Exercise Set 2

Exercise 2.1 ${ }^{\ominus}$ Two orthonormal bases $\left\{\left|e_{i}\right\rangle\right\}_{i \in I}$ and $\left\{\left|f_{j}\right\rangle\right\}_{j \in J}$ of a d-dimensional Hilbert space \mathcal{H} are called mutually unbiased if

$$
\left|\left\langle e_{i} \mid f_{j}\right\rangle\right|^{2}=\frac{1}{d}
$$

for all $i \in I$ and $j \in J$. For instance, we can see that the computational basis and the Hadamard basis are mutually unbiased. Find a third orthonormal basis of \mathbb{C}^{2} so that out of the three $(\{|0\rangle,|1\rangle\},\{|+\rangle,|-\rangle\}$ and the new one) any two are mutually unbiased.

Exercise 2.2 ${ }^{*}$ For $|\varphi\rangle,|\psi\rangle \in \mathcal{S}(\mathcal{H})$, the fidelity is given by $F(|\varphi\rangle,|\psi\rangle)=|\langle\varphi \mid \psi\rangle|$ (see Def. 1.7). On the other hand, for two probability distributions $p=\left\{p_{i}\right\}_{i \in I}$ and $q=\left\{q_{i}\right\}_{i \in I}$, the fidelity (or Bhattacharyya coefficient) is defnied as $F(p, q):=\sum_{i} \sqrt{p_{i} q_{i}}$. Show that for any two state vectors $|\varphi\rangle,|\psi\rangle \in \mathcal{S}(\mathcal{H})$ and for any orthonormal basis $\left\{\left|e_{i}\right\rangle\right\}_{i \in I}$ of \mathcal{H}, the probability distributions p and q given by $p_{i}=\left|\left\langle e_{i} \mid \varphi\right\rangle\right|^{2}$ and $q_{i}=\left|\left\langle e_{i} \mid \psi\right\rangle\right|^{2}$ are such that $F(p, q) \geq F(|\varphi\rangle,|\psi\rangle)$. Show the same for the general case where $p_{i}=\| M_{i}|\varphi\rangle \|^{2}$ and $q_{i}=\| M_{i}|\psi\rangle \|^{2}$ with $\left\{M_{i}\right\}_{i \in I}$ an arbitrary measurement.

Exercise $2.3{ }^{\ominus}$ How does the Hadamard operator $H \in \mathcal{L}\left(\mathbb{C}^{2}\right)$ act as a map on the Bloch sphere? Formally, if $\rho=\frac{1}{2}(\mathbb{I}+x X+y Y+z Z)$ for $(x, y, z) \in \mathbb{R}^{3}$, what are the "Bloch-sphere coordinates" $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in \mathbb{R}^{3}$ that satisfy $H \rho H^{\dagger}=\frac{1}{2}\left(\mathbb{I}+x^{\prime} X+y^{\prime} Y+z^{\prime} Z\right)$? Do you see, and can you explain in words, what the map $(x, y, z) \mapsto\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ on the bloch sphere does?

Exercise $2.4{ }^{\oplus}$ Show that the unitary $R_{X}(\theta)=\cos \left(\frac{\theta}{2}\right) \mathbb{I}-i \sin \left(\frac{\theta}{2}\right) X \in \mathcal{U}\left(\mathbb{C}^{2}\right)$ satisfies

$$
R_{X}(\theta) R_{X}\left(\theta^{\prime}\right)=R_{X}\left(\theta+\theta^{\prime}\right)
$$

for all $\theta, \theta^{\prime} \in \mathbb{R}$. This supports our understanding of the unitary $R_{X}(\theta)$ being a rotation (of the Bloch sphere) with angle θ.

Exercise $2.5{ }^{\ominus}$ For $\mathcal{H}_{1}=\mathbb{C}^{2}=\mathcal{H}_{2}$ and $|\Phi\rangle \in \mathcal{H}_{1} \otimes \mathcal{H}_{2}$ as specified below, determine whether $|\Phi\rangle$ is a pure tensor, i.e., $|\Phi\rangle=\left|\varphi_{1}\right\rangle \otimes\left|\varphi_{2}\right\rangle$ for $\left|\varphi_{1}\right\rangle \in \mathcal{H}_{1},\left|\varphi_{2}\right\rangle \in \mathcal{H}_{2}$. In case it is, provide a tensor decomposition; otherwise, you may claim it without showing it.

1. $|\Phi\rangle=|0\rangle|0\rangle+|0\rangle|1\rangle+|1\rangle|0\rangle+|1\rangle|1\rangle$.
2. $|\Phi\rangle=|0\rangle \otimes|-\rangle-|1\rangle \otimes|+\rangle$.
3. $|\Phi\rangle=|1\rangle \otimes|0\rangle+|0\rangle \otimes|+\rangle+|1\rangle \otimes|1\rangle$.
4. $|\Phi\rangle=i|0\rangle|0\rangle+2|0\rangle|1\rangle+|1\rangle|0\rangle+2 i|1\rangle|1\rangle$.

Exercise 2.6 ${ }^{\odot}$ Let $|\Phi\rangle \in \mathcal{H}_{1} \otimes \mathcal{H}_{2}$ be a non-zero vector, and let $\left\{\left|e_{i}\right\rangle\right\}_{i \in I}$ be an ONB of \mathcal{H}_{1}. Consider the operator

$$
A:=\sum_{i \in I}\left(\left\langle e_{i}\right| \otimes \mathbb{I}_{2}\right)|\Phi\rangle\left\langle e_{i}\right| \in \mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)
$$

where \mathbb{I}_{2} is the identity on \mathcal{H}_{2}. First, verify that

$$
|\Phi\rangle=\sum_{i \in I}\left|e_{i}\right\rangle \otimes A\left|e_{i}\right\rangle
$$

Hint: By linearity, it is sufficient to show the equality for the case where $|\Phi\rangle=\left|\varphi_{1}\right\rangle \otimes\left|\varphi_{2}\right\rangle$.
Second, show that $|\Phi\rangle$ is a pure tensor if and only if $\operatorname{rank}(A)=1$.
Hint: Use the fact that $\operatorname{rank}(A)=1 \Longleftrightarrow A=\left|\psi_{2}\right\rangle\left\langle\psi_{1}\right|$ for some $\left|\psi_{1}\right\rangle \in \mathcal{H}_{1}$ and $\left|\psi_{2}\right\rangle \in \mathcal{H}_{2}$.
Finally, for the case(s) in Exercise 2.5 for which you were not able to write $|\Phi\rangle$ as a pure tensor, verify if $|\Phi\rangle$ is indeed not a pure tensor by the above means.
Remark: More general, the rank of A coincides with the minimum number of pure tensors that linearly combine to $|\Phi\rangle$. This quantity is called the (bipartite) tensor rank of $|\Phi\rangle$.

