Solutions to Exercise Set 1

Solution $1.1\langle\varphi|=[2-i, 1+3 i]$, and thus

$$
\langle\varphi \mid \varphi\rangle=[2-i, 1+3 i]\left[\begin{array}{c}
2+i \\
1-3 i
\end{array}\right]=(2-i)(2+i)+(1+3 i)(1-3 i)=15
$$

and

$$
|\varphi\rangle\langle\varphi|=\left[\begin{array}{c}
2+i \\
1-3 i
\end{array}\right][2-i, 1+3 i]=\left[\begin{array}{cc}
5 & -1+7 i \\
-1-7 i & 10
\end{array}\right]
$$

And we see that indeed $\operatorname{tr}(|\varphi\rangle\langle\varphi|)=5+10=15$, and that $|\varphi\rangle\langle\varphi|$ is Hermitian.
Solution 1.2 For the first claim, note that for every vector $\left|e_{j}\right\rangle$ from the basis $\left\{\left|e_{i}\right\rangle\right\}_{i \in I}$ it holds that

$$
\sum_{i}\left|e_{i}\right\rangle\left\langle e_{i} \| e_{j}\right\rangle=\sum_{i}\left|e_{i}\right\rangle\left\langle e_{i} \mid e_{j}\right\rangle=\left|e_{j}\right\rangle
$$

Thus, $\sum_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|$ acts as identity on the basis vectors, and thus must be the identity \mathbb{I}.
Towards the second claim, let $\left\{\left|e_{i}\right\rangle\right\}_{i \in I}$ be an arbitrary family of vectors with $\sum_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|=\mathbb{I}$, and let $\left|e_{j}\right\rangle$ be any vector from the family. Then,

$$
0=\left(\sum_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|-\mathbb{I}\right)\left|e_{j}\right\rangle=\sum_{i}\left|e_{i}\right\rangle\left\langle e_{i} \mid e_{j}\right\rangle-\left|e_{j}\right\rangle=\sum_{i \neq j}\left|e_{i}\right\rangle\left\langle e_{i} \mid e_{j}\right\rangle+\left|e_{j}\right\rangle\left(\left\langle e_{j} \mid e_{j}\right\rangle-1\right)
$$

In case the $\left|e_{i}\right\rangle$'s are linearly independent, the linear combination on the right hand side must have vanishing coefficients; thus, $\left\langle e_{i} \mid e_{j}\right\rangle=0$ for all $i \neq j$ and $\left\langle e_{j} \mid e_{j}\right\rangle=1$. In case the $\left|e_{i}\right\rangle$'s have norm 1 , we apply $\left\langle e_{j}\right|$ from the left to the above equality to obtain

$$
0=\sum_{i \neq j}\left\langle e_{j} \mid e_{i}\right\rangle\left\langle e_{i} \mid e_{j}\right\rangle=\sum_{i \neq j}\left|\left\langle e_{i} \mid e_{j}\right\rangle\right|^{2}
$$

where we exploited that $\left\langle e_{j} \mid e_{i}\right\rangle=\overline{\left\langle e_{i} \mid e_{j}\right\rangle}$, and it follows that $\left\langle e_{i} \mid e_{j}\right\rangle=0$ for every $i \neq j$. Finally, the equality $|\varphi\rangle=\sum_{i \in I}\left|e_{i}\right\rangle\left\langle e_{i}\right||\varphi\rangle=\sum_{i \in I}\left|e_{i}\right\rangle\left\langle e_{i} \mid \varphi\right\rangle$ shows that $\left\{\left|e_{i}\right\rangle\right\}_{i \in I}$ spans all of \mathcal{H}. Thus, it forms an orthonormal basis.

Solution $1.3 X^{2}=Y^{2}=Z^{2}=\mathbb{I}$ follow from working out these squares. Similarly for the other identities: by working out the product $X Y$ we obtain

$$
X Y=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]=i Z
$$

and so $-i X Y Z=\mathbb{I}$ follows from the self-inverseness of $Z . i Z Y X=\mathbb{I}$ can be shown similarly, or by observing that the above implies that $\mathbb{I}=\mathbb{I}^{\dagger}=i(X Y Z)^{\dagger}=i Z^{\dagger} Y^{\dagger} X^{\dagger}=i Z Y X$. For the terms with the Hadamard operators, also here it is a straightforward calculation to see that $H X H=Z$, and thus $H Z H=X$, while $H Y H=-Y$.

Solution 1.4 Copying the definition of Z, we have that $Z|0\rangle=|0\rangle$ and $Z|1\rangle=-|1\rangle$. As for X, we get that

$$
X| \pm\rangle=\frac{1}{\sqrt{2}}(X|0\rangle \pm X|1\rangle)=\frac{1}{\sqrt{2}}(|1\rangle \pm|0\rangle)=\left\{\begin{array}{r}
|+\rangle \\
-|-\rangle
\end{array}\right.
$$

Thus, in both cases, the corresponding eigenvalues are ± 1.

