
Part II

Quantum Computing

33





Chapter 3

Foundations of Quantum Computing

Quantum computation investigates the computational power of hypothetical computing devices
that make use of quantum-mechanical properties, as introduced and discussed in previous chap-
ters. An important objective is to find quantum algorithms that are significantly faster than
any classical algorithm solving the same problem. The field started in the early 1980s with
suggestions for analog quantum computers by Yuri Manin, Richard Feynman, and Paul Benio↵,
and reached more digital ground when in 1985 David Deutsch defined the universal quantum
Turing machine. The following years saw only sparse activity, notably the development of the
first algorithms by Deutsch and Jozsa and by Simon, and the development of quantum com-
plexity theory by Bernstein and Vazirani. Interest in the field then increased tremendously after
Peter Shor’s 1994 discovery of his famous quantum algorithms for factoring large integers and
for computing discrete logarithms.

In this chapter, we introduce some of the early quantum algorithms, and we cover the
theoretical foundations by discussing the quantum circuit model of computation. We end the
chapter with Grover’s algorithm for unstructured search, a quantum algorithm that is maybe
not as impressive in terms of speed-up (like Shor’s algorithms) but is important due to the
generality of the computational problem it solves.

In this chapter, if not specified otherwise, we restrict H to be H = C2, the state space of a
qubit. For any positive integer n, H⌦n stands for the n-fold tensor product H ⌦ . . .⌦H of H
with itself. Similarly, for U 2 U(H), U⌦n is the n-fold tensor product U ⌦ . . . ⌦ U 2 U(H⌦n).
Throughout, we consider the computational basis {|0i, |1i} of H as well as the computational
basis {|xi}x2{0,1}n ofH⌦n, where |xi = |x1, . . . , xni = |x1i · · · |xni for x = (x1, . . . , xn) 2 {0, 1}n.

3.1 Warm-up: Deutsch’s Algorithm

Consider a binary function f : {0, 1} ! {0, 1}. We imagine a situation where f is not given to
us by its function table, but, say, in the form of a very complicated and extremely ine�cient
algorithm. As such, we can learn f(x) for any x 2 {0, 1} by computing f(x) using the algorithm,
but there is no “shortcut”. One typically speaks of black-box access then: the only way to
learn (anything about) the function value of any input x is by means of making a query to an
“oracle”, which then provides the correct function value f(x).

The task here now is to find out if f(0) = f(1) or not. Obviously, this can be done by
computing f twice, i.e., by making two queries—one for input 0 and one for input 1. The
question is whether one can do better. It is intuitively quite clear, and not too hard to prove
once rigorously formalized, that it is impossible to do any better with a classical algorithm:
any classical algorithm with black-box access to f that only makes one query to f cannot

35



predict whether f(0) = f(1) or not with probability larger than 1

2
, when f is chosen uniformly

at random from all functions {0, 1} ! {0, 1}. On the other hand, somewhat surprisingly, a
quantum algorithm with black-box quantum access to f can do better. The latter means that
the algorithm can make queries to the unitary Uf 2 U(H⌦H) given by Uf |xi|yi = |xi|y � f(x)i
for x, y 2 {0, 1}, where � is the binary XOR, i.e., addition mod 2.

Proposition 3.1. There exists a quantum algorithm so that when given black-box access to Uf

it makes a single query to Uf and outputs the bit f(0)� f(1) with certainty.

Note that we do not have a formal notion of a “quantum algorithm” yet, but it should be clear
that what we outline in the proof counts as one. It is called Deutsch’s algorithm, named
after David Deutsch. Before describing the algorithm, let us first look into the naive approach.
Given that the desired quantum algorithm has access to Uf , which means that he can apply f to
a superposition of inputs, that seems to be the way to go: form the superposition (|0i+ |1i)/

p
2

and apply Uf to obtain

Uf

1
p
2
(|0i+ |1i)|0i =

1
p
2
|0i|f(0)i+

1
p
2
|1i|f(1)i .

This indeed gives us a state that depends on both, f(0) and f(1). However, it is unclear how to
now extract information on both, respectively on f(0) � f(1). If we measure the first qubit in
the computational bases, then the second collapses to |f(0)i or |f(1)i, and all information on
the other is lost, and so we would still need another call to f . Also measuring the second qubit
in the computational basis will not provide any information on f(0)� f(1).

