Solutions to Exercise Set 2

Solution 2.1 It is not hard to guess and then easy to verify that $|0\rangle$ and $|0\rangle$ do the job. For a formal derivation, which also shows uniqueness (up to global phases), see the following.

In order to be mutually unbiased with $\{|0\rangle, |1\rangle\}$, such a basis needs to be of the form

$$|e_0\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{\omega}{\sqrt{2}}|1\rangle$$
 and $|e_1\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{\omega}{\sqrt{2}}|1\rangle$

for some $\omega \in \mathcal{S}(\mathbb{C})$, up to individual global phases. Asking for

$$\frac{1}{2} \stackrel{!}{=} |\langle \pm |e_0 \rangle|^2 = \left| \frac{1}{2} \pm \frac{\omega}{2} \right|^2 = \left(\frac{1}{2} \pm \frac{\omega}{2} \right) \left(\frac{1}{2} \pm \frac{\bar{\omega}}{2} \right) = \frac{1}{2} \pm \frac{\omega + \bar{\omega}}{2} = \frac{1}{2} \pm \Re(\omega)$$

then enforces the real part of ω to be 0; thus, $\omega = \pm i$ are the only options. Finally, given that $\langle \pm | e_1 \rangle = \frac{1}{2} \mp \frac{\omega}{2}$, it is then easy to see that this choice indeed works.

Note that this basis is the eigenbasis of Y.

Solution 2.2 We simply have

$$F(p,q) = \sum_{i} \sqrt{p_i q_i} = \sum_{i} \sqrt{|\langle e_i | \varphi \rangle|^2 |\langle e_i | \psi \rangle|^2} = \sum_{i} \left| \langle \varphi | e_i \rangle \langle e_i | \psi \rangle \right| \ge \left| \sum_{i} \langle \varphi | | e_i \rangle \langle e_i | \psi \rangle \right| = |\langle \varphi | \psi \rangle|_{\mathcal{F}_{i}}$$

where the inequality is triangle inequality. The general case is argued similarly:

$$F(p,q) = \sum_{i} \|M_{i}|\varphi\rangle\|\|M_{i}|\psi\rangle\| \ge \sum_{i} |\langle\varphi|M_{i}^{\dagger}M_{i}|\psi\rangle| \ge \left|\sum_{i} \langle\varphi|M_{i}^{\dagger}M_{i}|\psi\rangle\right| = |\langle\varphi|\psi\rangle|,$$

except that Cauchy-Schwarz inequality (Proposition 0.1) is used as well.

Solution 2.3 Using the results from Exercise 1.3, we obtain that

$$H\rho H^{\dagger} = \frac{1}{2}(\mathbb{I} + xHXH + yHYH + zHZH) = \frac{1}{2}(\mathbb{I} + zX - yY + xZ).$$

Thus, $(x, y, z) \mapsto (x', y', z') = (z, -y, x)$, which is a rotation by 180° around the diagonal axis in-between the x- and the z-axis, i.e., around the axis that is defined by the point on the Bloch sphere given by the (appropriately normalized) vector $|0\rangle + |+\rangle$.

Solution 2.5 For 1., we have

$$|\Phi\rangle = |0\rangle \otimes (|0\rangle + |1\rangle) + |1\rangle \otimes (|0\rangle + |1\rangle) = (|0\rangle + |1\rangle) \otimes (|0\rangle + |1\rangle)$$

For 2., it turns out that $|\Phi\rangle$ cannot be written as a pure tensor. For 3., we have

$$|\Phi\rangle = |0\rangle \otimes |+\rangle + |1\rangle \otimes (|0\rangle + |1\rangle) = |0\rangle \otimes |+\rangle + |1\rangle \otimes \sqrt{2}|+\rangle = \left(|0\rangle + \sqrt{2}|1\rangle\right) \otimes |+\rangle.$$

Finally, for 4., $|\Phi\rangle$ cannot be written as a pure tensor.

Solution 2.6 For $|\Phi\rangle = |\varphi_1\rangle |\varphi_2\rangle$, the definition of A simplifies to

$$A := \sum_{i \in I} \left(\langle e_i | \otimes \mathbb{I}_2 \right) \left(|\varphi_1\rangle \otimes |\varphi_2\rangle \right) \langle e_i | = \sum_{i \in I} \langle e_i | \varphi_1\rangle \otimes |\varphi_2\rangle \langle e_i | = \sum_{i \in I} \langle e_i | \varphi_1\rangle |\varphi_2\rangle \langle e_i |$$

and so

$$\begin{split} \sum_{i\in I} |e_i\rangle \otimes A|e_i\rangle &= \sum_{i\in I} |e_i\rangle \otimes \sum_{j\in I} \langle e_j|\varphi_1\rangle |\varphi_2\rangle \langle e_j|e_i\rangle = \sum_{i\in I} |e_i\rangle \otimes \langle e_i|\varphi_1\rangle |\varphi_2\rangle \\ &= \sum_{i\in I} |e_i\rangle \langle e_i|\varphi_1\rangle \otimes |\varphi_2\rangle = \sum_{i\in I} |e_i\rangle \langle e_i||\varphi_1\rangle \otimes |\varphi_2\rangle = |\varphi_1\rangle \otimes |\varphi_2\rangle = |\Phi\rangle \,. \end{split}$$

Towards the second claim, we first not that if $|\Phi\rangle = |\varphi_1\rangle \otimes |\varphi_2\rangle$, i.e., is not entangled, then from further rewriting the above we see that

$$A = \sum_{i \in I} \langle e_i | \varphi_1 \rangle | \varphi_2 \rangle \langle e_i | = \sum_{i \in I} | \varphi_2 \rangle \langle e_i | \varphi_1 \rangle \langle e_i | = | \varphi_2 \rangle \Big(\sum_{i \in I} \langle e_i | \varphi_1 \rangle \langle e_i | \Big),$$

and thus A has rank 1. On the other hand, if A has rank 1, i.e., if $A = |\psi_2\rangle\langle\psi_1|$, then

$$|\Phi\rangle = \sum_{i \in I} |e_i\rangle \otimes A|e_i\rangle = \sum_{i \in I} |e_i\rangle \otimes |\psi_2\rangle \langle \psi_1|e_i\rangle = \left(\sum_{i \in I} |e_i\rangle \langle \psi_1|e_i\rangle\right) \otimes |\psi_2\rangle$$

and thus is a product state, i.e., not entangled.

Finally, for $|\Phi\rangle = |0\rangle \otimes |-\rangle - |1\rangle \otimes |+\rangle$ in Exercise 2.5, taking the computational basis we obtain

$$A = \left(\langle 0|\otimes \mathbb{I}_2\right)|\Phi\rangle\langle 0| + \left(\langle 1|\otimes \mathbb{I}_2\right)|\Phi\rangle\langle 1| = |-\rangle\langle 0| - |+\rangle\langle 1|$$
$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0\\ -1 & 0 \end{bmatrix} - \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1\\ 0 & 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1\\ -1 & -1 \end{bmatrix},$$

which indeed has rank 2. Similarly for $|\Phi\rangle = i|0\rangle|0\rangle + 2|0\rangle|1\rangle + |1\rangle|0\rangle + 2i|1\rangle|1\rangle$, we we obtain

$$A = i|0\rangle\langle 0| + 2|1\rangle\langle 0| + |0\rangle\langle 1| + 2i|i\rangle\langle i| = \begin{bmatrix} i & 1\\ 2 & 2i \end{bmatrix},$$

which has rank 2.