
Solutions to Exercise Set 2

Solution 2.1 It is not hard to guess and then easy to verify that | i and |�i do the job. For
a formal derivation, which also shows uniqueness (up to global phases), see the following.

In order to be mutually unbiased with {|0i, |1i}, such a basis needs to be of the form
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then enforces the real part of ! to be 0; thus, ! = ±i are the only options. Finally, given that
h±|e1i = 1
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2 , it is then easy to see that this choice indeed works.

Note that this basis is the eigenbasis of Y .

Solution 2.2 We simply have
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where the inequality is triangle inequality. The general case is argued similarly:

F (p, q) =
X

i

kMi|'ikkMi| ik �
X

i

��h'|M †
i Mi| i

�� �
����
X

i

h'|M †
i Mi| i

���� = |h'| i| ,

except that Cauchy-Schwarz inequality (Proposition 0.1) is used as well.

Solution 2.3 Using the results from Exercise 1.3, we obtain that

H⇢H† =
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(I+ zX � yY + xZ) .

Thus, (x, y, z) 7! (x0, y0, z0) = (z,�y, x), which is a rotation by 180� around the diagonal axis
in-between the x- and the z-axis, i.e., around the axis that is defined by the point on the Bloch
sphere given by the (appropriately normalized) vector |0i+ |+i.

Solution 2.5 For 1., we have

|�i = |0i ⌦ (|0i+ |1i) + |1i ⌦ (|0i+ |1i) = (|0i+ |1i)⌦ (|0i+ |1i) .

For 2., it turns out that |�i cannot be written as a pure tensor. For 3., we have
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Finally, for 4., |�i cannot be written as a pure tensor.



Solution 2.6 For |�i = |'1i|'2i, the definition of A simplifies to
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Towards the second claim, we first not that if |�i = |'1i ⌦ |'2i, i.e., is not entangled, then
from further rewriting the above we see that
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and thus A has rank 1. On the other hand, if A has rank 1, i.e., if A = | 2ih 1|, then
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and thus is a product state, i.e., not entangled.

Finally, for |�i = |0i ⌦ |�i � |1i ⌦ |+i in Exercise 2.5, taking the computational basis we
obtain
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which indeed has rank 2. Similarly for |�i = i|0i|0i+ 2|0i|1i+ |1i|0i+ 2i|1i|1i, we we obtain
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which has rank 2.


