
Solutions to Exercise Set 4

Solution 4.1 First of all, we note that this is not an instantiation of Theorem 4.5, since neither
U_ nor U¬ = CNOT are available as quantum gates. On the positive side, U^ is precisely the
To↵oli gate, and the Pauli X gate can well be understood as a quantum variant of ¬. Finally,
_ can be computed by means of ^ and ¬; indeed, we have that a _ b = ¬(¬a ^ ¬b). Thus, by
means of the latter, we see that the circuit
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consisting of ^ and ¬ gates only, computes the same function f , i.e.,

(x ^ y) _ ¬z = ¬
�
¬(x ^ y) ^ z

�
.

Written like this, it is straightforward to verify that Uf is computed by means of the following
quantum circuit, using To↵oli and Pauli X gates, and one “work qubit”:

|xi • • |xi

|yi • • |yi

|zi • |zi

|0i X • X |0i

|wi X |w � f(x, y, z)i

Solution 4.2 We follow the analysis of Simon’s algorithm from the lecture notes. In the more
general case here, we obtain that after the measurement of the second register (which is done
for the purpose of the analysis only), the state of the first register collapses to
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where d is the dimenstion of V , so that |V | = 2d. Applying H⌦n maps this into
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Thus, the probability to observe y after measuring is
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=

⇢
2d�n if y 2 V ?

0 else .

The latter follows from the fact that if y 62 V ?, and thus there exists v� 2 V with v� · y = 1,
then V ! V , v 7! v � v� induces a bijection between {v 2 V | v · y = 0} and {v 2 V | v · y = 1}.
The measurement outcome is thus a uniformly random y 2 V ?.

Repeating, say, n+k times thus results in n+k uniformly random and independent vectors
in V ?, and so, by Lemma 3.12, they span all of V ? except with probability 2�k. Thus, a basis
of V can then be (e�ciently) computed.



Solution 4.4 Using the notation from the lecture notes, for M = 2n/4 we obtain that | i =
| ✓�i = cos(✓�) |�i + sin(✓�) |�i with ✓� 2 [0, ⇡2 ] such that sin(✓�) =

p
M/N = 1

2 . It turns out
that this means that ✓� = ⇡

6 (i.e. 30�); indeed, due to sin(✓�) = 1
2 , the two vectors | ✓�i and

|�i = | 0i form half of an equilateral triangle, and so ✓� is half the angle in an equilateral
triangle, which is ⇡

3 (i.e. 60�). But then, just after one Grover iteration, we obtain the state
| 3✓�i = | ⇡

2
i = |�i. Thus, measuring this state produces an x that satisfies f(x) = 1 with

certainly (by choice of |�i).

Solution 4.5 We can follow very closely the analysis of the original algorithm, except that now
we consider the state | i = A|0i, but still have that P 0 := APA† = A(2|0ih0|�I)A† = 2| ih |�I.
Furthermore, we now set

|�i = 1
p
p
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x s.t.
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↵x|xi and |�i = 1p
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X

x s.t.
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↵x|xi ,

and then write

| i =
p
1� p |�i+p

p |�i = cos(✓�) |�i+ sin(✓�) |�i =: | ✓�i ,

but where now ✓� 2 [0, ⇡2 ] is such that sin(✓�) =
p
p, rather than

p
M/2n. The rest of the

analysis carries over verbatim. In particular, P 0 still acts as a reflection across the axis spanned
by | i, and so G still acts as a rotation by angle 2✓�—but now for this larger value of ✓�.
Thus, the query complexity now becomes ` = O(1/✓�)  O(1/ sin(✓�)) = O

�
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p
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�
, and the

probability of observing x with f(x) = 1 is still at least 1� sin(✓�)2 = 1� p. Thus, given that
p � M/2n, we have an improvement in the complexity of the algorithm; on the other hand, the
success probably is smaller, but the interesting case is of course when p is still very small, and
thus this can be neglected.