Proof. The algorithm starts with the 2-qubit state

|+i|�i =
1
p
2
(|0i+ |1i)⌦

1
p
2
(|0i � |1i) =

1
p
2
|0i ⌦

1
p
2
(|0i � |1i) +

1
p
2
|1i ⌦

1
p
2
(|0i � |1i) .

and applies Uf . This yields

1

2
|0i ⌦

�
|0� f(0)i � |1� f(0)i

�
+

1

2
|1i ⌦

�
|0� f(1)i � |1� f(1)i

�

=
1

2
(�1)f(0) |0i ⌦

�
|0i � |1i) +

1

2
(�1)f(1) |1i ⌦

�
|0i � |1i

�

=
1
p
2

⇣
|0i+ (�1)f(0)�f(1)

|1i
⌘
⌦

1
p
2
(�1)f(0)

�
|0i � |1i

�
.

which is still a product state, and it has the predicate we are looking for encoded into the phase
of the first qubit. Concretely, the first qubit is in state |+i if f(0) = f(1), and it is in state |�i

if f(0) 6= f(1). Hence, by now measuring the first qubit in the Hadamard basis, or, equivalently,
by applying the Hadamard operator and measuring in the computational basis, we obtain the
correct result.

Clearly, Deutsch’s algorithm does not seem very relevant nor impressive from a practical
perspective. Still, it nicely shows, in a simple way, how it is still possible to exploit the possibility
of applying a function f to a quantum superposition of inputs, despite the observation that the
naive approach does not give you anything. The idea here is to bring the function values from
the basis vectors into the amplitudes, so that one gets constructive or distructive interference,
depending on the function values. Here, this is achieved by applying Uf to |xi|�i for x 2 {0, 1},
rather than to |xi|0i, so that we get

Uf |xi|�i =
1
p
2

�
|xi|f(x)i � |xi|1� f(x)i

�
= (�1)f(x)|xi|�i .

36



This technique is typically referred to as phase kickback. Put di↵erently, we use the fact that
Uf has eigenvector |xi|�i with eigenvalue (�1)f(x). E↵ectively, this gives access to a unitary
Vf 2 U(H) with Vf |xi = (�1)f(x)|xi, and we now easily see that if f(0) = f(1) then Vf |+i ⌘ |+i

and if f(0) 6= f(1) then Vf |+i ⌘ |�i, and so we can distinguish the two cases with one call
to Vf .

3.2 More Examples: Deutsch-Jozsa and Bernstein-Vazirani

Deutsch’s algorithm is a special case of the Deutsch-Jozsa algorithm. The latter considers
a function f : {0, 1}n ! {0, 1} with the promise that f is either constant or balanced, where
the latter means that |{x | f(x) = 0} = 2n�1, and the goal is to find out which of the two is the
case. Classically, this requires 2n�1 + 1 queries to f in the worst case, and k queries to get the
right answer except with probability 2�k+1. With a quantum algorithm, one query su�ces.

Proposition 3.2. For any positive integer n 2 N there exists a quantum algorithm so that when
given black-box access to Uf 2 U(H⌦n

⌦ H) it makes a single query to Uf and predicts with
certainty whether f : {0, 1}n ! {0, 1} is constant or balanced, given that it is one of the two.

For the analysis of the algorithm, it will be convenient to have the following lemma at hand; we
leave its proof as an exercise. H⌦n is sometimes also called Walsh-Hadamard transform.

Lemma 3.3. For any x = (x1, . . . , xn) 2 {0, 1}n,

H⌦n
|xi = H|x1i ⌦ . . .⌦H|xni =

1

2n/2

X

y2{0,1}n
(�1)x·y|yi

where x · y = x1y1 � . . .� xnyn 2 {0, 1}.

Proof (of Proposition 3.2). The algorithm follows closely Deutsch’s algorithm. It starts o↵ with
the (n+ 1)-qubit state |+i

⌦n
⌦ |�i, which equals

H⌦n
|0, . . . , 0i ⌦H|1i =

1

2n/2

X

x2{0,1}n
|xi ⌦

1
p
2
(|0i � |1i)

by Lemma 3.3, and it applies Uf . This yields

1

2n/2

X

x

|xi ⌦
1
p
2

�
|f(x)i � |1� f(x)i

�
=

1

2n/2

X

x

(�1)f(x)|xi ⌦
1
p
2
(|0i � |1i) .

Again, we ignore the last qubit, which is in “product form”, and apply H⌦n to the first n qubits.
This results in the n-qubit state

1

2n/2

X

x

(�1)f(x)
1

2n/2

X

y

(�1)x·y|yi =
1

2n

X

y

✓X

x

(�1)f(x)(�1)x·y
◆
|yi ,

using again Lemma 3.3. Measuring this state in the computational basis {|yi}y2{0,1}n , we see
that measurement outcome y = (0, . . . , 0) is observed with probability

p(0,...,0) =

����
1

2n

X

x

(�1)f(x)
����
2

,

which is 1 if f is constant and 0 if f is balanced.

