Solutions to Exercise Set 1

Solution 1.1 (p| =[2 — 14,1+ 3i], and thus

(olp) = 2 — 0,1+ 3] [fjg@] — 2= )2+1)+ (1+30)(1 - 3) = 15
and o '
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And we see that indeed tr(|p)(p|) =5+ 10 = 15, and that |¢)¢| is Hermitian.

Solution 1.2 For the first claim, note that for every vector |e;) from the basis {|e;)}icr it
holds that
Y leiXeille) =D leaeiles) = lej) -
i i

Thus, ), |ei){e;| acts as identity on the basis vectors, and thus must be the identity I.

Towards the second claim, let {|e;) };cr be an arbitrary family of vectors with ), |e;)(e;| =1,
and let |e;) be any vector from the family. Then,

0= (Steked 1)) = Cletestes) = les) = Y leaeies) + les)iesles) ~ 1.

i#]

In case the |e;)’s are linearly independent, the linear combination on the right hand side must
have vanishing coefficients; thus, (e;|e;) = 0 for all i # j and (ejle;) = 1. In case the |e;)’s have
norm 1, we apply (e;| from the left to the above equality to obtain

0= Z (ejles) (eilej) = Z |<ei‘€j>|2 )
i#j #J

where we exploited that (ej|e;) = (e;|e;), and it follows that (e;le;) = 0 for every i # j. Finally,
the equality |p) = > .c;lei)eillw) = > icrlei)(eile) shows that {|e;)}icr spans all of H. Thus,
it forms an orthonormal basis.

Solution 1.3 X2 = Y? = Z? = I follow from working out these squares. Similarly for the
other identities: by working out the product XY we obtain

XY = [0 =

’ 0_]:2‘2,

and so —1 XY Z =1 follows from the self-inverseness of Z. iZY X = I can be shown similarly,
or by observing that the above implies that I = I = i(XY 2)! = iZTYTXT = iZY X. For the
terms with the Hadamard operators, also here it is a straightforward calculation to see that
HXH =7, and thus HZH = X, while HYH = -Y.

Solution 1.4 Copying the definition of Z, we have that Z|0) = |0) and Z|1) = —|1). As for
X, we get that
1 1

V2 V2

Thus, in both cases, the corresponding eigenvalues are +1.

Xl) = (X0 X1) = () £ o) = {_{*)



By solving the characteristic polynomial, we see that the eigenvalues are £1 here as well.
Alternatively, using that Y2 = I it follows that the eigenvalues (if existent) must lie in {£1}.
Setting |¢) = |0) + w|1) and demanding that

! . .
£(10) +wl)) = £[y) = Y[¢) = Y|0) + wY|1) = i[1) — wil0),
we see that w = =£i satisfies the equation. Thus, %(]0) +i[1)) are the respective normalized

eigenvectors (which are unique up to the phase) to the eigenvalues £1.

Solution 1.5 It is clear that the zero matrix 0 is Hermitian, and that A + B is Hermitian if
Aand B are: (A+ B)' = AT+ Bt = A+ B. Finally and crucially, for Hermitian A and X € R
(but not for general A € C, unless A = 0)

(AT =XAT =X A= )\A.

The space of Hermitian 2 x 2-matrices is given by matrices of the form

A:[ d . a+bz’]
a—bi e

for a,b,d,e € R, which also shows that the dimension of the space is 4. Indeed, for A to be
Hermitian, the diagonal elements need to be real and the off-diagonals complex conjugates of
each other, and this is also sufficient. But now, any such matrix can be written as

1 1
A:aX—bY+§(d—€)Z+§(d+6)H,

as can be easily verified. Finally, given that the space has dimension 4, it follows that I, XY
and Z are linearly independent.

Solution 1.6 We can easily read out the p;’s for the computational basis as

B - _’\/3(2_3
]30—2 =1 an p1 = 5 =1

The probabilities for the Hadamard basis we can get as

2 2
and 2
o =l = 01— ap o+ vany | = [ 4225,

Solution 1.7 Fix an orthonormal basis {|e;)}iecr, and consider arbitrary fixed indices i, j € I.
For |¢) = |e;) + |e;) and |¢') = |e;) +1i|e;), we see then that 0 = (p|A|p) = (ei|Alej) + (ej|Ales)
and 0 = (¢/|Al¢’) = i(ei|Ale;) —i(ej|Ale;), where for the latter we used that (¢'| = (e;| —i(e;.
It now follows that (e;|Ale;) = 0. Since ¢ € I was arbitrary, we get that Ale;) = 0; indeed, only
the 0-vector is orthogonal to a basis. Finally, since j € I was arbitrary, we then get A = 0.

For the second part, we note that for any |¢) € H

(pl(A = ANlp) = (plAlp) — (2l ATl) = (plAlp) — (lATe) = (¢l AT0) — (|ATlp) = 0,
where the second equality used that (¢|A|¢) € R. Thus, by the above, A — AT = 0.



