Solutions to Exercise Set 3

Solution 3.1 Working out $H|x\rangle \otimes H|y\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{y}|1\rangle\right)$ and applying CNOT yields

$$
\begin{aligned}
\operatorname{CNOT}(H|x\rangle \otimes H|y\rangle) & =\frac{1}{2} \operatorname{CNOT}\left(|0\rangle|0\rangle+(-1)^{x}|1\rangle|0\rangle+(-1)^{y}|0\rangle|1\rangle+(-1)^{x+y}|1\rangle|1\rangle\right) \\
& =\frac{1}{2}\left(|0\rangle|0\rangle+(-1)^{x}|1\rangle|1\rangle+(-1)^{y}|0\rangle|1\rangle+(-1)^{x+y}|1\rangle|0\rangle\right) \\
& =\frac{1}{2}\left(\left(|0\rangle+(-1)^{x+y}|1\rangle\right) \otimes|0\rangle+\left((-1)^{y}|0\rangle+(-1)^{x}|1\rangle\right) \otimes|1\rangle\right) \\
& =\frac{1}{\sqrt{2}}\left(H|x \oplus y\rangle \otimes|0\rangle+(-1)^{y} H|x \oplus y\rangle \otimes|1\rangle\right) \\
& =H|x \oplus y\rangle \otimes H|y\rangle .
\end{aligned}
$$

In words, on the Hadamard basis CNOT acts as a control-NOT but with the second qubit as the control qubit.

An alternative (and more insightful) solution is to recall from Exercise 1 that $H X H=Z$ (and of course $H \mathbb{I} H=\mathbb{I}$), and thus $H_{2} \mathrm{CNOT}_{12} H_{2}=H_{2} C_{1}\left(X_{2}\right) H_{2}=C_{1}\left(Z_{2}\right)$, where we use the convention to write H_{2} for $\mathbb{I} \otimes H$, etc. Furthermore, $C(Z)$ is symmetric in that $C_{1}\left(Z_{2}\right)=C_{2}\left(Z_{1}\right)$; indeed, $C_{1}\left(Z_{2}\right)|x\rangle|y\rangle=|x\rangle \otimes Z^{x}|y\rangle=(-1)^{x y}|x\rangle|y\rangle=Z^{y}|x\rangle \otimes|y\rangle=C_{2}\left(Z_{1}\right)|x\rangle|y\rangle$. Thus,

$$
\begin{aligned}
& \mathrm{CNOT}_{12} H_{1} H_{2}=H_{2} H_{2} \mathrm{CNOT}_{12} H_{2} H_{1}=H_{2} C_{1}\left(Z_{2}\right) H_{1} \\
& \quad=H_{2} C_{2}\left(Z_{1}\right) H_{1}=H_{2} H_{1} \mathrm{CNOT}_{21} H_{1} H_{1}=H_{1} H_{2} \text { CNOT }_{21}
\end{aligned}
$$

Solution 3.2 Straightforward calculations show that

$$
\begin{aligned}
V^{\dagger} V & =(1+i)(\mathbb{I}-i X)(1-i)(\mathbb{I}+i X) / 4=2\left(\mathbb{I}+X^{2}\right) / 4=2(\mathbb{I}+\mathbb{I}) / 4=\mathbb{I} \\
V^{2} & =(1-i)(\mathbb{I}+i X)(1-i)(\mathbb{I}+i X) / 4=-2 i\left(\mathbb{I}+2 i X-X^{2}\right) / 4=X
\end{aligned}
$$

Solution 3.3 For $x, y \in\{0,1\}$ and $|\varphi\rangle \in \mathcal{H}$, the vector $|x\rangle|y\rangle|\varphi\rangle$ indeed gets mapped to

$$
\begin{aligned}
|x\rangle|y\rangle|\varphi\rangle & \mapsto|x\rangle|y\rangle V^{y}|\varphi\rangle \mapsto|x\rangle|x \oplus y\rangle V^{y}|\varphi\rangle \mapsto|x\rangle|x \oplus y\rangle\left(V^{\dagger}\right)^{x \oplus y} V^{y}|\varphi\rangle \\
& \mapsto|x\rangle|y\rangle\left(V^{\dagger}\right)^{x \oplus y} V^{y}|\varphi\rangle \mapsto|x\rangle|y\rangle V^{x}\left(V^{\dagger}\right)^{x \oplus y} V^{y}|\varphi\rangle=|x\rangle|y\rangle U^{x y}|\varphi\rangle,
\end{aligned}
$$

where the final equality is verified by checking the different cases for x and y, and using that $V^{\dagger} V=\mathbb{I}=V V^{\dagger}$ and $V^{2}=U$.

