INTRODUCTION TO QUANTUM COMPUTING Fall 2023, Mathematical Institute, Leiden University Serge Fehr (lecturer) Yu-Hsuan Huang (TA)

Exercise Set 1

Exercise 1.1 ^(a) Let $|\varphi\rangle = \begin{bmatrix} 2+i\\ 1-3i \end{bmatrix} \in \mathbb{C}^2$. Compute $\langle \varphi | \varphi \rangle \in \mathbb{C}$ and $|\varphi\rangle\langle \varphi| \in \mathcal{L}(\mathbb{C}^2) = \mathbb{C}^{2\times 2}$. Verify that $\operatorname{tr}(|\varphi\rangle\langle \varphi|)$, as sum of the diagonal elements, equals $\langle \varphi | \varphi \rangle$, and that $(|\varphi\rangle\langle \varphi|)^{\dagger} = |\varphi\rangle\langle \varphi|$.

Exercise 1.2 ^(a) Show that $\sum_{i \in I} |e_i\rangle\langle e_i| = \mathbb{I}$ holds for any orthonormal basis $\{|e_i\rangle\}_{i \in I}$ of \mathcal{H} . Also show that if $\{|e_i\rangle\}_{i \in I}$ are arbitrary vectors that are linearly independent or have norm 1, then $\sum_{i \in I} |e_i\rangle\langle e_i| = \mathbb{I}$ implies that they form an orthonormal basis of \mathcal{H} .

Exercise 1.3 [©] Verify that the Pauli operators satisfy $X^2 = Y^2 = Z^2 = -iXYZ = iZYX = \mathbb{I}$. Also, work out HXH, HYH and HZH, where H is the Hadamard operator.

Exercise 1.4 [©] Show that $\{|0\rangle, |1\rangle\}$ are eigenvectors of Z (i.e., $Z|i\rangle = \lambda_i|i\rangle$ for $i \in \{0, 1\}$ and appropriate $\lambda_0, \lambda_1 \in \mathbb{C}$), and $\{|+\rangle, |-\rangle\}$ are eigenvectors of X. Find the eigenvectors of Y?

Exercise 1.5 ^(a) Show that for any integer d > 0, the set of Hermitian $d \times d$ -matrices $A \in \mathcal{L}(\mathbb{C}^d)$ forms a vector space over \mathbb{R} (but not over \mathbb{C}). Show that the matrices $\mathbb{I}, X, Y, Z \in \mathcal{L}(\mathbb{C}^2)$ form a basis of the \mathbb{R} -vector-space of Hermitian 2×2 -matrices.

Exercise 1.6 ^(a) Consider the qubit state $|\varphi\rangle = \frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle \in \mathbb{C}^2$. What are the probabilities p_0 and p_1 to observe 0 and 1 when measuring $|\varphi\rangle$ in the computational basis $\{|0\rangle, |1\rangle\}$? What are the probabilities p_+ and p_- to observe the two possible outcomes "+" and "-" when measuring $|\varphi\rangle$ in the Hadamard basis $\{|+\rangle, |-\rangle\}$?

Exercise 1.7 As usual, let \mathcal{H} be a finite-dimensional, complex Hilbert space, i.e., $\mathcal{H} = \mathbb{C}^d$, and let $A \in \mathcal{L}(\mathcal{H})$ be arbitrary. Show that if $\langle \varphi | A | \varphi \rangle = 0$ for all $| \varphi \rangle \in \mathcal{H}$ then A = 0.

Hint: It is sufficient to show that the assumption implies that $\langle e_i | A | e_j \rangle = 0$ for all $i, j \in I$ and some orthonormal basis $\{|e_i\rangle\}_{i \in I}$ of \mathcal{H} . Also, it is helpful to realize that the statement is not true in case \mathcal{H} is a *real* Hilbert space.

Use the above to show that if $\langle \varphi | A | \varphi \rangle \in \mathbb{R}$ for all $| \varphi \rangle \in \mathcal{H}$ then A is Hermitian, i.e., $A^{\dagger} = A$.

Legend: $\mathfrak{S} = \text{easy}, \mathfrak{S} = \text{medium difficult}, \mathfrak{S} = \text{tricky}.$