Solutions to Exercise Set 2

Solution 2.1 It is not hard to guess and then easy to verify that $|\circlearrowleft\rangle$ and $|\circlearrowright\rangle$ do the job. For a formal derivation, which also shows uniqueness (up to global phases), see the following.

In order to be mutually unbiased with $\{|0\rangle,|1\rangle\}$, such a basis needs to be of the form

$$
\left|e_{0}\right\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{\omega}{\sqrt{2}}|1\rangle \quad \text { and } \quad\left|e_{1}\right\rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{\omega}{\sqrt{2}}|1\rangle
$$

for some $\omega \in \mathcal{S}(\mathbb{C})$, up to individual global phases. Asking for

$$
\frac{1}{2} \stackrel{!}{=}\left|\left\langle \pm \mid e_{0}\right\rangle\right|^{2}=\left|\frac{1}{2} \pm \frac{\omega}{2}\right|^{2}=\left(\frac{1}{2} \pm \frac{\omega}{2}\right)\left(\frac{1}{2} \pm \frac{\bar{\omega}}{2}\right)=\frac{1}{2} \pm \frac{\omega+\bar{\omega}}{2}=\frac{1}{2} \pm \Re(\omega)
$$

then enforces the real part of ω to be 0 ; thus, $\omega= \pm i$ are the only options. Finally, given that $\left\langle \pm \mid e_{1}\right\rangle=\frac{1}{2} \mp \frac{\omega}{2}$, it is then easy to see that this choice indeed works.

Note that this basis is the eigenbasis of Y.

Solution 2.2 We simply have
$\left.F(p, q)=\sum_{i} \sqrt{p_{i} q_{i}}=\sum_{i} \sqrt{\left|\left\langle e_{i} \mid \varphi\right\rangle\right|^{2}\left|\left\langle e_{i} \mid \psi\right\rangle\right|^{2}}=\sum_{i}\left|\left\langle\varphi \mid e_{i}\right\rangle\left\langle e_{i} \mid \psi\right\rangle\right| \geq\left|\sum_{i}\langle\varphi|\right| e_{i}\right\rangle\left\langle e_{i}\right||\psi\rangle|=|\langle\varphi \mid \psi\rangle|$,
where the inequality is triangle inequality. The general case is argued similarly:

$$
\left.F(p, q)=\sum_{i} \| M_{i}|\varphi\rangle\| \| M_{i}|\psi\rangle \| \geq \sum_{i}\left|\langle\varphi| M_{i}^{\dagger} M_{i}\right| \psi\right\rangle\left|\geq\left|\sum_{i}\langle\varphi| M_{i}^{\dagger} M_{i}\right| \psi\right\rangle|=|\langle\varphi \mid \psi\rangle|
$$

except that Cauchy-Schwarz inequality (Proposition 0.1) is used as well.

Solution 2.3 Using the results from Exercise 1.3, we obtain that

$$
H \rho H^{\dagger}=\frac{1}{2}(\mathbb{I}+x H X H+y H Y H+z H Z H)=\frac{1}{2}(\mathbb{I}+z X-y Y+x Z)
$$

Thus, $(x, y, z) \mapsto\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=(z,-y, x)$, which is a rotation by 180° around the diagonal axis in-between the x - and the z-axis, i.e., around the axis that is defined by the point on the Bloch sphere given by the (appropriately normalized) vector $|0\rangle+|+\rangle$.

Solution 2.5 For 1., we have

$$
|\Phi\rangle=|0\rangle \otimes(|0\rangle+|1\rangle)+|1\rangle \otimes(|0\rangle+|1\rangle)=(|0\rangle+|1\rangle) \otimes(|0\rangle+|1\rangle)
$$

For 2., it turns out that $|\Phi\rangle$ cannot be written as a pure tensor. For 3., we have

$$
|\Phi\rangle=|0\rangle \otimes|+\rangle+|1\rangle \otimes(|0\rangle+|1\rangle)=|0\rangle \otimes|+\rangle+|1\rangle \otimes \sqrt{2}|+\rangle=(|0\rangle+\sqrt{2}|1\rangle) \otimes|+\rangle
$$

Finally, for $4 .,|\Phi\rangle$ cannot be written as a pure tensor.