37



The same algorithm can also be used for finding s 2 {0, 1}n when given black-box quantum
access to the function fs : {0, 1}n ! {0, 1}, x 7! s · x. In this context, it is then referred to as
the Bernstein-Vazirani algorithm.

Proposition 3.4. For any n 2 N there is a quantum algorithm so that when given black-box
access to Ufs 2 U(H⌦n

⌦H) it makes a single query to Ufs and outputs s with certainty.

Proof. We consider the n-qubit state obtained by means of the Deutsch-Jozsa algorithm:

1

2n

X

x,y

(�1)fs(x)(�1)x·y|yi =
1

2n

X

y

✓X

x

(�1)x·(s� y)

◆
|yi ,

and we observe that the measurement outcome s is observed with probability 1.

3.3 Quantum Algorithms and Complexity

We want to formalize the notion of a quantum algorithm and of the complexity of such an algo-
rithm. Indeed, what is exciting about quantum computation is that, for certain computational
problems, it allows for algorithms with (much) better complexity compared to classical mod-
els of computation. In the above examples, this was demonstrated for the notion of query
complexity, i.e., when one considers algorithms that make black-box queries to some (partly)
unknown “oracle” (typically a function), and we count the number of queries necessary to per-
form the desired computation. What is nice about this notion of complexity is that it allows for
provable lower bounds, and thus for provable separation results between classical and quantum
computation.

But maybe more relevant from a practical perspective is the notion of computational
complexity, which counts the number of “elementary steps” that the algorithm applies to the
input. Here, an “elementary step” would be an “elementary unitary operation”, which in this
context is then referred to as a gate.

In order to formalize the above, let G be a non-empty set of such gates, i.e., of unitary
operators, such that for every G 2 G we have that G 2 U(H⌦k) for some k  n, called the arity
of G. For these gates to be “elementary” we will later require the arity k for every G 2 G to be
small, like at most 2.

In line with previous observations, a gate G 2 U(H⌦k) with arity k can act on an n-
qubit state (vector); but it then needs to be specified on which k of the n qubits, and which
component of G acts on which of the designated k qubits. By default, we label the n qubits by
“1”,“2”,. . . ,“n”, and then write, say, G7,2,8,5 to specify that the first component of G 2 U(H⌦4)
acts on qubit “7”, the second on qubit “2”, etc. Similarly, CNOT4,1 then refers to the CNOT
gate that is controlled by qubit “4” and has target qubit “1”. However, we will make little use
of this notation; instead, we will mainly use pictorial descriptions (see e.g. Figure 3.1).

We can now define the following model of quantum computation, which is a notion of a
quantum algorithm with quantum input and quantum output.

Definition 3.1. An n-qubit quantum circuit with gate set G consists of a finite sequence
[U1, . . . , Ut] of unitaries Ui 2 U(H⌦n), where, for every i 2 {1, . . . , t}, Ui is of the form Ui = GW

with G 2 G and W = (w1, . . . , wk) a sequence of k distinct numbers in {1, . . . , k}, where k is
the arity of G. The computational complexity of such a quantum circuit is given by t.

Remark 3.1. Sometimes, we consider a relaxation of the the above definition where H
⌦n is

replaced by the n-fold tensor product H1 ⌦ · · ·⌦Hn of possibly non-qubit state spaces.

38



A quantum circuit can be nicely depictured with “wires” and with “gates” that act on the
“wires”, as we have already been doing, e.g. in Section 2.6. Figure 3.1 shows such a pictorial
representation of an example quantum circuit with gate set G = {H,CNOT}.

H •

H •

Figure 3.1: Pictorial representation of the quantum circuit H1,CNOT1,2, H2,CNOT2,3.

Definition 3.2. An n-qubit quantum circuit U1, . . . , Ut computes a unitary U 2 U(H⌦n) if
U = Ut · · ·U1; it "-approximately computes U for 0  "  1 if kU � Ut · · ·U1k  ".

More generally, for n0
� n, an n0-qubit quantum circuit U1, . . . , Ut is said to (approximately)

compute an n-qubit unitary U 2 U(H⌦n) if Ut · · ·U1|'i|0i
⌦(n

0�n) equals (or approximates)

U |'i ⌦ |0i⌦(n
0�n) for any |'i 2 S(Hn).

