
Chapter 4

(More) Quantum Algorithms Based
on the Fourier Transform

The goal of this chapter will be to explain and analyze Shor’s quantum algorithms for factoring
large integers and for computing discrete logarithms. These algorithms run in polynomial time
(in the description length of the problem), in contrast to the best-known classical algorithms
(like the number-field sieve), which run in superpolynomial time.1 These quantum algorithms
are particularly exciting—or troubling, depending on the point of view—given that the security
of (almost) all of currently used public-key cryptography relies on the assumed hardness of these
two computational problems. This means that a scalable quantum computer that is capable of
running Shor’s algorithms would render today’s internet completely insecure.

We start the chapter by introducing the Fourier transform, which is at the core of Shor’s
algorithms, and we then first discuss some algorithms that avoid some of the technical di�culties
but still reflect the basic idea behind Shor’s algorithms. As a matter of fact, at the heart of the
chapter will be a meta quantum algorithm for solving the so-called hidden subgroup problem for
Abelian groups; almost all quantum algorithms we treat in these notes can be understood as
an instantiation of the meta algorithm up to some modifications.

4.1 The Classical and the Quantum Fourier Transform

Fix an integer N � 2 and consider the ring Z/NZ. By default, the elements are represented
by integers in {0, . . . , N � 1}, and so we will typically not distinguish between an integer and
its coset modulo N . We let !N := e2⇡i/N 2 S(C) ⇢ C and write ! when N is clear.2 Recall
that, by Euler’s identity, the function Z ! C, j 7! ! j

N
= e2⇡ij/N is a group homomorphism with

kernel NZ, and so we may also understand it as a function Z/NZ ! C. By allowing j to be
real valued, we can also consider it as a function R ! C, or R/NZ ! C.

Definition 4.1. For any function ↵ : Z/NZ ! C the (discrete) Fourier transform of ↵ is
the function ↵̂ : Z/NZ ! C given by

↵̂(k) =
1

p
N

N�1X

j=0

!jk

N
↵(j)

1In case of computing discrete logarithms, the running time of classical algorithms depends on the group
considered and ranges from polynomial time (for “easy” groups) to exponential time (e.g. for elliptic curves).

2As is common, we use ez as a shorthand for exp(z). This is consistent with the basic property of the
exponential function that exp(z + w) = exp(z) exp(w), and, thus, exp(n · z) = exp(z)n for any integer n.

47

for any k 2 Z/NZ.3

We may also write ↵j instead of ↵(j) and ↵̂k instead of ↵̂(k).

We quickly look at a simple yet important example. The Fourier transform of the all-1
function 1N : Z/NZ ! C, j 7! 1 is given by

1̂N (k) =
1

p
N

N�1X

j=0

!jk

N
=

⇢ p
N if k = 0

0 else

for k 2 Z/NZ, sometimes referred to as Dirac function.

We point out, and this will become important later on, that the definition of ↵̂ : Z/NZ ! C
above extends to ↵̂ : R/NZ ! C, simply by allowing k in Definition 4.1 to be in the ring

R/NZ, with the understanding that !jk

N
= e2⇡ijk/N . In particular, we will consider 1̂N (k) as

above but for real-valued k. The function 1̂N (k) will then not necessarily vanish for non-zero k
(see Figure 4.1); what will be important for us that that in the neighbourhood of 0, it is still
relatively large, as captured by the following.

k

Figure 4.1: The absolute value of 1̂N as a function R/NZ ! C.

Lemma 4.1. As function 1̂N : R/NZ ! C, and for ⇠ 2 R with |⇠| 1/2,

��1̂N (⇠)
�� � 2

p
N

⇡
=

2

⇡
· 1̂N (0) .

Proof. We observe that

1̂N (⇠) =
1

p
N

N�1X

j=0

!j⇠ =
1

p
N

N�1X

j=0

�
!⇠

�
j
=

1
p
N

1� !⇠N

1� !⇠
=

1
p
N

1� e2⇡i⇠

1� e2⇡i⇠/N
.

where the last equality is the well-known closed form of a geometric series, assuming that ⇠ 6= 0.
From the goemetric picture, by comparing chord and arc, it is easy to convince yourself that
2⇡⌫ � |1� e2⇡i⌫ | � 4⌫ for ⌫ 2 [�1/2, 1/2], so that

��1̂N (⇠)
�� � 1

p
N

4⇠

2⇡⇠/N
=

2
p
N

⇡
,

as claimed.

We now introduce the quantum Fourier transform. Given the integer N � 2, we consider an
arbitrary N -dimensional Hilbert space HN with an orthonormal basis {|0i, . . . , |N � 1i}, where
the basis vectors are labelled by the integers in {0, . . . , N � 1}, which we identify with the
elements in Z/NZ. The quantum Fourier transform is simply the classical Fourier transform
applied to the amplitudes.

3The deviation from the typical definition, which uses the conjugate coe�cients e�2⇡ijk/N , is an artefact of
having inner products conjugate-linear in the first argument, rather than in the second.

48

Definition 4.2. The quantum Fourier transform on HN (w.r.t. {|ji}j2{0,...,N�1}) is the
unitary operator F 2 U(HN) given by

F :
N�1X

j=0

↵j |ji 7!
N�1X

k=0

↵̂k|ki .

In other words,

F : |ji 7!
1

p
N

N�1X

k=0

!jk

N
|ki

for any j 2 {0, . . . , N � 1}.

