INTRODUCTION TO QUANTUM COMPUTING Fall 2023, Mathematical Institute, Leiden University Serge Fehr (lecturer) Yu-Hsuan Huang (TA)

Exercise Set 3

Exercise 3.1 ^(a) Work out $CNOT(H|x\rangle \otimes H|y\rangle)$ for $x, y \in \{0, 1\}$, and write the result again in terms of the Hadamard basis $\{H|0\rangle, H|1\rangle\}$.

Exercise 3.2 [©] Show that $V := (1-i)(\mathbb{I}+iX)/2$ is in $\mathcal{U}(\mathbb{C}^2)$ and such that $V^2 = X$.

Exercise 3.3 ^{\odot} Prove Proposition 2.6, i.e., show that the "circuit equality" in Figure 2.4 holds (where the computation is performed from left to right).

Exercise 3.4 [©] Prove that the following statement (Lemma 3.3 from the notes) holds for $n \in \mathbb{N}$. For any $x = (x_1, \ldots, x_n) \in \{0, 1\}^n$:

$$H^{\otimes n}|x\rangle = \frac{1}{2^{n/2}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle$$

where $x \cdot y = x_1 y_1 \oplus \ldots \oplus x_n y_n \in \{0, 1\}$ and $|x\rangle = |x_1\rangle \cdots |x_n\rangle$ and $|y\rangle = |y_1\rangle \cdots |y_n\rangle$. *Hint:* First do the case n = 1, and then the general case.

Exercise 3.5 ^(a) Let $f : \mathcal{X} \to \{0,1\}$ be a binary-valued function, and consider its unitary representation $U_f \in \mathcal{U}(\mathcal{H}_X \otimes \mathbb{C}^2)$, given by $U_f |x\rangle |y\rangle = |x\rangle |y \oplus f(x)\rangle$ for $x \in \mathcal{X}$ and $y \in \{0,1\}$. Show that

$$U_f(|x\rangle \otimes H|z\rangle) = (-1)^{zf(x)}|x\rangle \otimes H|z\rangle$$

for all $x \in \mathcal{X}$ and $z \in \{0, 1\}$. Vice versa, let now $V_f \in \mathcal{U}(\mathcal{H}_X \otimes \mathbb{C}^2)$ be the unitary given by $V_f |x\rangle |z\rangle = (-1)^{zf(x)} |x\rangle |z\rangle$, and work out $V_f(|x\rangle \otimes H|y\rangle)$.

Exercise 3.6 \clubsuit If two parties, Alice and Bob, are not entangled then by sending *one qubit* Alice can communicate at most *one bit* of information to Bob (this is known as Holevo's bound). However, they can do better if they share an entangled state; this is called *superdense coding*. Indeed, assume that Alice holds the first qubit and Bob the second qubit of an EPR pair $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|0\rangle|0\rangle + |1\rangle|1\rangle$, and that Alice wants to communicate the two bits $x, z \in \{0, 1\}$. Show that by applying $X^x Z^z$ to her qubit of the EPR, and then sending this qubit to Bob, Bob can recover x and z by means of a suitable measurement.