The choice of the norm for measuring the distance between the unitaries is not so important; for
concreteness, we take the operator norm1 here. Similarly for the second part of the definition,
where we take the norm induced by the inner product, but the fidelity is also a common choice.

Remark 3.2. Repeating Remark 2.1, we stress that the convention is to apply such a quantum
circuit as depictured in Figure 3.1 from the left to the right, i.e., first H is applied and then
CNOT etc., whereas the composition U = Ut · · ·U1 is applied to a state |'i from right to left.

Looking back to the decomposition of (multi-)control unitaries, the right hand side of Fig-
ure 2.4 can now be formally understood as (a pictorial representation of) a quantum circuit
with gate set G = {V, V †,CNOT} that computes C2(U), and the right hand side of Figure 2.5
as a quantum circuit, with G consisting of CNOT and the To↵oli gate, that computes Cn(U).

Not so surprising, quantum computing is at least as powerful than classical computing; in
particular, once everything is formalized, it is not hard to see that the following holds.

Theorem 3.5. For any set G of logic gates, like {^,¬}, let f : {0, 1}min ! {0, 1}mout be a
function that can be classically computed by a classical circuit with gate set G and computational
complexity c. Then, there exists an n-qubit quantum circuit that computes Uf with gate set
{Ug | g 2 G} and computational complexity t, where t  2c and n  min +mout + c.

The factor 2 blow-up in complexity comes from the fact that one has to undo all gates that
produce an intermediary (qu)bit, in order to revert the state back to |0i.

We will mainly be interested in quantum algorithms with classical input and classical output.
Such a notion can be easily obtained by modifying Definition 3.2 as follows.

Definition 3.3. For any function f : {0, 1}min ! {0, 1}mout with 0 < min,mout  n, we say
that an n-qubit quantum circuit "-approximately computes f if

�����f(x)
↵⌦
f(x)

��⌦ I
�
Ut · · ·U1|x, 0i

��2 � 1� "

for all x 2 {0, 1}min, where we understand that |0i 2 S
�
H

⌦(n�min)
�
and I 2 U

�
H

⌦(n�mout)
�
.

1kAk = max|'i kA|'ik where the max is over all|'i 2 S(H⌦n).

39



In other words, the algorithm proceeds by encoding the input into a quantum state, appending
an ancilla register, running the quantum circuit, and then measuring (part of) the resulting
state. The approximation parameter " captures the probability of an incorrect outcome.

Sometimes, it will also be convenient to allow some classical “post-processing” of the mea-
surement result obtained after the application of the quantum algorithm; again, this is without
loss of generality since, by Theorem 3.5, such a classical “post-processing” could be incorporated
into the quantum circuit. Note that as soon as " < 1/2, one can amplify the success probability
by repeating the algorithm.

Finally, we point out that we can easily extend the above to a notion of quantum algorithm
with black-box access to a non-specified unitary O 2 U(H⌦k) with a given arity k: we simply
extend the set of gates G to G [ {O}, meaning that the Ui’s may also be instructions to apply
O to k of the qubits. The query complexity is then defined to be the number of i’s for
which Ui is an instruction to apply O. Unless specified di↵erently, such a quantum algorithm
with black-box access acts on the fixed input state |0i 2 S(H⌦n), and the classical output
is obtained by measuring (a specified subset of) the resulting qubits. Once O is instantiated
with a specific unitary, we can then make statements about the statistics of the measurement
outcome. This finally puts the statements of Propositions 3.1, 3.2 and 3.4 on firm theoretical
grounds. See Figure 3.2 below for the quantum circuit for Deutsch’s algorithm, where we have
“stacked” the two H gates that can be applied in parallel, and the last gate on the upper wire
is a measurement in the computational basis.

|0i H
Uf

H

|0i X H

Figure 3.2: Quantum circuit for Deutsch’s algorithm.

3.4 Universal Gate Sets

For the notion of quantum circuits to be complete as a model of computation, we need a gate
set G that, in principle, enables to compute any unitary.

Definition 3.4. A (possibly infinite) set of gates G is called perfectly universal if for any
n 2 N and any unitary U 2 U(H⌦n) there exists an n-qubit quantum circuit with gate set G

that computes ei↵U for some ↵ 2 R.2
G is called approximately universal if for any n 2 N, " > 0 and U 2 U(H⌦n) there exists an
n-qubit quantum circuit with gate set G that "-approximately computes ei↵U for some ↵ 2 R

The freedom in the phase is motivated by the fact that such a global phase has no noticable
e↵ect. As a first step towards obtaining a universal gate set, we show that any unitary can be
decomposed into two-level unitaries, defined as follows.