By solving the characteristic polynomial, we see that the eigenvalues are ± 1 here as well. Alternatively, using that $Y^{2}=\mathbb{I}$ it follows that the eigenvalues (if existent) must lie in $\{ \pm 1\}$. Setting $|\psi\rangle=|0\rangle+\omega|1\rangle$ and demanding that

$$
\pm(|0\rangle+\omega|1\rangle)= \pm|\psi\rangle \stackrel{!}{=} Y|\psi\rangle=Y|0\rangle+\omega Y|1\rangle=i|1\rangle-\omega i|0\rangle
$$

we see that $\omega= \pm i$ satisfies the equation. Thus, $\frac{1}{\sqrt{2}}(|0\rangle \pm i|1\rangle)$ are the respective normalized eigenvectors (which are unique up to the phase) to the eigenvalues ± 1.

Solution 1.5 It is clear that the zero matrix $\mathbf{0}$ is Hermitian, and that $A \pm B$ is Hermitian if A and B are: $(A \pm B)^{\dagger}=A^{\dagger} \pm B^{\dagger}=A \pm B$. Finally and crucially, for Hermitian A and $\lambda \in \mathbb{R}$ (but not for general $\lambda \in \mathbb{C}$, unless $A=\mathbf{0}$)

$$
(\lambda A)^{\dagger}=\bar{\lambda} A^{\dagger}=\bar{\lambda} A=\lambda A
$$

The space of Hermitian 2×2-matrices is given by matrices of the form

$$
A=\left[\begin{array}{cc}
d & a+b i \\
a-b i & e
\end{array}\right]
$$

for $a, b, d, e \in \mathbb{R}$, which also shows that the dimension of the space is 4 . Indeed, for A to be Hermitian, the diagonal elements need to be real and the off-diagonals complex conjugates of each other, and this is also sufficient. But now, any such matrix can be written as

$$
A=a X-b Y+\frac{1}{2}(d-e) Z+\frac{1}{2}(d+e) \mathbb{I},
$$

as can be easily verified. Finally, given that the space has dimension 4, it follows that \mathbb{I}, X, Y and Z are linearly independent.

Solution 1.6 We can easily read out the p_{i} 's for the computational basis as

$$
p_{0}=\left|\frac{1}{2}\right|^{2}=\frac{1}{4} \quad \text { and } \quad p_{1}=\left|\frac{\sqrt{3}}{2}\right|^{2}=\frac{3}{4} .
$$

The probabilities for the Hadamard basis we can get as

$$
p_{+}=|\langle+\mid \varphi\rangle|^{2}=\left|\frac{1}{2 \sqrt{2}}(\langle 0|+\langle 1|)(|0\rangle+\sqrt{3}|1\rangle)\right|^{2}=\left|\frac{1+\sqrt{3}}{2 \sqrt{2}}\right|^{2}=\frac{4+2 \sqrt{3}}{8}
$$

and

$$
p_{-}=|\langle-\mid \varphi\rangle|^{2}=\left|\frac{1}{2 \sqrt{2}}(\langle 0|-\langle 1|)(|0\rangle+\sqrt{3}|1\rangle)\right|^{2}=\left|\frac{1-\sqrt{3}}{2 \sqrt{2}}\right|^{2}=\frac{4-2 \sqrt{3}}{8} .
$$

Solution 1.7 Fix an orthonormal basis $\left\{\left|e_{i}\right\rangle\right\}_{i \in I}$, and consider arbitrary fixed indices $i, j \in I$. For $|\varphi\rangle=\left|e_{i}\right\rangle+\left|e_{j}\right\rangle$ and $\left|\varphi^{\prime}\right\rangle=\left|e_{i}\right\rangle+i\left|e_{j}\right\rangle$, we see then that $0=\langle\varphi| A|\varphi\rangle=\left\langle e_{i}\right| A\left|e_{j}\right\rangle+\left\langle e_{j}\right| A\left|e_{i}\right\rangle$ and $0=\left\langle\varphi^{\prime}\right| A\left|\varphi^{\prime}\right\rangle=i\left\langle e_{i}\right| A\left|e_{j}\right\rangle-i\left\langle e_{j}\right| A\left|e_{i}\right\rangle$, where for the latter we used that $\left\langle\varphi^{\prime}\right|=\left\langle e_{i}\right|-i\left\langle e_{j}\right|$. It now follows that $\left\langle e_{i}\right| A\left|e_{j}\right\rangle=0$. Since $i \in I$ was arbitrary, we get that $A\left|e_{j}\right\rangle=0$; indeed, only the 0 -vector is orthogonal to a basis. Finally, since $j \in I$ was arbitrary, we then get $A=0$.

For the second part, we note that for any $|\varphi\rangle \in \mathcal{H}$

$$
\langle\varphi|\left(A-A^{\dagger}\right)|\varphi\rangle=\langle\varphi| A|\varphi\rangle-\langle\varphi| A^{\dagger}|\varphi\rangle=\overline{\langle\varphi| A|\varphi\rangle}-\langle\varphi| A^{\dagger}|\varphi\rangle=\langle\varphi| A^{\dagger}|\varphi\rangle-\langle\varphi| A^{\dagger}|\varphi\rangle=0,
$$

where the second equality used that $\langle\varphi| A|\varphi\rangle \in \mathbb{R}$. Thus, by the above, $A-A^{\dagger}=0$.

