Solutions to Exercise Set 5

Solution 5.1 We easily see that

$$U_f\bigg(|x\rangle \otimes \sum_y \omega_N^y |y\rangle\bigg) = \sum_y \omega_N^y |x\rangle |y+f(x)\rangle = \sum_y \omega_N^{y-f(x)} |x\rangle |y\rangle = \omega^{-f(x)}\bigg(|x\rangle \otimes \sum_y \omega_N^y |y\rangle\bigg),$$

where the second equality is obtained by a simple variable transformation: $y \leftarrow y + f(x)$. Thus, the claimed vector is indeed an eigenvector, and the corresponding eigenvalue is $\omega^{-f(x)}$. This obviously generalizes the phase kickback.

Solution 5.2 Applying F to both wires maps $|0\rangle \otimes |1\rangle$ to

$$\frac{1}{\sqrt{N}}\sum_{x}|x\rangle\otimes\frac{1}{\sqrt{N}}\sum_{y}\omega_{N}^{y}|y\rangle$$

where x and y both range over all elements in $\mathbb{Z}/N\mathbb{Z}$. Applying U_f maps this to

$$\frac{1}{\sqrt{N}}\sum_{x}\omega_{N}^{-f(x)}|x\rangle\otimes\frac{1}{\sqrt{N}}\sum_{y}\omega_{N}^{y}|y\rangle$$

by the observation from Exercise 5.1 above. We can now ignore the second part of the state. Applying F to the first yields

$$\frac{1}{N}\sum_{k,x}\omega_{N}^{-f(x)}\omega_{N}^{k\cdot x}|k\rangle = \frac{1}{N}\sum_{k}\left(\sum_{x}\omega_{N}^{kx-f(x)}\right)|k\rangle$$

and so the probability that the measurement outcome is k = 0 is $p_0 = \left|\sum_x \omega^{-f(x)}/N\right|^2$, which is 1 if f is constant, and 0 if f is surjective. The latter follows from the fact that if f is surjective then it is bijective, and then $\sum_x \omega_N^{f(x)} = \sum_x \omega_N^x = \hat{1}_N(1)\sqrt{N} = 0$.

Solution 5.3 As for the claim of Γ being a group, we argue that $\Gamma = \{\omega_n^j \mid 0 \leq j < n\}$, where *n* is the exponent of *G*, i.e., the smallest positive integer such that $g^n = 1$ for all $g \in G$. Indeed, \subseteq follows from the fact that $\chi(g)^n = \chi(g^n) = \chi(1) = 1$ for all $g \in G$ and $\chi \in \hat{G}$, and \supseteq follows from the observation that we can define a character for a subgoup of order *n* that maps surjectively into $\{\omega_n^j \mid 0 \leq j < n\}$, and extend it to a character in \hat{G} by means of Lemma 4.5.

As for the actual question, applying $F_G^{\dagger} \otimes F_{\Gamma}^{\dagger}$ maps $|1_G\rangle \otimes |id_{\Gamma}\rangle$ to

$$\frac{1}{\sqrt{|G|}}\sum_{g}|g\rangle\otimes\frac{1}{\sqrt{|\Gamma|}}\sum_{\gamma}\bar{\gamma}|\gamma\rangle=\frac{1}{\sqrt{|G||\Gamma|}}\sum_{g,\gamma}\bar{\gamma}|g\rangle|\gamma\rangle$$

where g and γ respectively range over $g \in G$ and $\gamma \in \Gamma$. Applying U_f maps this to

$$\begin{split} \frac{1}{\sqrt{|G||\Gamma|}} \sum_{g,\gamma} \bar{\gamma} |g\rangle |\gamma \cdot f(g)\rangle &= \frac{1}{\sqrt{|G||\Gamma|}} \sum_{g,\gamma} \bar{\gamma} f(g) |g\rangle |\gamma\rangle \\ &= \frac{1}{\sqrt{|G|}} \sum_{g} f(g) |g\rangle \otimes \frac{1}{\sqrt{|\Gamma|}} \sum_{\gamma} \bar{\gamma} |\gamma\rangle \,, \end{split}$$

where the first equality is by substituting the summation variable $\gamma \in \Gamma$ by $\gamma f(g)^{-1}$. We can now ignore the second part of the state. Applying F_G gives

$$\frac{1}{|G|} \sum_{g,\chi} f(g)\chi(g)|\chi\rangle = \frac{1}{|G|} \sum_{\chi} \sum_{g} (f\chi)(g)|\chi\rangle = |\bar{f}\rangle$$

Thus, the measurement recovers \bar{f} , and hence f, with certainty.

Solution 5.4 The first controlled U maps the state $H|0\rangle \otimes |\varphi\rangle$ of the last two wires to

$$\frac{1}{\sqrt{2}} \left(|0\rangle \otimes |\varphi\rangle + |1\rangle \otimes U |\varphi\rangle \right) = \frac{1}{\sqrt{2}} \left(|0\rangle |\varphi\rangle + e^{2\pi i \mu} |1\rangle |\varphi\rangle \right) = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \mu} |1\rangle \right) \otimes |\varphi\rangle.$$

Similarly, the second controlled (power of) U maps the state of the third-to and last wires to

$$\frac{1}{\sqrt{2}} \left(|0\rangle \otimes |\varphi\rangle + |1\rangle \otimes U^2 |\varphi\rangle \right) = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot 2\mu} |1\rangle \right) \otimes |\varphi\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i [0.m_2 \cdots m_n]} |1\rangle \right) \otimes |\varphi\rangle \,,$$

etc. Thus, the state before F_n^{\dagger} is applied is given by

$$\frac{1}{\sqrt{2^n}} (|0\rangle + e^{2\pi i [0.m_n]} |1\rangle) \otimes \cdots \otimes (|0\rangle + e^{2\pi i [0.m_2 \cdots m_n]} |1\rangle) \otimes (|0\rangle + e^{2\pi i [0.m_1 \cdots m_n]} |1\rangle) \otimes |\varphi\rangle$$

which equals $F_n|m_1\rangle \cdots |m_n\rangle \otimes |\varphi\rangle$, and so applying F_n^{\dagger} and measuring the resulting qubits means that m_1, \ldots, m_n is observed with certainty. Thus, (the binary representation of) μ is recovered.

This procedure is referred to as **phase estimation**. If μ does not have a binary representation of length (at most) n then the procedure still works, but then μ is obtained only up to a certain precision and with a certain probability.