Solution 2.6 For $|\Phi\rangle=\left|\varphi_{1}\right\rangle\left|\varphi_{2}\right\rangle$, the definition of A simplifies to

$$
A:=\sum_{i \in I}\left(\left\langle e_{i}\right| \otimes \mathbb{I}_{2}\right)\left(\left|\varphi_{1}\right\rangle \otimes\left|\varphi_{2}\right\rangle\right)\left\langle e_{i}\right|=\sum_{i \in I}\left\langle e_{i} \mid \varphi_{1}\right\rangle \otimes\left|\varphi_{2}\right\rangle\left\langle e_{i}\right|=\sum_{i \in I}\left\langle e_{i} \mid \varphi_{1}\right\rangle\left|\varphi_{2}\right\rangle\left\langle e_{i}\right|
$$

and so

$$
\begin{aligned}
& \sum_{i \in I}\left|e_{i}\right\rangle \otimes A\left|e_{i}\right\rangle=\sum_{i \in I}\left|e_{i}\right\rangle \otimes \sum_{j \in I}\left\langle e_{j} \mid \varphi_{1}\right\rangle\left|\varphi_{2}\right\rangle\left\langle e_{j} \mid e_{i}\right\rangle=\sum_{i \in I}\left|e_{i}\right\rangle \otimes\left\langle e_{i} \mid \varphi_{1}\right\rangle\left|\varphi_{2}\right\rangle \\
&= \sum_{i \in I}\left|e_{i}\right\rangle\left\langle e_{i} \mid \varphi_{1}\right\rangle \otimes\left|\varphi_{2}\right\rangle=\sum_{i \in I}\left|e_{i}\right\rangle\left\langle e_{i}\right|\left|\varphi_{1}\right\rangle \otimes\left|\varphi_{2}\right\rangle=\left|\varphi_{1}\right\rangle \otimes\left|\varphi_{2}\right\rangle=|\Phi\rangle .
\end{aligned}
$$

Towards the second claim, we first not that if $|\Phi\rangle=\left|\varphi_{1}\right\rangle \otimes\left|\varphi_{2}\right\rangle$, i.e., is not entangled, then from further rewriting the above we see that

$$
A=\sum_{i \in I}\left\langle e_{i} \mid \varphi_{1}\right\rangle\left|\varphi_{2}\right\rangle\left\langle e_{i}\right|=\sum_{i \in I}\left|\varphi_{2}\right\rangle\left\langle e_{i} \mid \varphi_{1}\right\rangle\left\langle e_{i}\right|=\left|\varphi_{2}\right\rangle\left(\sum_{i \in I}\left\langle e_{i} \mid \varphi_{1}\right\rangle\left\langle e_{i}\right|\right),
$$

and thus A has rank 1. On the other hand, if A has rank 1, i.e., if $A=\left|\psi_{2}\right\rangle\left\langle\psi_{1}\right|$, then

$$
|\Phi\rangle=\sum_{i \in I}\left|e_{i}\right\rangle \otimes A\left|e_{i}\right\rangle=\sum_{i \in I}\left|e_{i}\right\rangle \otimes\left|\psi_{2}\right\rangle\left\langle\psi_{1} \mid e_{i}\right\rangle=\left(\sum_{i \in I}\left|e_{i}\right\rangle\left\langle\psi_{1} \mid e_{i}\right\rangle\right) \otimes\left|\psi_{2}\right\rangle
$$

and thus is a product state, i.e., not entangled.
Finally, for $|\Phi\rangle=|0\rangle \otimes|-\rangle-|1\rangle \otimes|+\rangle$ in Exercise 2.5, taking the computational basis we obtain

$$
\begin{aligned}
A & =\left(\langle 0| \otimes \mathbb{I}_{2}\right)|\Phi\rangle\langle 0|+\left(\langle 1| \otimes \mathbb{I}_{2}\right)|\Phi\rangle\langle 1|=|-\rangle\langle 0|-|+\rangle\langle 1| \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 0 \\
-1 & 0
\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
-1 & -1
\end{array}\right],
\end{aligned}
$$

which indeed has rank 2. Similarly for $|\Phi\rangle=i|0\rangle|0\rangle+2|0\rangle|1\rangle+|1\rangle|0\rangle+2 i|1\rangle|1\rangle$, we we obtain

$$
A=i|0\rangle\langle 0|+2|1\rangle\langle 0|+|0\rangle\langle 1|+2 i|i\rangle\langle i|=\left[\begin{array}{cc}
i & 1 \\
2 & 2 i
\end{array}\right],
$$

which has rank 2 .

