
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Lemma 3. Except with negligible probability, after the sharing phase of Peder-
sen’s VSS, both the si’s and ri’s of the uncorrupt players are correct sharings of
s and r such that gshr = C and such that s is reconstructed in the reconstruction
phase (and s and r coincide with the dealer’s choice in case he remains honest),
or otherwise logg h can be efficiently extracted from the adversary.

We write PedVSS j
g,h(s) → (s1, . . . , sn, r, C) to denote an execution of the

sharing phase of Pedersen’s VSS with secret s and player Pj acting as dealer,
and with values s1, . . . , sn, r, C generated as described in Fig. 4.

[Key-Generation Phase]

K-1. A player, Pi, sends (generate, sid) to FHGEN, and commitment-key h is ob-
tained.

K-2. Each player Pj chooses a random xj ∈ Zq and executes the sharing phase
of Pedersen’s VSS with secret xj and commitment-key h: PedVSS j

g,h(xj) →
(xj1, . . . , xjn, rj , Cj). If a player Pj refuses then a default Pedersen sharing
of xj = 0 is taken instead.

K-3. Each Pj sends (share, sidj , xj) to F fcomg
VSS and (share, sid′

j , rj) to F fcomh
VSS .

K-4. If Pi receives (shared, sidj , Pj , C
′
j) and (shared, sid′

j , Pj , C
′′
j ), he verifies that

Cj = C′
jC

′′
j holds. (Note that C′

j = gxj and C′′
j = hrj .) If either of such

messages has not been received or the relation does not hold, then xj is
reconstructed from its Pedersen sharing, and every Pi sets C′

j = gxj . Output
of this phase is the public-key y =

∏n
j=1 C′

j , while each Pj stores xj as his
(additive) secret-key share, to which he is committed by Cj .

[Opening Phase]

Every player Pj publicly opens Cj by broadcasting xj and rj . If a player Pj fails to
do so, xj is reconstructed from its Pedersen sharing. Secret-key x is then computed
as x =

∑n
j=1 xj .

Fig. 5. Threshold DLKG protocol πDLKG in (FHGEN,F fcomg
VSS F fcomh

VSS ,FSSMT)-hybrid model.

Note that in πDLKG the additive shares xj are used to reconstruct the secret-
key x, rather than the threshold-shares implicitly given by ξj =

∑
i xij . The

reason is that even though using the threshold shares can be proven secure in
the hybrid-model, it resists a security proof when the ideal functionality FSSMT

in Pedersen’s VSS is replaced by πRNC as we do (due to the DL condition from
Lemma 1). In [3] we show how to modify the scheme in order to be able to use
the threshold-shares as secret-key shares. Also note that using the terminology
introduced in [2], based on the results in [1], step K-3 can be seen as a distributed-
verifier zero-knowledge proof of knowledge of xj and rj such that gxj = C′

j and
hrj = C′′

j (see also Sect. 5.4).

Theorem 3. Implementing in the DLKG protocol πDLKG from Fig. 5 the func-
tionalities FHGEN, FSSMT, F fcomg

VSS and F fcomh
VSS by πHGEN, πRNC, πXFVSS[g] and πXFVSS[h],

respectively, results in a secure realization of FDLKG against adaptive t-limited
adversary for t < n/2 in the SIP UC model.
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Using the UC with joint state framework [8], one can prove using similar
arguments that the commitment-key h can be generated once and for all invoca-
tions of πDLKG. Furthermore, concerning efficiency, the communication complexity
of the key-generation phase is comparable to that of the schemes by [13]: it re-
quires O(n2κ) bits to be sent over the bilateral public channels and another
O(n2κ) bits to be broadcast.

The full proof of Theorem 3 is given in the full version of the paper. We
simply sketch its idea here. First, the simulator S simulates the generation of
h such that it knows the DL of h, while step K-2 is executed as prescribed.
Then, it reconstructs the xi’s of the corrupt players, and it computes C′

j� and
C′′

j� for the SIP Pj� such that C′
j� ·∏j �=j� gxj = y and Cj� = C′

j�C′′
j� , where y

is the value provided by FDLKG. Then it simulates the two Feldman VSSes with
Pj� as dealer, while the other executions are followed as prescribed (with inputs
xj respectively rj). As a result, the output of the key-generation phase is y.
In the opening phase, having received x = logg(y) from FDLKG, S simply adapts
Pj� ’s initial xj� such that

∑
j xj = x, and it uses the DL of h to open Cj� to

(the new) xj� . The only difference in the adversary’s and thus the environment’s
view between the simulation and a real execution lies in the encrypted Pedersen
shares of (the initial) xj� given to the uncorrupt players. By the property of πRNC,
this cannot be distinguished by the environment.

From now on, when referring to protocol πDLKG, we mean πDLKG from Fig. 5
with the functionalities replaces by real-life protocols as specified in Theorem 3.

5.3 Universally-Composable Threshold Schnorr-Signatures

As an example application of our DL-key generation protocol, we propose a
threshold variant of Schnorr’s signature scheme [15], provable secure in the UC
framework. The scheme is illustrated in Fig. 6. Recall, a Schnorr signature for
message m under public-key y = gx consists of (c, s) such that r = gs/yc satisfies
H(m, r) = c, where H is a cryptographic hash-function. Such a signature is
computed by the signer (in the single-signer variant), who knows the secret-
key x, by choosing k ← Zq and computing r = gk, c = H(m, r) and s = k + cx.
Schnorr’s signature scheme can be proven secure, in the sense of existential
unforgability against chosen message attacks, in the random oracle model.