Solution 3.4 For $n=1$ and $x \in\{0,1\}$, we have

$$
H|x\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x}|1\rangle\right)=\frac{1}{\sqrt{2}} \sum_{y \in\{0,1\}}(-1)^{x \cdot y}|y\rangle
$$

by definition. For the general case with $x=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$, we then have

$$
\begin{aligned}
& H^{\otimes n}|x\rangle=\bigotimes_{i=1}^{n} H\left|x_{i}\right\rangle=\bigotimes_{i=1}^{n}\left(\frac{1}{\sqrt{2}} \sum_{y_{i} \in\{0,1\}}(-1)^{x_{i} \cdot y_{i}}\left|y_{i}\right\rangle\right) \\
& \quad=\frac{1}{2^{n / 2}} \sum_{y_{1}, \ldots, y_{n}}(-1)^{x_{1} \cdot y_{1}} \cdots(-1)^{x_{n} \cdot y_{n}}\left|y_{1}\right\rangle \cdots\left|y_{n}\right\rangle=\frac{1}{2^{n / 2}} \sum_{y \in\{0,1\}^{n}}(-1)^{x \cdot y}|y\rangle,
\end{aligned}
$$

Solution 3.5 Exploiting that $H|z\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{z}|1\rangle\right)$ and using linearity, we obtain

$$
\begin{aligned}
U_{f}(|x\rangle \otimes H|z\rangle) & =\frac{1}{\sqrt{2}} U_{f}|x\rangle|0\rangle+(-1)^{z} \frac{1}{\sqrt{2}} U_{f}|x\rangle|1\rangle
\end{aligned}=\frac{1}{\sqrt{2}}|x\rangle|f(x)\rangle+(-1)^{z} \frac{1}{\sqrt{2}}|x\rangle|1 \oplus f(x)\rangle,
$$

where the last equality is by a case-by-case analysis: first the case $z=0$, and then the cases $z=1 \wedge f(x)=0$ and $z=1 \wedge f(x)=1$. More elegantly, but less straightforward, one can observe that $U_{f}(|x\rangle \otimes|\psi\rangle)=|x\rangle \otimes X^{f(x)}|\psi\rangle$ for any $|\psi\rangle \in \mathcal{S}\left(\mathbb{C}^{2}\right)$ and recycle that $X=H Z H$ to then conclude that

$$
U_{f}(|x\rangle \otimes H|z\rangle)=|x\rangle \otimes H^{f(x)} Z^{f(x)} H^{f(x)} H|z\rangle=|x\rangle \otimes H Z^{f(x)}|z\rangle=(-1)^{z f(x)}|x\rangle \otimes H|z\rangle
$$

where the second equality is by considering the cases $f(x)=0$ and $f(x)=1$ separately.
Vice versa,

$$
\begin{gathered}
V_{f}(|x\rangle \otimes H|y\rangle)=\frac{1}{\sqrt{2}} V_{f}|x\rangle|0\rangle+(-1)^{y} \frac{1}{\sqrt{2}} V_{f}|x\rangle|1\rangle=\frac{1}{\sqrt{2}}|x\rangle|0\rangle+(-1)^{y}(-1)^{f(x)} \frac{1}{\sqrt{2}}|x\rangle|1\rangle \\
=|x\rangle \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{y+f(x)}|1\rangle\right)=|x\rangle \otimes H|y \oplus f(x)\rangle
\end{gathered}
$$

Alternatively, and somewhat more directly, from the first derivation we can read out that $(\mathbb{I} \otimes H) U_{f}(\mathbb{I} \otimes H)=V_{f}$. Hence

$$
V_{f}(|x\rangle \otimes H|y\rangle)=(\mathbb{I} \otimes H) U_{f}|x\rangle|y\rangle=|x\rangle \otimes H|y \oplus f(x)\rangle
$$

Solution 3.6 Applying $X^{x} Z^{z}$ to the first qubit turns $\left|\Phi^{+}\right\rangle$into

$$
\left(X^{x} Z^{z} \otimes \mathbb{I}\right)\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}\left(X^{x} Z^{z}|0\rangle \otimes|0\rangle+X^{x} Z^{z}|1\rangle \otimes|1\rangle\right)=\frac{1}{\sqrt{2}}\left(|x\rangle|0\rangle+(-1)^{z}|x \oplus 1\rangle|1\rangle\right)
$$

Applying $C N O T$, controlled by the second qubit, results in the state

$$
\frac{1}{\sqrt{2}}\left(|x\rangle|0\rangle+(-1)^{z}|x\rangle|1\rangle\right)=|x\rangle \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{z}|1\rangle\right)=|x\rangle \otimes H|z\rangle
$$

and thus by measuring the first qubit in the computational and the second qubit in the Hadamard basis, Bob recovers x and z.