As for F being unitary, we observe that for any pair |mi and |ki of basis vectors,

hm|F †F |ki =
1

N

X

j,`

!jk�`m
h`|ji =

1

N

X

j

!j(k�m) =
1

p
N

1̂N (k �m) = hm|ki .

We point out that mathematically, the quantum Fourier transform is identical to the ordinary
Fourier transform, except that it is made explicit that the functions ↵ : Z/NZ ! C form a
Hilbert space, and Dirac’s bra-ket notation is used. Furthermore, when it comes to computing
the quantum Fourier transform, a di↵erent model of computation is used.

4.2 Period Finding in Z/NZ

As a first application, we show here that the quantum Fourier transform gives rise to a variant
of Simon’s algorithm. Consider a black-box function f : Z/NZ ! R with an arbitrary finite
domain R, with the promise that there exists a non-zero divisor s of N such that f(x) = f(x0)
if and only if s divides x� x0. The goal is to find s. Looking ahead, Shor’s factoring algorithm
will also work by finding the period of some function; however, there and in contrast to here,
no multiple of the period will be given.

We show that, very much in spirit of Simon’s algorithm, the following quantum circuit will
allow us to obtain useful information on s. Note that the state |0i of the first register is given
by the first basis vector of the fixed basis for HN . On the other hand, the state of the second
register, which is also denoted |0i, is a quantum encoding of the neutral element of R when
considered as a group, as done for defining Uf .

|0i F
Uf

F k

|0i

Figure 4.2: Quantum circuit for period-finding on Z/NZ.

Proposition 4.2. Given that f is as promised, the quantum circuit in Figure 4.2 produces a
uniformly random k 2 Z/NZ subject to k · s = 0 (in Z/NZ).

Note that ks = 0 in Z/NZ means that ks = cN over the integers, for a random integer
c 2 {0, . . . , s� 1}. In order to obtain s, we can then bring the fraction k/N , which equals c/s,
into reduced form and read out the denominator; this results in s0 = s/ gcd(c, s). Thus, if c
happens to be coprime, we have s0 = s, and we can easily check whether s0 = s. Furthermore,
by running the procedure twice, we obtain s by taking the least common multiple of the two

49

corresponding s0’s if the two corresponding c’s are coprime. The latter can be shown to happen
with probability at least4 2�⇡2/6 ⇡ 0.35 and approaches 1/⇣(2) = 6/⇡2

⇡ 0.6 for large s. Thus,
the correct s can be obtained with overhelming probability by repeating the above procedure a
few times.

Proof. Applying F to the first register, and then appling Uf , results in

|0i|0i 7!
1

p
N

N�1X

x=0

|xi|0i 7!
1

p
N

N�1X

x=0

|xi|f(x)i .

For the purpose of the analysis, let as assume that the second register is now measured. The
measurement outcome is a element y 2 R, and the state of the first register collapses to a
superposition of all x 2 Z/NZ with f(x) = y. By assumption on f , this means that the state
of the first register becomes

1
p
m

m�1X

`=0

|`s+ xi ,

where x is some x 2 Z/NZ with f(x) = y, and m := N/s. Applying F then results in

1
p
Nm

m�1X

`=0

N�1X

k=0

!(`s+x)k

N
|ki =

1
p
Nm

N�1X

k=0

m�1X

`=0

!`sk

N !xk

N |ki

=
1

p
Nm

N�1X

k=0

✓m�1X

`=0

!`k

m

◆
!xk

N |ki

=
1

p
N

N�1X

k=0

1̂m(k)!xk

N |ki .

where we used that !s

N
= e2⇡is/N = e2⇡i/m = !m. From this, given that 1̂m(k) does not vanish

if and only if k is an integer multiple of m = N/s, we see that measuring this register results in
a uniformly random k 2 Z/NZ subject to k · s = 0.

4.3 Period Finding in Z/NZ⇥ Z/NZ

We consider a small variation of the period finding problem from Section 4.2 above, where now
f : Z/NZ ⇥ Z/NZ ! R, and it is promised that there exists a non-zero s 2 Z/NZ such that
f(x, y) = f(x0, y0) if and only if x�x0 = s(y� y0), i.e., (s, 1) divides (x, y)� (x0, y0). We remark
that restricting the second component of the period to be 1, or, equivalently, to be co-prime
with N , is merely for simplicity. Looking ahead, we point out that applied to the function
(x, y) 7! gxhy for two group elements g, h, finding s is equivalent to computing the discrete
logarithm of h with respect to g.

Proposition 4.3. Assuming that f : Z/NZ⇥ Z/NZ ! R is such that there exists a non-zero
s 2 Z/NZ such that f(x, y) = f(x0, y0) if and only if x� x0 = s(y � y0), the quantum circuit in
Figure 4.3 produces uniformly random k,m 2 Z/NZ subject to sk +m = 0 (in Z/NZ).

Similarly to before, if we are unlucky and k and N are not coprime then the procedure needs
to be repeated, and with high probability s will be recovered after a few repetitions.

4Indeed, the probability of the two c’s to share a common factor is at most
P

n�2 1/n
2 = ⇣(2)� 1 = ⇡2/6� 1.

50

|0i F

Uf

F k

|0i F F m

|0i

Figure 4.3: Quantum circuit for period-finding on Z/NZ.