Definition 3.5. For an arbitrary Hilbert space H with orthonormal basis {|ii}i2I , a unitary
U 2 U(H) is said to be two-level (w.r.t. {|ii}i2I) if U |ii = |ii for all but two choices of i 2 I.

In other words, U acts non-trivially only on (at most) two basis vectors |ki and |`i. It is then
easy to see that U |ki = u11|ki+u21|`i and U |`i = u12|ki+u22|`i, where Ũ :=

⇥
u11 u12
u21 u22

⇤
2 U(C2),

and we write U = I� Ũ . It is also easy to see that U † is two-level if U is, namely U † = I� Ũ †.

2In the literature, the terminology universal is somewhat ambiguously used for di↵erent variations, like for
approximately or perfectly universal, or when allowing the quantum circuit to be over more than n qubits.

40



Proposition 3.6. For an arbitrary Hilbert space H and for any U 2 U(H), there exists two-level
unitaries U1, . . . , UN 2 U(H) (w.r.t. any fixed basis) so that U = U1 · · ·UN .

Proof. If U = I then there is nothing to prove, so we consider U 6= I. Thus, there exists a
maximal k (for any fixed ordering) so that x := hk|U |ki 6= 1. We consider now two cases.

Case 1: hk|U |`i = 0 for all ` 6= k. Here, we note that

1 = hk|ki = hk|UU †
|ki =

X

`

hk|U |`ih`|U †
|ki =

X

`

|hk|U |`i|2 = |hk|U |ki|2 = |x|2 ,

and then consider the two-level (actually one-level) unitary V that acts non-trivially only on
|ki, and does so as V |ki = x̄|ki. We then set U 0 := UV and observe that hk|U 0

|ki = hk|U |kix̄ =
xx̄ = 1, while still hk0|U 0

|k0i = hk0|U |k0i = 1 for all k0 > k.

Case 2: hk|U |`i 6= 0 for some ` 6= k. Let ` maximal and y := hk|U |`i. Here,

1 = h`|`i = h`|U †U |`i =
X

m

h`|U †
|mihm|U |`i =

X

m

hm|U |`i|2 > |h`|U |`i|2

and thus ` < k by the maximality of k, and we then consider the two-level unitary V , called
Givens rotation, that acts only on |ki and |`i, and does so as

V |ki = ū|ki+ v̄|`i and V |`i = v|ki � u|`i

where
u =

xp
|x|2 + |y|2

and v =
yp

|x|2 + |y|2
.

It is easy to verify that V is unitary. Furthermore, setting U 0 := UV , we observe that

hk|U 0
|`i = vhk|U |ki � uhk|U |`i = vx� uy = 00 ,

while still hk|U 0
|`0i = 0 for all `0 > ` with `0 6= k, and still hk0|U 0

|k0i = 1 for all k0 > k.

Thus, in either case, by a recursive application of the above to U 0, we obtain a finite sequence
V1, . . . , VN of two-level unitaries so that UV1 · · ·VN = I. By inverting the two-level unitaries,
we obtain the claimed result.

For the remainder, we again fix H to be H = C2. The following shows that all single-qubit
gates together with CNOT form a universal set of gates.

Theorem 3.7. The gate set G = {CNOT } [ U(H) is perfectly universal.

Proof. By Proposition 3.6 above, it is su�cient to show that any two-level unitary U = I � Ũ
(w.r.t. the computational basis) can be computed with G.3 For this, we first consider the special
case where the two basis vectors |ki and |`i on which U acts nontrivially are such that k 2 {0, 1}n

and ` 2 {0, 1}n di↵er in only one bit, say, |ki = |k1i · · · |kn�1i|0i and |`i = |k1i · · · |kn�1i|1i.4

In this case, we consider the multi-control unitary C = Cn�1[k1, . . . , kn�1](Ũ) that is controlled
by the first n � 1 qubits to be in state |k1, . . . , kn�1i and acts on the last qubit as Ũ , and we
see that

C|ki = |k1, . . . , kn�1i ⌦ Ũ |0i = |k1, . . . , kn�1i ⌦ (u11|0i+ u21|1i) = u11|ki+ u21|`i = U |ki

3Note, however, that the computational complexity of computing general unitaries by means of two-level
unitaries is quadratic in d = 2n, and thus exponential in n. Thus, for e�cient quantum computation, we need
more clever ways to compute the unitaries of interest.

4That it is the last bit here makes the writing easier but is not crucial to the argument.

41



and similarly C|`i = U |`i, while C|ii = |ii for any i 6= k, `. Thus, C = U , and by Corollay 2.8
such a multi-control unitary can be computed with G.

