Exercise Set 1

Exercise 1.1 ${ }^{\oplus}$ Let $|\varphi\rangle=\left[\begin{array}{c}2+i \\ 1-3 i\end{array}\right] \in \mathbb{C}^{2}$. Compute $\langle\varphi \mid \varphi\rangle \in \mathbb{C}$ and $|\varphi\rangle\langle\varphi| \in \mathcal{L}\left(\mathbb{C}^{2}\right)=\mathbb{C}^{2 \times 2}$.
Verify that $\operatorname{tr}(|\varphi\rangle\langle\varphi|)$, as sum of the diagonal elements, equals $\langle\varphi \mid \varphi\rangle$, and that $(|\varphi\rangle\langle\varphi|)^{\dagger}=|\varphi\rangle\langle\varphi|$.
Exercise $1.2{ }^{\ominus}$ Show that $\sum_{i \in I}\left|e_{i}\right\rangle\left\langle e_{i}\right|=\mathbb{I}$ holds for any orthonormal basis $\left\{\left|e_{i}\right\rangle\right\}_{i \in I}$ of \mathcal{H}. Also show that if $\left\{\left|e_{i}\right\rangle\right\}_{i \in I}$ are arbitrary vectors that are linearly independent or have norm 1 , then $\sum_{i \in I}\left|e_{i}\right\rangle\left\langle e_{i}\right|=\mathbb{I}$ implies that they form an orthonormal basis of \mathcal{H}.

Exercise $1.3{ }^{\ominus}$ Verify that the Pauli operators satisfy $X^{2}=Y^{2}=Z^{2}=-i X Y Z=i Z Y X=\mathbb{I}$. Also, work out $H X H, H Y H$ and $H Z H$, where H is the Hadamard operator.

Exercise 1.4 ${ }^{\oplus}$ Show that $\{|0\rangle,|1\rangle\}$ are eigenvectors of Z (i.e., $Z|i\rangle=\lambda_{i}|i\rangle$ for $i \in\{0,1\}$ and appropriate $\left.\lambda_{0}, \lambda_{1} \in \mathbb{C}\right)$, and $\{|+\rangle,|-\rangle\}$ are eigenvectors of X.
Find the eigenvectors of Y ?
Exercise $1.5{ }^{\oplus}$ Show that for any integer $d>0$, the set of Hermitian $d \times d$-matrices $A \in \mathcal{L}\left(\mathbb{C}^{d}\right)$ forms a vector space over \mathbb{R} (but not over \mathbb{C}). Show that the matrices $\mathbb{I}, X, Y, Z \in \mathcal{L}\left(\mathbb{C}^{2}\right)$ form a basis of the \mathbb{R}-vector-space of Hermitian 2×2-matrices.

Exercise $1.6{ }^{\ominus}$ Consider the qubit state $|\varphi\rangle=\frac{1}{2}|0\rangle+\frac{\sqrt{3}}{2}|1\rangle \in \mathbb{C}^{2}$. What are the probabilities p_{0} and p_{1} to observe 0 and 1 when measuring $|\varphi\rangle$ in the computational basis $\{|0\rangle,|1\rangle\}$? What are the probabilities p_{+}and p_{-}to observe the two possible outcomes "+" and "-" when measuring $|\varphi\rangle$ in the Hadamard basis $\{|+\rangle,|-\rangle\}$?

Exercise 1.7^{\circledR} As usual, let \mathcal{H} be a finite-dimensional, complex Hilbert space, i.e., $\mathcal{H}=\mathbb{C}^{d}$, and let $A \in \mathcal{L}(\mathcal{H})$ be arbitrary. Show that if $\langle\varphi| A|\varphi\rangle=0$ for all $|\varphi\rangle \in \mathcal{H}$ then $A=0$.
Hint: It is sufficient to show that the assumption implies that $\left\langle e_{i}\right| A\left|e_{j}\right\rangle=0$ for all $i, j \in I$ and some orthonormal basis $\left\{\left|e_{i}\right\rangle\right\}_{i \in I}$ of \mathcal{H}. Also, it is helpful to realize that the statement is not true in case \mathcal{H} is a real Hilbert space.
Use the above to show that if $\langle\varphi| A|\varphi\rangle \in \mathbb{R}$ for all $|\varphi\rangle \in \mathcal{H}$ then A is Hermitian, i.e., $A^{\dagger}=A$.