Proof. Applying F to the first two registers, and then appling Uf , results in

|0i|0i|0i 7!
1

N

N�1X

x,y=0

|xi|yi|0i 7!
1

N

N�1X

x,y=0

|xi|yi|f(x, y)i .

Again, let us assume that the last register is now measured. The measurement outcome is a
element z 2 R, and the state of the first two registers collapses to a superposition of all x and
y in Z/NZ with f(x, y) = z. By the assumption on f , this means that the state of the first two
registers becomes

1
p
N

N�1X

`=0

|`s+ xi|`+ yi ,

where x and y are so that with f(x, y) = z. Applying F individually to both registers then
results in

1

N3/2

X

`,k,m

!(`s+x)k!(`+y)m
|ki|mi =

1

N3/2

X

`,k,m

!`(sk+m)!xk!ym
|ki|mi

=
1

N

X

k,m

1̂N (sk +m)!xk!ym
|ki|mi .

From this we see that measuring these two registers results in uniformly random k,m 2 Z/NZ
subject to sk +m = 0, as claimed.

4.4 The Hidden Subgroup Problem

The reader should start to see a pattern. Indeed, the computational problems solved by
Deutsch’s algorithm, by Bernstein-Vazirani’s algorithm, and by Simon’s algorithm, as well as
the two period finding problems above, are all instances of the hidden subgroup problem
(HSP). In its most generality, the HSP reads as follows. Given a group G and a black-box
function f : G ! R with the promise that f(x) = f(x0) if and only if x�1x0 2 H, where H is
an unknown subgroup of G, the goal is to find (a representation of) the “hidden subgroup” H.
In other words, f acts identically within each coset xH, but di↵erently on di↵erent cosets.

For Deutsch’s problem, we have G = Z/2Z and H is either Z/2Z or {0}. For Bernstein-
Vazirani’s problem and for Simon’s problem, we have G = Fn

2
= F2 ⇥ · · · ⇥ F2, understood as

vector space over the binary field F2 (with standard inner product), and H is the orthogonal
complement of a 2 G for the former, and the linear span of (non-zero) s 2 G. For period finding
in Z/NZ, we have G = Z/NZ and H is generated by (non-zero) s 2 G. And, eventually, for
period finding in Z/NZ⇥ Z/NZ, we have G = Z/NZ� Z/NZ and H generated by (s, 1) 2 G.

Not so suprising, the techniques for solving the above specific problems by means of quantum
algorithms unify and generalize. We note, however, that Deutsch’s algorithm and Bernstein-
Vazirani’s algorithm are both slighty di↵erent than the generic hidden subgroup algorithm

51

outlined below; indeed, they produce the right answer in one go and with certainty. Similarly,
the Deutsch-Jozsa problem does not fit into the HSP framework (unless n = 1).

We start with the following definition.

Definition 4.3. For a finite Abelian group G, the dual group Ĝ is the group of homomor-
phisms � from G to the multiplicative group S(C). � 2 Ĝ is called a character.

The following captures some basic properties of the dual group.

Proposition 4.4. |Ĝ| = |G|. Furthermore, the orthogonality relations

X

x

�(x)�0(x) =

⇢
0 if � 6= �0

|G| if � = �0 and
X

�

�(x)�(x0) =

⇢
0 if x 6= x0

|Ĝ| if x = x0

hold for all x, x0 2 G and �,�0
2 Ĝ. In particular, for every 1 6= x 2 G and 1 6= � 2 Ĝ,

X

x2G
�(x) = 0 and

X

�2Ĝ

�(x) = 0 .

Proof. We start by observing that Ĝ must be finite, given that G is. This follows from the fact
that �(g)|G| = �(g|G|) = �(1) = 1, and thus �(g) must be a |G|-th root of unity for any g.

As for the last two claims of the statement, the first one follows from the observation that
X

x

�(x) =
X

x

�(xy) = �(y)
X

x

�(x)

for any y 2 G, and the existence of y 2 G with �(y) 6= 1. Similarly for the other one, using
that |Ĝ| < 1, and that for any x 6= 1 there exists � 2 Ĝ with �(x) 6= 1 (which follows from
Lemma 4.5 below). Since � maps into S(C), we have that ��1 = �, and the two orthogonality
relations then follow easily. Also, the orthogonality relations then imply that |Ĝ| = |G|.

Lemma 4.5. Let H (G be a subgroup of G and x 2 G\H, and let ⇡ 2 Ĥ be a character of H.
Then there exists a character � 2 Ĝ so that �(h) = ⇡(h) for all h 2 H, and �(x) 6= 1.

Proof. By repeated application, it is enough to show the claim in case G is generated by H
and x, i.e., G = {xih |h 2 H, i 2 Z}. For that, let n � 2 is the smallest positive integer for
which xn 2 H, and let ! 6= 1 be such that !n = ⇡(xn). For any g = xih 2 G, we now define
�(g) = �(xih) := !i⇡(h). We first need to show that this is well defined. Let h, h0 2 H and
i, j 2 Z with xih = xjh0. Then xi�j = h/h0 2 H, and thus i� j = kn for k 2 Z. Therefore,

�(xih)/�(xjh0) = !i�j�(h/h0) = !kn⇡(h/h0) = ⇡(xn)k⇡(h/h0) = ⇡(xknh/h0) = ⇡(1) = 1 .