In the more typical case where k and ` di↵er in more than one bit, we argue by induction
on the number of bits they di↵er. Choose k0 2 {0, 1}n such that k0 and k di↵er in one bit, and
k0 and ` in one bit less than k and `. Consider the two-level Hermitian unitary V that maps
V |ki = |k0i and V |k0i = |ki. Then, V UV |ii = V U |ii = V |ii = |ii for any i 62 {k, k0, `}, but also
V UV |ki = V U |k0i = V |k0i = |ki. Thus, the unitary U 0 := V UV acts non-trivial only on |k0i
and |`i, and so we can apply the induction hypothesis to V and U 0. Given that U = V U 0V ,
this then proves the claim.

In combination with Theorem 1.4, we immediately get the following “smaller” gate set.

Corollary 3.8. The gate set G = {CNOT } [
S

0✓<4⇡
{RY (✓), RZ(✓)} is perfectly universal.

We conclude the discussion of universal gate sets with the following two fundamental results,
which we state here without (full) proofs. The first result shows that we can replace the
uncountable set of 1-qubit gates in the universal gate set G considered above by two particular
1-qubit gates and still get an approximate universal gate set, and the second result shows that
these two single 1-qubit gates approximate any 1-qubit gate with low computational complexity.

Theorem 3.9. For any n 2 N, " > 0 and U 2 U(H⌦n) there exists an n-qubit quantum circuit
with gate set G = {H,T,CNOT } that "-approximately computes U .

Recall that T = S⇡/4, sometimes also referred to as ⇡/8 gate. Up to an irrelevant global phase,
it coincides with RZ(⇡/4).

Proof (idea). Doing the calculation, one can show that THTH performs a rotation of the Bloch
sphere with angle ✓ defined by cos(✓/2) = cos2(⇡/8). This ✓ can be shown to be an irrational
multiple of 2⇡; as a consequence, a rotation with any angle can be approximated by a suitable
number of repetitions THTH. The same holds for HTHT , but with respect to a di↵erent
axis. With these two rotations, it is then possible to do any rotation, and thus in particular the
rotations RZ and RY , and the claim then follows from Corollary 3.8.

Theorem 3.10 (Solovay-Kitaev). Let G be a gate set that is closed under inversion, and let
n 2 N be a constant. Then, for any U 2 U(H⌦n) that can be "-approximately computed by a n-
qubit quantum circuit with gate set G for any " > 0, there exists an n-qubit quantum circuit with
gate set G that "-approximately computes U and has computational complexity O

�
log4(1/")).

In the remainder of these notes, when dealing with (e�cient) quantum circuits, we typically
leave the gate set G implicit, taking it as understood that the quantum circuits considered work
with “simple” 1- and 2-qubit gates; this is well justified by the Solovay-Kitaev theorem.

3.5 Simon’s Algorithm

As we have seen, the Deutsch-Jozsa algorithm performs exponentially better than any determin-
istic classical algorithm in the worse case, but only minorly better than a randomized classical
algorithm with bounded-error. On the other hand, the Bernstein-Vazirani algorithm does clearly
outperform any randomized classical algorithm, though only by a linear factor. Here, we present
a problem where quantum algorithms are exponentially more e�cient than randomized classi-
cal algorithms. We are still in the query complexity setting, where such a separation can be
proven. Later, when discussing Shor’s algorithm, we will see a super-polynomial separation in

42



computational complexity between quantum and classical algorithms, but those come without
proofs due to the lack of classical lower-bound proofs.

Here, the computational problem is the following. Given a function f : {0, 1}n ! {0, 1}n

with the promise that there exists a non-zero “period” s 2 {0, 1}n such that

f(x) = f(x0) () x0 2 {x, x� s} (3.1)

for all x, x0 2 {0, 1}n, find s. For a classical algorithm with black-box access to f , in order to
find s, it must query f on two inputs x and x0 with x0 = x � s (or else must have excluded
all other choices for s by means of such a pair of queries). Thus, an algorithm that has made
q queries, and so can check q(q � 1) di↵erences, has a probability O(q2/2n) of having found s.
For this to be, say, a constant, q needs to be ⌦(2n/2), i.e., exponential in n. We emphasize
that probabilities here are over the random choice over all functions with the given constraint.
Simon’s algorithm shows that one can do exponentially better with a quantum algorithm.

Proposition 3.11. For any integers n, k 2 N, there exists a quantum algorithm with black-box
access to Uf 2 U(H⌦n

⌦H
⌦n) and query complexity n+k�1 that outputs s with property (3.1)

with probability at least 1� 2�k, assumed it exists.