Consider the ideal threshold signature functionality FTSIG by adapting the
(single-signer) signature functionality FSIG from [5] in the obvious way.

Theorem 4. Protocol πTSIG securely realizes FTSIG against adaptive t-limited ad-
versary for t < n/2 in the UC model, under the DDH assumption and under the
assumption that the standard Schnorr signature scheme is secure.

We stress that interestingly πTSIG securely realizes FTSIG in the standard rather
than the SIP UC model.

Proof. (Sketch) The simulator S simply executes honestly πTSIG. Note that the
public-key y is not dictated by FTSIG, but rather FTSIG asks S to provide it. In
order to prove that this is a good simulation, we argue as follows. The only
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[Key-Generation Phase]

The players execute the key-generation phase of πDLKG, resulting in a public-key y,
private (additive) secret-key shares x1, . . . , xn with corresponding commitments
C1, . . . , Cn, and commitment-key h.

[Signing Phase]

In order to sign a message m, the following steps are executed.

S-1. The players once more invoke the key-generation phase of πDLKG, but skipping
the generation of h and taking h from the generation of y. Denote the out-
put by r, the corresponding additive secret-key shares by k1, . . . , kn, and the
corresponding commitments by K1, . . . , Kn.

S-2. Each player Pj computes c = H(m, r) and publicly opens KjC
c
j to sj =

kj + cxj . If a player Pj fails to do so, sj is reconstructed from its Pedersen
sharing (which is implicitly given by the Pedersen sharings of xj and kj).
Signature (c, s) is completed by s =

∑
j sj .

Fig. 6. Threshold Schnorr-signature scheme πTSIG.

way Z may see a difference is when A breaks the signature scheme, i.e., when
a player provides at some point a valid signature on a message that has not
been signed. However, if there exist Z and A that can enforce such an event
with non-negligible probability, then there exists a forger F that breaks the
existential unforgability against chosen message attacks of the standard (single-
signer) Schnorr signature scheme. F works as follows. F runs Z and A, and
it simulates the action of S, i.e. the execution of πTSIG, as follows. It uses the
SIP simulator for the key-generation phase of πDLKG to force the output of the
key-generation to be the given public-key y. Furthermore, to sign a message m,
it asks the signing oracle for a signatures (c, s) on m, it forces as above the
outcome of S-1 to be r = gs/yc, and it uses a straightforward modification of
the SIP simulator for the opening phase of πDLKG to simulate the signing phase:
the simulated Pj� opens Kj�Cc

j� to s−∑
j �=j� sj in step S-2 (rather than to

kj� + cxj�), forcing the output of the signing phase to be the given signature
(c, s). Additionally, whenever a message-signature pair (m, σ) is asked to be
verified, F first checks whether m was never signed before and if σ is a valid
signature on m. Once such a pair (m, σ) is found, F outputs that pair and halts.
Similar to the proof of Theorem 3, one can show that if A does not corrupt the
SIP then Z cannot distinguish between the real execution of πTSIG (executed by
the simulator S) and the SIP simulation (executed by the forger F ). Hence, by
assumption on Z and A, F outputs a signature on a message not signed by the
signing oracle with non-negligible probability. ��

5.4 Adaptively Secure Distributed-Verifier Proofs

In designing threshold cryptography, it is quite common to prove some re-
lation (or knowledge) about committed witnesses in zero-knowledge manner.
In the UC framework, however, zero-knowledge proofs are extremely expen-
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sive components: they are realized by combining a generic non-interactive zero-
knowledge proof with a common-reference string generator, or UC-secure com-
mitment scheme (which anyway needs common reference string) with generic
zero-knowledge proof system for an NP-complete language such as Hamiltonian.
They are generic and powerful, but cannot be directly used for practical subjects
such as showing equality of discrete-logs or knowledge of a representation.

Combining our results with techniques developed in [1, 2], one can construct
adaptively secure efficient distributed-verifier zero-knowledge proofs in univer-
sally composable way for many practical subjects. We illustrate a concrete ex-
ample. Suppose that a prover needs to show that a triple (gα, gβ, gγ) is in DH,
i.e. satisfies α · β = γ. This can be done as follows. A prover shares α twice:
once using the sharing phase of πXFVSS[g] and once using that of πXFVSS[gβ] with
base gβ . Furthermore, in the second execution, the same sharing polynomial and
X-coordinates as in the first execution are used. Hence the second execution is
completed only by broadcasting a new commitment of the sharing polynomial,
which is verified by the players by using the same share and X-coordinate re-
ceived in the first execution. This guarantees that indeed the same secret, α,
has been shared. Note that (gβ)α, supposed to be gγ , is published in the sec-
ond execution. Finally, the prover shares β (or γ) using the sharing phase of
πXFVSS[g] with base g. If all sharing phases are accepted, the proof is accepted.
Given (gα, gβ, gγ), S can simulate the prover by simulating the dealer in each
execution of πXFVSS. In the case of corrupt prover who completes the proof, S
can extract α and β from the set of uncorrupt players. Hence the simulator can
extract a witness (α, β) needed to invoke ideal zero-knowledge functionality.

The techniques of [1, 2] also apply to other commitment schemes that Feld-
man’s, and allow to prove other relations as well like equality and additive and
inverse relations among committed values. From these building blocks, one can
even construct an adaptive distributed verifier proof for any NP relation by
following the construction in [2].
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