Finally, it is obvious that � is a homomorphism, i.e., � 2 Ĝ, and �(x) = ! 6= 1.

As an immediate consequence, for any pair of fixed orthonormal bases {|xi}x2G and {|�i}
�2Ĝ

of the Hilbert space C|G|, the generalized quantum Fourier transform F , given as follows,
is unitary:

F : |xi 7!
1p
|G|

X

�2Ĝ

�(x)|�i .

In case of G = Z/NZ, the characters are the homomorphisms that map j to !jk

N
for k in

{0, . . . , N � 1}, and so F coincides with Definition 4.2. In case of G = Z/2Z� · · ·� Z/2Z, the
characters are the functions x 7! (�1)x·y for all possible choices of y, and then F matches H⌦n.
This allows us to generalize above quantum algorithms and obtain the following general result.

52

Theorem 4.6. For any finite Abelian group G with hidden subgroup H, there exists a quantum
circuit with black-box access to Uf and query complexity 1 that outputs a random character �
that acts trivially on H.

In general, in order to uniquely identify H, the algorithm needs to be repeated several times;
how (a representation of) H can then be computed depends on the structure of G and H.

Proof. We produce a superposition of all x 2 G (e.g., by applying F † to |1i) and an ancilla and
apply Uf to get

1p
|G|

X

x2G
|xi|0i 7!

1p
|G|

X

x2G
|xi|f(x)i .

Measuring the second register to observe y = f(x) has the e↵ect that the state collapses to

1p
|H|

X

h2H
|xhi .

Applying the generalized quantum Fourier transform F then results in

1p
|G||H|

X

h2H

X

�2Ĝ

�(xh)|�i =
1p

|G||H|

X

�2Ĝ

�(x)
X

h2H
�(h) |�i

and so, given that the restriction of � to H is a character in Ĥ, and thus Proposition 4.4 applies
correspondingly, we see that |�i has a non-trivial amplitude only if � acts trivially on H.

Later, we show that the technique even generalizes to infinite Abelian groups to some extent.
This will then eventually lead to Shor’s famous factoring algorithm.

4.5 Computing the Quantum Fourier Transform

We have seen that the quantum Fourier transform is very powerful and gives rise to various
quantum algorithms with low query complexity. In order to obtain quantum algorithms with
low computational complexity, we need to be able to e�ciently compute the quantum Fourier
transform. We show here how this is done.

Note that in order to fit into our model of computation, we need F to act on qubits. As such,
we set N = 2n for a positive integer n, and we let HN be HN = H

⌦n = H⌦ · · ·⌦H. Finally, we
require the basis {|0i, . . . , |N � 1i} to be given by |ji = |j1i · · · |jni, where (j1, . . . , jn) 2 {0, 1}n

is the binary representation of j 2 {0, . . . , N � 1}, uniquely determined by the equality

j = [j1 · · · jn] :=
nX

`=1

j` 2
n�` .

By a variation of this formalism, we also write

[0.j1 · · · jn] := j/2n =
nX

`=1

j` 2
�`

The following observation is at the core of the e�cient computability of the quantum Fourier
transform F , which we will denote by Fn below, in order to make the dependency on the
parameter n explicit.

53

Lemma 4.7. For any positive integer n and any j = [j1 · · · jn] 2 {0, . . . , 2n � 1}:

Fn|ji = Fn|j1i · · · |jni =
1

p
2n

nO

`=1

⇣
|0i+ !j

2`
|1i

⌘
,

or, in other words,

=
1

p
2n

⇣
|0i+ e2⇡i[0.jn]|1i

⌘⇣
|0i+ e2⇡i[0.jn�1jn]|1i

⌘
· · ·

⇣
|0i+ e2⇡i[0.j1···jn�1jn]|1i

⌘
.

Proof. By basic term manipulations, we see that

Fn|ji =
1

p
2n

X

k

e2⇡ijk/2
n
|k1i · · · |kni

=
1

p
2n

X

k1...kn

Y

`

e⇡ijk`/2
n�`

|k1i · · · |kni

=
1

p
2n

X

k1...kn

O

`

e2⇡ijk`/2
`
|k`i

=
1

p
2n

O

`

X

k`

e2⇡ijk`/2
`
|k`i

=
1

p
2n

O

`

⇣
|0i+ e2⇡ij/2

`
|1i

⌘
.

This shows the claim. The second variant follows from the fact that x 7! e2⇡ix is cyclic with
period 1, and noting that j/2` mod 1 = [0.jn�`+1 · · · jn].

Recalling the definition of the phase shift gate, the above shows that the first qubit of Fn|j1i · · · |jni
equals S2⇡[0.jn]

|+i, and the remaining qubits are given by

S2⇡[0.0jn]

⇣
|0i+ e2⇡i[0.jn�1]|1i

⌘
⌦ · · ·⌦ S2⇡[0.0···0jn]

⇣
|0i+ e2⇡i[0.j1···jn�1]|1i

⌘
.

This proves the following.

Corollary 4.8. For any integer n > 1 and any j1, . . . , jn 2 {0, 1}:

Fn|j1i · · · |jni =
�
S⇡jn ⌦ S⇡jn/2

⌦ · · ·⌦ S⇡jn/2
n�1

��
|+i ⌦ Fn�1|j1i · · · |jn�1i

�
.

Thus, Fn can be recursively computed. In particular, the following holds.