We remark that while the classical lower bound is meaningful only for a randomly chosen
function f with the required property, the quantum upper bound holds for any such function.

|0i /n H⌦n

Uf

H⌦n y

|0i /n

Figure 3.3: Quantum circuit for Simon’s algorithm.

Proof. The algorithm is given in Figure 3.3. It starts o↵ with 2n qubits in state |0i and applies
H to the first n to obtain

1

2n/2

X

x

|xi|0i ,

where we understand that the sum is over x 2 {0, 1}n. Applying Uf results in

1

2n/2

X

x

|xi|f(x)i .

For the purpose of this analysis, let us assume that we now measure the second half of the state;
whether this measurement takes place now or later (or not at all) makes no di↵erence in the
distribution of k; this follows from the fact that actions on di↵erent registers commute.

As a result of this measurement, we observe some value z 2 {0, 1}n, and the state of the
first n qubits collapses to

1
p
2
(|xi+ |x+ si)

where x is such that f(x) = z. Following previous patterns, the algorithm applies H again to
the first n qubits. This results in

1

2n/2

X

y

1
p
2

�
(�1)x·y|yi+ (�1)(x+s)·y

|yi
�
=

1

2n/2

X

y

1
p
2
(�1)x·y

�
1 + (�1)s·y

�
|yi .

Now we observe that the amplitude of |yi is 0 if s·y = 1, and it is ±1/
p

2n�1 otherwise. Thus, by
measuring, we will observe a uniformly random y 2 {0, 1}n with the property that s · y = 0. By

43



repeating this procedure n+k�1 times, noting that n+k�1 random and independent vectors
chosen from a vector space over F2 of dimension n� 1 have full rank except with probability at
most 2�k (see below), s can then be found by means of basic linear algebra techniques.

In the proof, we made use of the following technical lemma.

Lemma 3.12. Let F be a finite field, and let n, k 2 N. Then, the probability that a uniformly
random matrix A 2 Fn⇥(n+k) does not have full rank n is at most |F|�k.

Proof. Let pi be the probability that the i-th row of A lies in the linear span of the first i � 1
rows. Note that this linear span has cardinality at most |F|i�1. Thus,

pi 
|F|i�1

|F|n+k
=

1

|F|n+k�i+1
.

Now, for A to not have full rank, there must exist a row that is in the linear span of the previous
rows. Thus, by union bound, the probability of A not having full rank is at most

nX

i=1

pi 
nX

i=1

1

|F|n+k�i+1


1

|F|k
nX

i=1

1

|F|n�i+1


⇣ 1

2n
+ · · ·+

1

2

⌘ 1

|F|k 
1

|F|k ,

as claimed.

3.6 Grover’s Algorithm for Unstructured Search

Grover’s algorithm is again less impressive in terms of speed-up, but it applies to a very natural
computational problem: given a function f : {0, 1}n ! {0, 1} for which there exist exactly M
choices of x 2 {0, 1}n for which f(x) = 1, find such an x. Any classical algorithm with black-box
access to f that succeeds with constant probability has query complexity ⌦(2n/M). With a
quantum algorithm, we can gain a quadratic speed up.

Proposition 3.13. For any positive integers n and M  2n, there exists a quantum algorithm
with black-box access to Uf 2 U(H⌦n

⌦ H) and query complexity O
�p

2n/M
�
that outputs x

with f(x) = 1 with probability at least 1�M/2n, given that there exist exactly M such x’s.

Note that the algorithm needs to know M , which is not very realistic in typical applications.
As will become from the proof, the algorithm still works though, say with success probability
at least 1/2, if a su�ciently good approximation is known. As a matter of fact, by essentially
running the algorithm with cleverly chosen guesses for M , an expected number of O

�p
2n/M

�

queries still su�ce to find a solution in case M is unknown.

Proof. By the phase kickback technique from Sections 3.1 and 3.2, we may just as well assume
black box access to Vf 2 U(H⌦n) with Vf |xi = (�1)f(x)|xi. The algorithm starts o↵ with
|0i 2 S(H⌦n) and applies H⌦n. This is followed by ` Grover iterations and, finally, the resulting
state is measured. As illustrated in Figure 3.5 below, the Grover iteration consists of: applying
Vf , applying H⌦n, applying a conditional phase shift P = 2|0ih0|� I 2 U(H⌦n), which is such
that P |0i = |0i and P |xi = �|xi for x 6= 0, and applying H⌦n once more.

|0i /n H⌦n Vf H⌦n P H⌦n · · · Vf H⌦n P H⌦n

G G

Figure 3.4: Quantum circuit for Grover’s algorithm.

