INTRODUCTION TO QUANTUM COMPUTING Fall 2023, Mathematical Institute, Leiden University Serge Fehr (lecturer) Yu-Hsuan Huang (TA)

Exercise Set 4

Exercise 4.1 Consider the following classical binary circuit, using the logic *and*, *or* and *not* gates $(\land, \lor \text{ and } \neg)$, which computes the function $f : \{0, 1\}^3 \rightarrow \{0, 1\}, (x, y, z) \mapsto (x \land y) \lor \neg z$.

Find a quantum circuit, with gate set consisting of the Toffoli gate and the Pauli X gate (only), that computes the unitary representation $U_f \in \mathcal{U}(\mathcal{H}^{\otimes 4})$ of the function f, i.e., the unitary that maps $|x\rangle|y\rangle|z\rangle|w\rangle$ to $|x\rangle|y\rangle|z\rangle|w \oplus f(x, y, z)\rangle$. Note that the quantum circuit may invoke addition "work qubits" that start off and must end up again in state $|0\rangle$.

Warning: This is not a direct application of Theorem 3.5, since the considered quantum gates (Toffoli and Pauli X) are not the ones obtained by applying Theorem 3.5.

Exercise 4.2 ^(a) Show that, up to an obvious adjustment in the classical post-processing, Simon's algorithm also works for the following generalization of the considered problem. Given a function $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$ with the promise that f(x) = f(x') if and only if $x' \oplus x \in V$, where V is a subspace of the \mathbb{F}_2 -vector-space \mathbb{F}^n , find a basis of V.

Exercise 4.3 ⁽²⁾ Show that in the context of Grover's algorithm for $f : \{0, 1\}^n \to \{0, 1\}$, if the number of x's with f(x) = 1 is $M = 2^n/4$ then Grover's algorithm finds a solution with certainty after just one Grover iteration (and thus just one query).

Exercise 4.4 ^{(\odot} Still in the context of the search problem addressed by Grover's algorithm, let us now assume that, next to (access to) $V_f \in \mathcal{U}(\mathcal{H}^{\otimes n})$, we we are given a unitary $A \in \mathcal{U}(\mathcal{H}^{\otimes n})$ with the property that $A|0\rangle = \sum_x \alpha_x |x\rangle$ with

$$\sum_{\substack{x \text{ s.t.} \\ f(x)=1}} |\alpha_x|^2 = p$$

for some known $p \ge M/2^n$. In other words, if $A|0\rangle$ is measured then an $x \in \{0,1\}^n$ is observed that satisfies f(x) = 1 with probability p. Note that $A = H^{\otimes n}$ achieves this with $p = M/2^n$. Consider now a variant of Grover's algorithm, where $H^{\otimes n}$ is replaced by A and A^{\dagger} as follows (while P still is $P = 2|0\rangle\langle 0| - \mathbb{I}$):

Analyze in what way this improves upon the original Grover's algorithm.