Theorem 4.9. The n-qubit quantum Fourier transform Fn can be computed with computational
complexity O(n2) with a quantum circuit with gate set consisting of H, swap gates, and controlled

phase shift gates. The same holds for the inverse F †
n.

Proof. Given the above corollary, it follows by trivial inspection that, up to the order of the
wires, Fn can be recursively computed by means of the following quantum circuit.

|jni • • · · · • H

|j1i

Fn�1

· · · S⇡/2

... . .
.

|jn�2i S⇡/2n�2 · · ·

|jn�1i S⇡/2n�1 · · ·

54

This proves the claim on Fn. For the inverse, we observe that we can invert the circuit for
Fn by running the circuit “backwards” and that the considered gate set is preserved under
inversion.

4.6 Shor’s Algorithm for Period Finding in Z

Here, we consider a black-box function f : Z ! R with an arbitrary finite domain R, with the
promise that there exists s 2 Z in the range 1 < s N = 2n such that f(x) = f(x0) if and only
if x� x0 is an integer multiple of s. The goal is to find s.

The crucial di↵erence to Section 4.2 is that, here, s does not divide N , and therefore f
does not naturally induce a function Z/NZ ! R. Therefore, if we apply the Fourier transform
to f : {0, . . . , N � 1} ! R, the wrap-around we get by taking numbers modulo N messes up
things. Fortunately, we will be able to control how much things are messed up. As a starting
point, let us simply take the circuit from Figure 4.2 in order to try to solve the above variation
of the period-finding problem, and we follow the analysis from Section 4.2 as far as we can.

Applying F to the first register, which is now an n-qubit register, applying Uf , and then
measuring the second register produces a state of the form

1
p
m

m�1X

`=0

|`s+ xi ,

where x is some x 2 {0, . . . , s�1} with f(x) = y, and m is either bN/sc or bN/sc+1. Applying
F then results in

1
p
Nm

m�1X

`=0

N�1X

k=0

!(`s+x)k

N
|ki =

1
p
Nm

N�1X

k=0

m�1X

`=0

!`sk

N !xk

N |ki

=
1

p
Nm

N�1X

k=0

✓m�1X

`=0

!`skm/N

m

◆
!xk

N |ki

=
1

p
N

N�1X

k=0

1̂m
⇣ks
N

m
⌘
!xk

N |ki .

where we used that !t

N
= e2⇡it/N = e2⇡i(t/N)m/m = !tm/N

m , and where we consider 1̂m as a
function on R/mZ. Recall that in Section 4.2, in the proof of Proposition 4.3, the only k’s for
which 1̂m did not vanish where the multiples of N/s; therefore, we would observe such a k with
certainty. Here, in order to obtain information on s, we may hope that we still get su�cient
contribution from those k’s that are close to a multiple of N/s, so that we observe such a k
with su�cient probability upon measuring the register. Indeed, for k of the form k = cN/s+ �
with |�| 1/2, since 1̂m is periodic we can re-write

1̂m
⇣ks
N

m
⌘
= 1̂m

⇣
cm+

�s

N
m
⌘
= 1̂m

⇣�s
N

m
⌘
.

Furthermore, since |�| 1/2 and m ⇡ N/s, we expect the argument ⇠ := �sm/N to be bounded
in absolute value by |⇠| . 1/2, so that Lemma 4.1 applies and ensures that this particular k will
be observed with good probability. Even though this intuition can be rigorously worked out,
we provide here a slightly di↵erent analysis. Below, b·e denotes rounding to the nearest integer.

Theorem 4.10. Let f : Z ! R be so that there exists a positive integer s N = 2n such that
f(x) = f(x0) if and only if x � x0 is an integer multiple of s. Then, the circuit in Figure 4.2

55

produces k 2 {0, . . . , N � 1} of the form k = b`N/se with probability at least 4/⇡2 for a random
(but unknown) ` 2 {0, . . . , s� 1}.

Proof. Consider the subspace spanned by the vectors |f(x)i for x 2 {0, . . . , s� 1}, and let F̃ be
the quantum Fourier transform with respect to this basis. Then, we can rewrite the intermediary
state of the quantum circuit, after Uf is applied, as

1
p
N

N�1X

x=0

|xi|f(x)i =
1

p
N

N�1X

x=0

|xi ⌦ F̃ F̃ †
|f(x)i =

1
p
sN

s�1X

`=0

N�1X

x=0

!�x`

s |xi ⌦ F̃ |f(`)i .

Again, for the purpose of the analysis, we assume that the second register is measured, but now
in the basis given by the F̃ |f(`)i’s. As a result, the state collapses to

1
p
N

N�1X

x=0

!�x`

s |xi

for a random ` 2 {0, . . . , s� 1}. We emphasize that this measurement is a thought experiment,
which does not a↵ect the (marginal) distribution of k. Applying F then results in

1

N

N�1X

x=0

N�1X

k=0

!�x`

s !xk

N |ki =
1

N

N�1X

k=0

N�1X

x=0

!x(k�`N/s)

N
|ki =

1
p
N

N�1X

k=0

1̂N (k � `N/s)|ki ,

and therefore, by Lemma 4.1, the final measurement produces k = b`N/se with probability

pk|` :=
1̂N (k � `N/s)2

N
�

4

⇡2
,

which proves the claim.