44



We now analyze the algorithm and determine `, which then obviously determines the query
complexity. Consider

| i = H⌦n
|0i =

1

2n/2

X

x

|xi ,

and note that H⌦nPH⌦n = H⌦n(2|0ih0| � I)H⌦n = 2| ih | � I, so that the Grover iteration
may be written as

G = H⌦nPH⌦nVf = (2| ih |� I)Vf .

On order to understand the action of G, we set

|�i :=
1

p
M

X

x s.t.
f(x)=1

|xi and |�i :=
1

p
N �M

X

x s.t.
f(x)=0

|xi ,

where N = 2n, and we observe that we can write

| i =

r
N �M

N
|�i+

r
M

N
|�i = cos(✓�) |�i+ sin(✓�) |�i =: | ✓�i

for the proper choice of ✓� 2 [0, ⇡
2
]. We note that measuring | i = | ✓�i (in the computational

basis) produces a uniformly random x 2 {0, 1}n, and thus f(x) = 1 will be satisfied with
probability M/N only. What we will see is that the Grover iterations will bring | ✓�i closer
and closer to the “good” state |�i, which is such that measuring |�i produces an x that satisfies
f(x) = 1 with certainty.

For this purpose, let us first consider the action of Vf . It follows immediately by definition
that

Vf |�i = |�i and Vf |�i = �|�i

Thus, within the space spanned by |�i and |�i (over R), the unitary Vf acts as a reflection
across the axis spanned by |�i. Similarly, for P 0 := H⌦nPH⌦n = (2| ih |� I), we have that

P 0
| i = | i and P 0

| ?
i = �| ?

i

for any | ?
i in the span of |�i and |�i with h | ?

i = 0. Thus, within the space spanned by
|�i and |�i (over R), the unitary P 0 acts as a reflection across the axis spanned by | i. The
composition of the two is then a rotation by angle 2✓� towards |�i, see Fig. 3.5. Thus, the
Grover iteration G maps | ✓�i to | 3✓�i, and | 3✓�i to | 5✓�i, etc.

| ✓i

|�i

| ✓�i

|�i

| ✓+2✓�i

| �✓i

Figure 3.5: A Grover iteration, mapping | ✓i
Vf
7! | �✓i

P
0

7! | ✓+2✓�i.

Alternatively, arguing purely trigonometrically, for any ✓ we have that

Vf | ✓i = cos(✓) |�i � sin(✓) |�i = | �✓i ,

45



while working out | ih | and using basic trigonometric identities,

�
2| ih |� I

�
|�i = (2 cos(✓�)

2
� 1) |�i+ 2 sin(✓�) cos(✓�) |�i

= cos(2✓�) |�i+ sin(2✓�) |�i

and

�
2| ih |� I

�
|�i = 2 sin(✓�) cos(✓�) |�i+ (2 sin(✓�)

2
� 1) |�i

= sin(2✓�) |�i � cos(2✓�) |�i ,

so that, putting all together, we obtain

G| ✓i =
�
2| ih |� I

�
Vf | ✓i

=
�
2| ih |� I

��
cos(✓) |�i � sin(✓) |�i

�

=
�
cos(✓) cos(2✓�)� sin(✓) sin(2✓�)

�
|�i+

�
cos(✓) sin(2✓�) + sin(✓) cos(2✓�)

�
|�i

= cos(✓ + 2✓�) |�i+ sin(✓ + 2✓�) |�i .

Therefore, the state | i = | ✓�i after the application of the initalH⌦n evolves as | ✓�i, | 3✓�i,
| 5✓�i etc. Ideally, we want to choose ` such that (2`+1)✓� =

⇡

2
, so that the final state | (2`+1)✓�i

that is measured equals |�i, and so we observe x with f(x) = 1 with certainty. Furthermore,
using that

p
M/N = sin(✓�)  ✓�, we then have that `, and thus the query complexity of the

algorithm, is O(1/✓�) = O(
p

N/M). In general, this choice of ` will not be an integer, and then
we have to round to the closest integer; the probability of observing x with f(x) = 1 is then
still at least

sin
⇣⇡
2
± ✓�

⌘
2

= 1� cos
⇣⇡
2
± ✓�

⌘
2

= 1� sin(✓�)
2 = 1�M/N ,

as claimed.

Our focus here is on query complexity, but we do want to point out that by means of the
techniques from Section 2.6, the P gate can be implemented using O(n) elementary gates (plus
O(n) work qubits), and thus the computational complexity is larger by a factor O(n) only.

46


