Solutions to Exercise Set 1

Solution 1.1 $\langle \varphi | = [2 - i, 1 + 3i]$, and thus

$$\langle \varphi | \varphi \rangle = [2 - i, 1 + 3i] \begin{bmatrix} 2 + i \\ 1 - 3i \end{bmatrix} = (2 - i)(2 + i) + (1 + 3i)(1 - 3i) = 15$$

and

$$|\varphi\rangle\!\langle\varphi| = \begin{bmatrix} 2+i\\ 1-3i \end{bmatrix} [2-i,1+3i] = \begin{bmatrix} 5 & -1+7i\\ -1-7i & 10 \end{bmatrix}.$$

And we see that indeed $\operatorname{tr}(|\varphi\rangle\langle\varphi|) = 5 + 10 = 15$, and that $|\varphi\rangle\langle\varphi|$ is Hermitian.

Solution 1.2 For the first claim, note that for every vector $|e_j\rangle$ from the basis $\{|e_i\rangle\}_{i\in I}$ it holds that

$$\sum_{i} |e_i\rangle \langle e_i||e_j\rangle = \sum_{i} |e_i\rangle \langle e_i|e_j\rangle = |e_j\rangle.$$

Thus, $\sum_{i} |e_i\rangle\langle e_i|$ acts as identity on the basis vectors, and thus must be the identity \mathbb{I} .

Towards the second claim, let $\{|e_i\rangle\}_{i\in I}$ be an arbitrary family of vectors with $\sum_i |e_i\rangle\langle e_i| = \mathbb{I}$, and let $|e_j\rangle$ be any vector from the family. Then,

$$0 = \left(\sum_{i} |e_i\rangle\langle e_i| - \mathbb{I}\right)|e_j\rangle = \sum_{i} |e_i\rangle\langle e_i|e_j\rangle - |e_j\rangle = \sum_{i\neq j} |e_i\rangle\langle e_i|e_j\rangle + |e_j\rangle(\langle e_j|e_j\rangle - 1).$$

In case the $|e_i\rangle$'s are linearly independent, the linear combination on the right hand side must have vanishing coefficients; thus, $\langle e_i | e_j \rangle = 0$ for all $i \neq j$ and $\langle e_j | e_j \rangle = 1$. In case the $|e_i\rangle$'s have norm 1, we apply $\langle e_j |$ from the left to the above equality to obtain

$$0 = \sum_{i \neq j} \langle e_j | e_i \rangle \langle e_i | e_j \rangle = \sum_{i \neq j} |\langle e_i | e_j \rangle|^2 \,,$$

where we exploited that $\langle e_j | e_i \rangle = \overline{\langle e_i | e_j \rangle}$, and it follows that $\langle e_i | e_j \rangle = 0$ for every $i \neq j$. Finally, the equality $|\varphi\rangle = \sum_{i \in I} |e_i\rangle \langle e_i | \varphi\rangle = \sum_{i \in I} |e_i\rangle \langle e_i | \varphi\rangle$ shows that $\{|e_i\rangle\}_{i \in I}$ spans all of \mathcal{H} . Thus, it forms an orthonormal basis.

Solution 1.3 $X^2 = Y^2 = Z^2 = \mathbb{I}$ follow from working out these squares. Similarly for the other identities: by working out the product XY we obtain

$$XY = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} = iZ$$

and so $-iXYZ = \mathbb{I}$ follows from the self-inverseness of Z. $iZYX = \mathbb{I}$ can be shown similarly, or by observing that the above implies that $\mathbb{I} = \mathbb{I}^{\dagger} = i(XYZ)^{\dagger} = iZ^{\dagger}Y^{\dagger}X^{\dagger} = iZYX$. For the terms with the Hadamard operators, also here it is a straightforward calculation to see that HXH = Z, and thus HZH = X, while HYH = -Y.

Solution 1.4 Copying the definition of Z, we have that $Z|0\rangle = |0\rangle$ and $Z|1\rangle = -|1\rangle$. As for X, we get that

$$X|\pm\rangle = \frac{1}{\sqrt{2}}(X|0\rangle \pm X|1\rangle) = \frac{1}{\sqrt{2}}(|1\rangle \pm |0\rangle) = \begin{cases} |+\rangle \\ -|-\rangle \end{cases}$$

Thus, in both cases, the corresponding eigenvalues are ± 1 .