Given such a k as promised (with constant probability) by Theorem 4.10, we still need to
solve the problem of finding s. Choosing N � s2, we have that

����
k

N
�

`

s

����
1

2N

1

2s2
.

Thus, we may understand `/s to be a good approximation of k/N by means of a fraction with
a small denominator. Furthermore, it is easy to see that such an approximation is unique.
Finally, Theorem 4.14 below shows that such an approximation `/s, with a relation between
approximation quality and denominator size as promised here, can be e�ciently computed by
means of the continued fraction of k/N .

Thus, if ` and s happen to be coprime (and k is as promised), s can directly be recovered;
otherwise, s0 = s/ gcd(`, s) is obtained. Thus, similarly to period finding in Z/NZ, we can
recover s from two executions if the respective `’s are coprime and the k’s are of the right form
k = b`N/se. With the bound/approximation on the probability of two numbers being coprime
mentioned in Section 4.2, and the guarantee from Theorem 4.10, the probability of the above
happening is shown to be lower bounded by a constant in the range 5% to 10%.

4.7 Continued Fractions

We briefly introduce here the basics of continued fractions, so as to understand the above claim
on the e�cient computability of good approximations.

56

Definition 4.4. For any integer n � 0, and for any sequence of integers a0, a1, . . . , an with
a0 � 0 and a1, . . . , an > 0, we define [a0; a1, . . . , an] to be the continued fraction, recursively
defined via [an] := an and

[ai; ai+1, . . . , an] := ai +
1

[ai+1; ai+2, . . . , an]

for 0 i < n. In other words,

[a0; a1, . . . , an] := a0 +
1

a1 +
1

a2+
1
···

The ai’s are called the partial quotients, and [a0; a1, . . . , ai] is called the i-th convergent.

We remark that, by definition, we require the partial quotients ai to be (non-negative) integers;
in some cases though, we will explicitly allow an to be in R. This then allows us to write

[a0; a1, . . . , an] =
⇥
a0; a1, . . . , an�1 +

1

an

⇤

or, more generally,

[a0; a1, . . . , an] =
⇥
a0; a1, . . . , ai�1, [ai; ai+1, . . . , an]

⇤
.

Proposition 4.11. Every positive x 2 Q is a (finite) continued fraction x = [a0; a1, . . . , an],
and the partial quotients are unique up to [a0; a1, . . . , an�1, 1] = [a0; a1, . . . , an�1+1].

Proof. We first note that for x = [a0; a1, . . . , an] with n � 1, [a1; a2, . . . , an] > 1 unless n = 1
and a1 = 1, and thus x = [x� 1; 1] 2 Z. This in particular shows uniqueness of a0 for x 62 Z.

Now, for a given positive x 2 Q, write x = p/q for positive coprime integers p, q. If
q = 1 then x 2 Z, and existence is thus clear: x = [x], and (almost) uniqueness follows from
the observation that if x = [a0; a1, . . . , an] then, by the above, x can be an integer only if
x = [x � 1; 1]. Otherwise, we can write p = a0q + r for integers a0 and r with 0 < r < q, and
therefore

x =
a0q + r

q
= a0 +

r

q
= a0 +

1

x0

for x0 := q/r > 1. Given that r < q, we may assume by induction that x0 = [a1; a2, . . . , an]
exists and is (almost) unique, and we conclude existence and (almost) uniqueness of x =
[a0; a1, . . . , an], where the latter exploits uniqueness of a0 here.

The above existence proof also shows that the partial quotients can be e�ciently computed,
essentially by means of the Euclidean algorithm.

Theorem 4.12. For any continued fraction x = [a0; a1, . . . , an], let (p�1, q�1), (p0, q0), . . . , (pn, qn)
be the sequence recursively defined as

p�1 := 1
q�1 := 0

,
p0 := a0
q0 := 1

and
pi := aipi�1 + pi�2

qi := aiqi�1 + qi�2

for i = 1, . . . , n. Then

pi
qi

= [a0; a1, . . . , ai] ,
pi�1

qi�1

�
pi
qi

=
(�1)i

qiqi�1

and

����
pi�1

qi�1

� x

����
1

qiqi�1

for all i 2 {0, 1, . . . , n}, respectively i 2 {1, . . . , n} for the latter two claims.

57

From the second claim, it follows in particular that for odd indices i, the sequence of convergents
pi/qi is monotonically decreasing, and monotonically increasing for even indices i; see the proof
for some more details. Furthermore, given that it implies that qipi�1 � piqi�1 = ±1, the second
claim ensures that pi and qi are coprime.

We also observe that, given that the qi’s are lower bounded by the Fibonacci numbers, which
grow exponentially, the third claim implies that the convergents [a0; a1, . . . , ai] converge fast.

Before proving Theorem 4.12, we first prove the following.

Lemma 4.13. For n � 1, let x = [a0; a1, . . . , an�1, ⇠n] with an arbitrary ⇠n 2 R. Then,

x =
pn�1⇠n + pn�2

qn�1⇠n + qn�2

.

Proof. For n = 1, the right hand side equals

a0⇠1 + 1

⇠1
= a0 +

1

⇠1
= x .

For n > 1 we recall that [a0; a1, . . . , an�1, ⇠n] = [a0; a1, . . . , an�1 +
1

⇠n
] and apply induction to

conclude that

x =
pn�2

�
an�1 +

1

⇠n

�
+ pn�3

qn�2

�
an�1 +

1

⇠n

�
+ qn�3

=
pn�2an�1⇠n + pn�2 + pn�3⇠n
qn�2an�1⇠n + qn�2 + qn�3⇠n

=
pn�1⇠n + pn�2

qn�1⇠n + qn�2

.

