Exercise Set 5

Exercise 5.1^{\oplus} For integer $N \geq 2$, let $f: \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{Z} / N \mathbb{Z}$ be an arbitrary function. For a fixed orthonormal basis $\{|0\rangle, \ldots,|N-1\rangle\}$ of $\mathcal{H}_{N}=\mathbb{C}^{N}$, consider the unitary $U_{f} \in \mathcal{U}\left(\mathcal{H}_{N} \otimes \mathcal{H}_{N}\right)$ given by $U_{f}|x\rangle|y\rangle=|x\rangle|y+f(x)\rangle$ for $x, y \in \mathbb{Z} / N \mathbb{Z}$, where "+" is the addition $\bmod N$. As usual, we have $\omega_{N}:=e^{2 \pi i / N}$. Show that for any $x \in \mathbb{Z} / N \mathbb{Z}$, the vector

$$
|x\rangle \otimes \sum_{y} \omega_{N}^{y}|y\rangle
$$

with the sum over all $y \in \mathbb{Z} / N \mathbb{Z}$, is an eigenvector of U_{f}. What is the corresponding eigenvalue?
Exercise 5.2 ${ }^{\ominus}$ For any integer $N \geq 2$, consider the generalization of Deutsch's algorithm for a function $f: \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{Z} / N \mathbb{Z}$, given by the circuit

where F is the quantum Fourier transform on $\mathcal{H}_{N}=\mathbb{C}^{N}$ (w.r.t. basis $\{|0\rangle, \ldots,|N-1\rangle\}$) as given in Def. 4.2, U_{f} is given as above, and the measurement is in the basis $\{|0\rangle, \ldots,|N-1\rangle\}$. Note that the wires here represent states in \mathcal{H}_{N} (and thus not qubits, unless $N=2$).

Show that if f is either constant or surjective, then from the output of the algorithm one can determine with certainty which one it is.

Exercise $5.3^{\text {® }}$ Let G be an arbitrary finite Abelian group, and let \hat{G} be the dual group. Take it for given (or convince yourself) that $\Gamma:=\{\chi(g) \mid g \in G, \chi \in \hat{G}\}$ is a finite subgroup of the multiplicative group $\mathcal{S}(\mathbb{C})$. Note that we may then consider the dual group $\hat{\Gamma}$ of Γ.

Consider fixed orthonormal bases $\{|g\rangle\}_{g \in G}$ and $\{|\chi\rangle\}_{\chi \in \hat{G}}$ of the Hilbert space $\mathcal{H}:=\mathbb{C}^{|G|}$, and let F_{G} be the corresponding generalized quantum Fourier transform, i.e.,

$$
F_{G}=\frac{1}{\sqrt{|G|}} \sum_{g, \chi} \chi(g)|\chi\rangle\langle g|
$$

where the sum is over $g \in G$ and $\chi \in \hat{G}$. Similarly, we let $\{|\gamma\rangle\}_{\gamma \in \Gamma}$ and $\{|\xi\rangle\}_{\xi \in \hat{\Gamma}}$ be orthonormal bases of $\mathcal{H}^{\prime}:=\mathbb{C}^{|\Gamma|}$ and F_{Γ} the corresponding generalized quantum Fourier transform.

Let $f: G \rightarrow \Gamma$ be a character, i.e., an element of \hat{G}, and let $U_{f} \in \mathcal{U}\left(\mathcal{H} \otimes \mathcal{H}^{\prime}\right)$ be given by $U_{f}|g\rangle|\gamma\rangle=|g\rangle|\gamma \cdot f(g)\rangle$ for $g \in G$ and $\gamma \in \Gamma$. Then, show that the following generalization of the Bernstein-Vazirani algorithm recovers the inverse character $f^{-1}=\bar{f}$, and thus f :

where $1_{G} \in \hat{G}$ is the trivial character $1_{G}: g \mapsto 1, i d_{\Gamma} \in \hat{\Gamma}$ is the identity map $i d_{\Gamma}: z \mapsto z$ on Γ, and the measurement is in the basis $\{|\chi\rangle\}_{\chi \in \hat{G}}$.
Note: The original Bernstein-Vazirani algorithm considers a function $f: x \mapsto s \cdot x$, which we can identify with the character $\chi_{s}: x \mapsto \omega_{N}^{s \cdot x}$ in $\widehat{\mathbb{Z} / N \mathbb{Z}}$. The above is then indeed a generalization.

Exercise 5.4 ${ }^{\oplus}$ Let U be a unitary operator, acting on an arbitrary Hilbert space, and let $|\varphi\rangle$ be an eigenvector of U with eigenvalue $e^{2 \pi i \mu}$ for $\mu \in[0,1)$. For the purpose of this exercise, we assume that μ has a binary representation of length (at most) n for some positive $n \in \mathbb{Z}$, meaning that $2^{n} \mu \in \mathbb{Z}$ so that we can write $\mu=\left[0 . m_{1} \cdots m_{n}\right]$ using the notation from Section 4.5. Consider now the following quantum circuit, which makes use of Hadamards, of control unitaries $C\left(U^{2^{j}}\right)$ for $j \in\left\{0, \ldots, 2^{n-1}\right\}$ and of the (inverse of the) quantum Fourier transform F_{n} on $\mathcal{H}^{\otimes n}$ as considered in Sect. 4.5, applied to n qubits in state $|0\rangle$ and to $|\varphi\rangle$.

What is the resulting output $\left(k_{1}, \ldots, k_{n}\right) \in\{0,1\}^{n}$, obtained by measuring the n qubits in the computational basis?