By solving the characteristic polynomial, we see that the eigenvalues are ± 1 here as well. Alternatively, using that $Y^2 = \mathbb{I}$ it follows that the eigenvalues (if existent) must lie in $\{\pm 1\}$. Setting $|\psi\rangle = |0\rangle + \omega |1\rangle$ and demanding that

$$\pm (|0\rangle + \omega |1\rangle) = \pm |\psi\rangle \stackrel{!}{=} Y |\psi\rangle = Y |0\rangle + \omega Y |1\rangle = i|1\rangle - \omega i|0\rangle,$$

we see that $\omega = \pm i$ satisfies the equation. Thus, $\frac{1}{\sqrt{2}}(|0\rangle \pm i|1\rangle)$ are the respective normalized eigenvectors (which are unique up to the phase) to the eigenvalues ± 1 .

Solution 1.5 It is clear that the zero matrix **0** is Hermitian, and that $A \pm B$ is Hermitian if A and B are: $(A \pm B)^{\dagger} = A^{\dagger} \pm B^{\dagger} = A \pm B$. Finally and crucially, for Hermitian A and $\lambda \in \mathbb{R}$ (but not for general $\lambda \in \mathbb{C}$, unless $A = \mathbf{0}$)

$$(\lambda A)^{\dagger} = \overline{\lambda} A^{\dagger} = \overline{\lambda} A = \lambda A$$

The space of Hermitian 2×2 -matrices is given by matrices of the form

$$A = \begin{bmatrix} d & a+bi\\ a-bi & e \end{bmatrix}$$

for $a, b, d, e \in \mathbb{R}$, which also shows that the dimension of the space is 4. Indeed, for A to be Hermitian, the diagonal elements need to be real and the off-diagonals complex conjugates of each other, and this is also sufficient. But now, any such matrix can be written as

$$A = aX - bY + \frac{1}{2}(d - e)Z + \frac{1}{2}(d + e)\mathbb{I},$$

as can be easily verified. Finally, given that the space has dimension 4, it follows that \mathbb{I}, X, Y and Z are linearly independent.

Solution 1.6 We can easily read out the p_i 's for the computational basis as

$$p_0 = \left|\frac{1}{2}\right|^2 = \frac{1}{4}$$
 and $p_1 = \left|\frac{\sqrt{3}}{2}\right|^2 = \frac{3}{4}$

The probabilities for the Hadamard basis we can get as

$$p_{+} = \left| \langle +|\varphi \rangle \right|^{2} = \left| \frac{1}{2\sqrt{2}} \left(\langle 0| + \langle 1| \right) \left(|0\rangle + \sqrt{3}|1\rangle \right) \right|^{2} = \left| \frac{1+\sqrt{3}}{2\sqrt{2}} \right|^{2} = \frac{4+2\sqrt{3}}{8}$$

and

$$p_{-} = \left| \langle -|\varphi \rangle \right|^{2} = \left| \frac{1}{2\sqrt{2}} \left(\langle 0| - \langle 1| \right) \left(|0\rangle + \sqrt{3}|1\rangle \right) \right|^{2} = \left| \frac{1 - \sqrt{3}}{2\sqrt{2}} \right|^{2} = \frac{4 - 2\sqrt{3}}{8}.$$

Solution 1.7 Fix an orthonormal basis $\{|e_i\rangle\}_{i\in I}$, and consider arbitrary fixed indices $i, j \in I$. For $|\varphi\rangle = |e_i\rangle + |e_j\rangle$ and $|\varphi'\rangle = |e_i\rangle + i|e_j\rangle$, we see then that $0 = \langle \varphi | A | \varphi \rangle = \langle e_i | A | e_j \rangle + \langle e_j | A | e_i \rangle$ and $0 = \langle \varphi' | A | \varphi' \rangle = i \langle e_i | A | e_j \rangle - i \langle e_j | A | e_i \rangle$, where for the latter we used that $\langle \varphi' | = \langle e_i | - i \langle e_j |$. It now follows that $\langle e_i | A | e_j \rangle = 0$. Since $i \in I$ was arbitrary, we get that $A | e_j \rangle = 0$; indeed, only the 0-vector is orthogonal to a basis. Finally, since $j \in I$ was arbitrary, we then get A = 0.

For the second part, we note that for any $|\varphi\rangle \in \mathcal{H}$

$$\langle \varphi | (A - A^{\dagger}) | \varphi \rangle = \langle \varphi | A | \varphi \rangle - \langle \varphi | A^{\dagger} | \varphi \rangle = \overline{\langle \varphi | A | \varphi \rangle} - \langle \varphi | A^{\dagger} | \varphi \rangle = \langle \varphi | A^{\dagger} | \varphi \rangle - \langle \varphi | A^{\dagger} | \varphi \rangle = 0,$$

where the second equality used that $\langle \varphi | A | \varphi \rangle \in \mathbb{R}$. Thus, by the above, $A - A^{\dagger} = 0$.