Thus, the claim holds for all n � 1.

Proof (of Theorem 4.12). For the first claim, we simply apply Lemma 4.13 and conclude that

[a0; a1, . . . , ai] =
pi�1ai + pi�2

qi�1ai + qi�2

=
pi
qi

by definition of pi and qi. For the second claim, we observe that

qipi�1 � piqi�1 = (aiqi�1 + qi�2)pi�1 � (aipi�1 + pi�2)qi�1 = pi�1qi�2 � qi�1pi�2

and conclude by induction. Finally, as for the last claim, we show that

0 (�1)i
✓
pi�1

qi�1

� x

◆

1

qiqi�1

for all i n. The case i = n follows from the second claim, and for i < n we observe that

(�1)i
✓
pi�1

qi�1

� x

◆
= (�1)i

✓
pi�1

qi�1

�
pi
qi

◆
� (�1)i+1

✓
pi
qi

� x

◆
=

1

qiqi�1

� (�1)i+1

✓
pi
qi

� x

◆
,

and so the claimed bounds follow by induction, noting that qi+1 � qi�1.

Theorem 4.12 in particular shows that the convergents are good approximations. What we need
in Section 4.6 above is the converse: any good enough approximation must be a convergent.

Theorem 4.14. If ����
p

q
� x

����
1

2q2

then p/q is a convergent of x.

58

Proof. We may assume p and q to be coprime. Write p/q = [a0; a1, . . . , an] and let ⇠n+1 2 Q be
so that x = [a0; a1, . . . , an, ⇠n+1]. We want to show that ⇠n+1 � 1; this then implies that we can
write ⇠n+1 = [b0; b1, . . . , bm] with b0 � 1, so that x = [a0; a1, . . . , an, b0, . . . , bm] and thus p/q is
indeed a convergent of x.

For this purpose, write
p

q
� x = "

�

q2

with " = ±1 and 0 � 1/2. By the degree of freedom in choosing n one more or less, we
may assume that " = (�1)n�1. Using that p = pn and q = qn, which holds since p/q = pn/qn
and both are in lowest terms, and applying Lemma 4.13, we obtain

"
�

q2n
=

pn
qn

� x =
pn
qn

�
pn⇠n+1 + pn�1

qn⇠n+1 + qn�1

=
pnqn�1 � qnpn�1

qn(qn⇠n+1 + qn�1)
=

(�1)n�1

qn(qn⇠n+1 + qn�1)
,

where the last equality is due to Theorem 4.12. Thus, �(qn⇠n+1 + qn�1) = qn, and solving for
⇠n+1 shows that

⇠n+1 =
qn � �qn�1

�qn
=

1

�
�

qn�1

qn
� 1 ,

which concludes the proof.

4.8 Shor’s Factoring Algorithm

We are now ready to understand Shor’s quantum algorithm for factoring integers. As a matter
of fact, all that is left to do is to to reduce factoring to period finding in Z, and then we can
apply the quantum algorithm from Section 4.6 to solve the latter.

Let N be the (odd) integer that we want to factor, and let N = pe1
1
· · · pemm be its prime

factorization. Let a be an integer in the range {1, . . . , N � 1} that is coprime to N ; if a is not
coprime then we immediately can get a nontrivial factor of N . Shor’s algorithm now simply
works by computing the order s := ord(a) of a modulo N , i.e., the order of a as element in the
group (Z/NZ)⇤, by applying the period finding algorithm to the function

f : Z ! (Z/NZ)⇤, x 7! ax ,

where we understand a as an element in (Z/NZ)⇤. Indeed, by basic algebra, ax = ax
0
if and

only if x� x0 is a multiple of ord(a). The reduction from factoring to period finding in Z now
follows from the following two propositions.

Proposition 4.15. Let N > 2 be a positive integer and a 2 (Z/NZ)⇤. If s := ord(a) is even
and b := as/2 is neither 1 nor �1, then gcd(b+ 1, N) is a nontrivial divisor of N .

Proof. Since, as integer, b2 ⌘ 1 (mod N), it follows that N divides b2 � 1 = (b + 1)(b � 1).
However, since b 6⌘ ±1 (mod N), it follows that N divides neither b+ 1 nor b� 1. Thus, some
non-trivial factor of N must divide b+ 1 but not b� 1, and vice versa.

We also o↵er the following alternative proof (assuming N to be odd), which requires some
basic understanding of the structure of (Z/NZ)⇤, but prepares for the proof of Proposition 4.16
below. Concretely, the proof makes use of the Chinese Remainder Theorem, which states that
the canonical map

(Z/NZ)⇤ ! (Z/pe1
1
Z)⇤ ⇥ · · ·⇥ (Z/pemm Z)⇤ , x 7! (x1, . . . , xm) ,

where xi is the reduction of x modulo pe1
1
, is an isomorphism, and of the fact that (Z/peZ)⇤ is

cyclic with even order pe�1(p� 1) for odd primes p, and so �1 is the only element with order 2.

