INTRODUCTION TO QUANTUM COMPUTING Fall 2023, Mathematical Institute, Leiden University Serge Fehr (lecturer) Yu-Hsuan Huang (TA)

Exercise Set 2

Exercise 2.1 [©] Two orthonormal bases $\{|e_i\rangle\}_{i\in I}$ and $\{|f_j\rangle\}_{j\in J}$ of a *d*-dimensional Hilbert space \mathcal{H} are called **mutually unbiased** if

$$\left|\langle e_i|f_j\rangle\right|^2 = \frac{1}{d}$$

for all $i \in I$ and $j \in J$. For instance, we can see that the computational basis and the Hadamard basis are mutually unbiased. Find a third orthonormal basis of \mathbb{C}^2 so that out of the three $(\{|0\rangle, |1\rangle\}, \{|+\rangle, |-\rangle\}$ and the new one) any two are mutually unbiased.

Exercise 2.2 ^{(\bigcirc} For $|\varphi\rangle, |\psi\rangle \in S(\mathcal{H})$, the **fidelity** is given by $F(|\varphi\rangle, |\psi\rangle) = |\langle \varphi |\psi\rangle|$ (see Def. 1.7). On the other hand, for two probability distributions $p = \{p_i\}_{i \in I}$ and $q = \{q_i\}_{i \in I}$, the fidelity (or **Bhattacharyya coefficient**) is defined as $F(p,q) := \sum_i \sqrt{p_i q_i}$. Show that for any two state vectors $|\varphi\rangle, |\psi\rangle \in S(\mathcal{H})$ and for any orthonormal basis $\{|e_i\rangle\}_{i \in I}$ of \mathcal{H} , the probability distributions p and q given by $p_i = |\langle e_i | \varphi \rangle|^2$ and $q_i = |\langle e_i | \psi \rangle|^2$ are such that $F(p,q) \geq F(|\varphi\rangle, |\psi\rangle)$. Show the same for the general case where $p_i = ||M_i|\varphi\rangle||^2$ and $q_i = ||M_i|\psi\rangle||^2$ with $\{M_i\}_{i \in I}$ an arbitrary measurement.

Exercise 2.3 ^(a) How does the Hadamard operator $H \in \mathcal{L}(\mathbb{C}^2)$ act as a map on the Bloch sphere? Formally, if $\rho = \frac{1}{2}(\mathbb{I} + xX + yY + zZ)$ for $(x, y, z) \in \mathbb{R}^3$, what are the "Bloch-sphere coordinates" $(x', y', z') \in \mathbb{R}^3$ that satisfy $H\rho H^{\dagger} = \frac{1}{2}(\mathbb{I} + x'X + y'Y + z'Z)$? Do you see, and can you explain in words, what the map $(x, y, z) \mapsto (x', y', z')$ on the bloch sphere does?

Exercise 2.4 ^(a) Show that the unitary $R_X(\theta) = \cos\left(\frac{\theta}{2}\right)\mathbb{I} - i\sin\left(\frac{\theta}{2}\right)X \in \mathcal{U}(\mathbb{C}^2)$ satisfies

$$R_X(\theta)R_X(\theta') = R_X(\theta + \theta')$$

for all $\theta, \theta' \in \mathbb{R}$. This supports our understanding of the unitary $R_X(\theta)$ being a rotation (of the Bloch sphere) with angle θ .

Exercise 2.5 [©] For $\mathcal{H}_1 = \mathbb{C}^2 = \mathcal{H}_2$ and $|\Phi\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2$ as specified below, determine whether $|\Phi\rangle$ is a pure tensor, i.e., $|\Phi\rangle = |\varphi_1\rangle \otimes |\varphi_2\rangle$ for $|\varphi_1\rangle \in \mathcal{H}_1$, $|\varphi_2\rangle \in \mathcal{H}_2$. In case it is, provide a tensor decomposition; otherwise, you may claim it without showing it.

- 1. $|\Phi\rangle = |0\rangle|0\rangle + |0\rangle|1\rangle + |1\rangle|0\rangle + |1\rangle|1\rangle.$
- 2. $|\Phi\rangle = |0\rangle \otimes |-\rangle |1\rangle \otimes |+\rangle$.
- 3. $|\Phi\rangle = |1\rangle \otimes |0\rangle + |0\rangle \otimes |+\rangle + |1\rangle \otimes |1\rangle.$
- 4. $|\Phi\rangle = i|0\rangle|0\rangle + 2|0\rangle|1\rangle + |1\rangle|0\rangle + 2i|1\rangle|1\rangle.$

(Turn page)

Exercise 2.6 $\stackrel{\bullet}{\bullet}$ Let $|\Phi\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2$ be a non-zero vector, and let $\{|e_i\rangle\}_{i \in I}$ be an ONB of \mathcal{H}_1 . Consider the operator

$$A := \sum_{i \in I} \left(\langle e_i | \otimes \mathbb{I}_2 \right) | \Phi \rangle \langle e_i | \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2) \,,$$

where \mathbb{I}_2 is the identity on \mathcal{H}_2 . First, verify that

$$|\Phi\rangle = \sum_{i \in I} |e_i\rangle \otimes A|e_i\rangle$$

Hint: By linearity, it is sufficient to show the equality for the case where $|\Phi\rangle = |\varphi_1\rangle \otimes |\varphi_2\rangle$.

Second, show that $|\Phi\rangle$ is a pure tensor if and only if rank(A) = 1.

Hint: Use the fact that $\operatorname{rank}(A) = 1 \iff A = |\psi_2\rangle\langle\psi_1|$ for some $|\psi_1\rangle \in \mathcal{H}_1$ and $|\psi_2\rangle \in \mathcal{H}_2$.

Finally, for the case(s) in Exercise 2.5 for which you were not able to write $|\Phi\rangle$ as a pure tensor, verify if $|\Phi\rangle$ is indeed not a pure tensor by the above means.

Remark: More general, the rank of A coincides with the minimum number of pure tensors that linearly combine to $|\Phi\rangle$. This quantity is called the (bipartite) tensor rank of $|\Phi\rangle$.