
Solutions to Exercise Set 1

Solution 1.1 h'| = [2� i, 1 + 3i], and thus

h'|'i = [2� i, 1 + 3i]


2 + i

1� 3i

�
= (2� i)(2 + i) + (1 + 3i)(1� 3i) = 15

and

|'ih'| =

2 + i

1� 3i

�
[2� i, 1 + 3i] =


5 �1 + 7i

�1� 7i 10

�
.

And we see that indeed tr(|'ih'|) = 5 + 10 = 15, and that |'ih'| is Hermitian.

Solution 1.2 For the first claim, note that for every vector |eji from the basis {|eii}i2I it
holds that X

i

|eiihei||eji =
X

i

|eiihei|eji = |eji .

Thus,
P

i |eiihei| acts as identity on the basis vectors, and thus must be the identity I.
Towards the second claim, let {|eii}i2I be an arbitrary family of vectors with

P
i |eiihei| = I,

and let |eji be any vector from the family. Then,

0 =

✓X

i

|eiihei|� I
◆
|eji =

X

i

|eiihei|eji � |eji =
X

i 6=j

|eiihei|eji+ |eji(hej |eji � 1) .

In case the |eii’s are linearly independent, the linear combination on the right hand side must
have vanishing coe�cients; thus, hei|eji = 0 for all i 6= j and hej |eji = 1. In case the |eii’s have
norm 1, we apply hej | from the left to the above equality to obtain

0 =
X

i 6=j

hej |eiihei|eji =
X

i 6=j

|hei|eji|2 ,

where we exploited that hej |eii = hei|eji, and it follows that hei|eji = 0 for every i 6= j. Finally,
the equality |'i =

P
i2I |eiihei||'i =

P
i2I |eiihei|'i shows that {|eii}i2I spans all of H. Thus,

it forms an orthonormal basis.

Solution 1.3 X2 = Y 2 = Z2 = I follow from working out these squares. Similarly for the
other identities: by working out the product XY we obtain

XY =


i 0
0 �i

�
= iZ ,

and so �iXY Z = I follows from the self-inverseness of Z. iZY X = I can be shown similarly,
or by observing that the above implies that I = I† = i(XY Z)† = iZ†Y †X† = iZY X. For the
terms with the Hadamard operators, also here it is a straightforward calculation to see that
HXH = Z, and thus HZH = X, while HYH = �Y .

Solution 1.4 Copying the definition of Z, we have that Z|0i = |0i and Z|1i = �|1i. As for
X, we get that

X|±i = 1p
2
(X|0i±X|1i) = 1p

2
(|1i± |0i) =

⇢
|+i

�|�i .

Thus, in both cases, the corresponding eigenvalues are ±1.



By solving the characteristic polynomial, we see that the eigenvalues are ±1 here as well.
Alternatively, using that Y 2 = I it follows that the eigenvalues (if existent) must lie in {±1}.
Setting | i = |0i+ !|1i and demanding that

±(|0i+ !|1i) = ±| i !
= Y | i = Y |0i+ !Y |1i = i|1i � !i|0i ,

we see that ! = ±i satisfies the equation. Thus, 1p
2
(|0i ± i|1i) are the respective normalized

eigenvectors (which are unique up to the phase) to the eigenvalues ±1.

Solution 1.5 It is clear that the zero matrix 0 is Hermitian, and that A ± B is Hermitian if
A and B are: (A±B)† = A† ±B† = A±B. Finally and crucially, for Hermitian A and � 2 R
(but not for general � 2 C, unless A = 0)

(�A)† = �̄A† = �̄A = �A .

The space of Hermitian 2⇥ 2-matrices is given by matrices of the form

A =


d a+ bi

a� bi e

�

for a, b, d, e 2 R, which also shows that the dimension of the space is 4. Indeed, for A to be
Hermitian, the diagonal elements need to be real and the o↵-diagonals complex conjugates of
each other, and this is also su�cient. But now, any such matrix can be written as

A = aX � bY +
1

2
(d� e)Z +

1

2
(d+ e)I ,

as can be easily verified. Finally, given that the space has dimension 4, it follows that I, X, Y
and Z are linearly independent.

Solution 1.6 We can easily read out the pi’s for the computational basis as

p0 =
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2
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4
and p1 =

���
p
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���
2
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4
.

The probabilities for the Hadamard basis we can get as
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Solution 1.7 Fix an orthonormal basis {|eii}i2I , and consider arbitrary fixed indices i, j 2 I.
For |'i = |eii+ |eji and |'0i = |eii+ i|eji, we see then that 0 = h'|A|'i = hei|A|eji+ hej |A|eii
and 0 = h'0|A|'0i = ihei|A|eji � ihej |A|eii, where for the latter we used that h'0| = hei|� ihej |.
It now follows that hei|A|eji = 0. Since i 2 I was arbitrary, we get that A|eji = 0; indeed, only
the 0-vector is orthogonal to a basis. Finally, since j 2 I was arbitrary, we then get A = 0.

For the second part, we note that for any |'i 2 H

h'|(A�A†)|'i = h'|A|'i � h'|A†|'i = h'|A|'i � h'|A†|'i = h'|A†|'i � h'|A†|'i = 0 ,

where the second equality used that h'|A|'i 2 R. Thus, by the above, A�A† = 0.