59

Proof. We have b2 = as = 1. Thus, for i 2 {1, . . . ,m}, b2
i
= 1 and hence bi = ±1. However, as

b 6= ±1, we must have that bi = �1 for some i and bj = 1 for some j. This then implies that,
as integer, b+ 1 is a multiple of pei

i
but not of p

ej

j
.

The following shows that if a is chosen uniformly at random then it satisfies the required
properties with probability at least 1/2, unless N is prime.

Proposition 4.16. Let N > 2 be an odd integer with m distinct prime factors. Then, at most
a 2�m+1-fraction of the elements a 2 (Z/NZ)⇤ are such that s := ord(a) is odd or as/2 = ±1.

Proof. We exploit the above isomorphism of (Z/NZ)⇤ into m cyclic groups (Z/pei
i
Z)⇤ with even

order. For instance, for any a 2 (Z/NZ)⇤ the order s of a is the lcm of the respective orders
si of the components ai. We write s = 2dt for 0 d 2 Z and 1 t 2 Z odd, and similarly
si = 2diti. Then, d = max(d1, . . . , dm), and thus d = di for some i, and t = lcm(t1, . . . , tm).

Assume that dj < d for some j. Then, in particular, d � 1 and thus s is even. Furthermore,

as/2
i

= a2
d�1

t

i =
⇣
a2

di�1
ti

i

⌘
t/ti

=
⇣
asi/2
i

⌘
t/ti

= (�1)t/ti = �1 ,

while, given that s/2 = 2d�1t is a multiple of sj = 2dj tj ,

as/2
j

= 1 .

Thus, as/2 6= ±1.

Now, exploiting that (Z/pei
i
Z)⇤ is cyclic with even order, say order 2`iri with 1 `i 2 Z and

1 ri 2 Z odd, half of the elements ai 2 (Z/pei
i
Z)⇤ have di = `i (namely all the odd powers

of a given generator), while all the other half has di < `i. Thus, for any i, no matter what
a1, . . . , ai and thus d1, . . . , di are, at most half of the elements ai+1 have di+1 = di, and thus
may potentially give rise to an a with s odd or as/2 = ±1. Thus, at most a 1/2m�1 fraction of
(a1, . . . , am) may give rise to such an a.

4.9 Shor’s Discrete-Logarithm Algorithm

Let G be a finite cyclic group with generator g. The order q of G may or may not be known. The
discrete logarithm (with respect to g) of an element h 2 G is the unique s 2 {0, . . . , q � 1}
with gs = h. Given such an h, we observe that

f : Z/qZ⇥ Z/qZ ! G, (x, y) 7! gxh�y = gx�sy

is such that f(x, y) = f(x0, y0) if and only if x� x0 = s(y � y0). Thus, the problem of comput-
ing the discrete logarithm reduces to period finding as considered in Section 4.3, up to some
insignificant di↵erence in the problem statement. Thus, one is tempted to invoke the quantum
circuit from Figure 4.3 to find s. However, there are two issues with this approach: q may not
be known, and, even if it is known, it may not be a power of 2, and so it is not clear whether
the quantum Fourier transform over Z/qZ could be done e�ciently.

The solution (to both problems) is to choose a prime power N = 2n > q, understand f as
a function {0, . . . , N � 1} ⇥ {0, . . . , N � 1} ! G in the obvious way, and apply the quantum
circuit from Figure 4.3, but now with the quantum Fourier transform over Z/NZ. The analysis
is very similar to the analysis of the quantum circuit for period finding in Z. Indeed, applying

60

F to the first two registers of |0i|0i|0i, which are n-qubits each, and then applying Uf , results
in

|0i|0i|0i 7!
1

N

N�1X

x,y=0

|xi|yi|0i 7!
1

N

N�1X

x,y=0

|xi|yi|f(x, y)i =
1

N

N�1X

x,y=0

|xi|yi|f(x� sy, 0)i .

Somewhat similar to Section 4.6, we consider the subspace spanned by the vectors |f(x, 0)i for
x 2 {0, . . . , q � 1}, and we let F̃ be the quantum Fourier transform with respect to this basis.
The above intermediary state, after Uf is applied, can then be written as

1

N

N�1X

x,y=0

|xi|yi|f(x� sy, 0)i =
1

N
p
q

q�1X

`=0

N�1X

x,y=0

!�`(x�sy)

q |xi|yi ⌦ F̃ |f(`, 0)i ,

which, upon measuring the third register, collapses to

1

N

N�1X

x,y=0

!�`(x�sy)

q |xi|yi =
1

p
N

N�1X

x=0

!�`x

q |xi ⌦
1

p
N

N�1X

y=0

!`sy

q |yi

for some ` 2 {0, . . . , q � 1}. Applying F to the remaining two registers results in the tensor
product of

1

N

X

x,k

!�`x

q !xk

N |ki =
1

p
N

X

k

1̂N (k � `N/q)|ki

and
1

N

X

y,m

!`sy

q !ym

N
|mi =

1
p
N

X

m

1̂N (m+ `sN/q)|mi .

Thus, when measuring, we observe k = b`N/qe and m = �b`sN/qe mod N with probability at
least 16/⇡4, which is approximately 0.16. Here, if q is known (which is typically the case) then
` and `s, and thus s, can be recovered using elementary techniques; indeed, given that q/N < 1,
we see that ` = bkq/Ne and `s mod q = �b`mq/Ne. Otherwise, i.e. if q is not know, ` and `s
can be recovered using the techniques from continued fractions.

61

62

