
Chapter 2

Multipartite Quantum Systems

The formalism introduced in the previous chapter allows us to describe individual “quantum-
mechanical objects” and predict their individual behavior. In this chapter, we extend the
formalism so as to be able to capture multiple “quantum-mechanical objects” and predict their
joint behavior. For instance, we may want to study how the respective polarizations of two
photons behave in a certain experiment.

2.1 Multipartite Quantum Systems

Consider two labeled Hilbert spaces HA and HB (see Section 0.6) for distinct labels A and B.
By default, we then understand A and B to refer to two quantum systems, and HA and HB

as their respective state spaces. Following Section 0.6, the Hilbert space HAB with label AB is
then given by the tensor product

HAB = HA ⌦HB .

HAB is then understood to be the state space of the bipartite quantum system that consists of
the subsystems A and B. The corresponding holds for general multipartite systems, consisting
of an arbitrary (finite) number of subsystems. The physical relevance should be clear: the state
of two (or more) quantum systems is described by a state vector in the tensor product of the
individual state spaces.

If the state of A is given by state vector |'i 2 S(HA) and the state of B by | i 2 S(HB) then
the state of the bipartite system AB—sometimes also referred to as the joint state— is given
by |⌦i = |'i⌦ | i 2 S(HAB). We refer to such a state (vector) |⌦i that is a pure tensor |'i⌦ | i
as a product state. We emphasize though that in general, if A and B (i.e., the two quantum
systems of concern) were not kept in isolation from each other but may have interacted, their
joint state is described by an arbitrary state vector |⌦i in S(HAB). In this case, i.e., if |⌦i
is not a product state, we say that A and B are entangled; entanglement is another strange
phenomenon of quantum physics.

By identifying any operator R 2 L(HA) with R ⌦ I 2 L(HAB), we naturally recover the
evolution of bipartite (or multipartite) quantum systems when acting on a subsystem. For
instance, applying a unitary U 2 U(HA) to subsystem A of a bipartite system AB has the e↵ect
that their joint state |⌦i 2 S(HAB) evolves to

UA |⌦iAB = (U ⌦ I)|⌦i 2 S(HAB) .

Similarly, Definition 1.4 extends to measurements M 2 MeasI(HA) and states |⌦i 2 S(HAB).
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In the special case of rank-1 projective measurements, we then get the following. First, we
observe that by elementary properties we have that for any |⌦i 2 S(HAB) and orthonormal
basis {|ii}i2I of HA, we can write

|⌦i =
X

i2I
↵i|ii| ii

with ↵i 2 C and | ii 2 S(HB) for all i 2 I, and where
P

i
|↵i|

2 = 1. For a rank-1 projective
measurement {|iihi|}i2I 2 MeasI(HA) given by {|ii}i2I , we then see that

pi = h⌦|(|iihi|⌦ IB)|⌦i = |↵i|
2

and

|⌦i
i =

1
p
pi
(|iihi|⌦ IB)|⌦i =

↵i

|↵i|
|ii| ii ⌘ |ii| ii .

Thus, also here, as in Section 1.4, we can easily “read out” the statistics and the corresponding
post-measurement states when the original state is expressed in the basis that determines the
(rank-1 projective) measurement.

We point out that actions on di↵erent subsystems commute. For instance, for U 2 U(HA)
and Mi 2 M 2 MeasI(HB), it holds that

(IA ⌦Mi)(U ⌦ IB)|⌦i = (U ⌦Mi)|⌦i = (U ⌦ IB)(IA ⌦Mi)|⌦i .

This reads as follows. Whether we first apply U to A and then measure B, or we first measure
B and then apply U to A, we get the same probability pi to observe outcome i:

pi = h⌦|(U †
⌦M †

i
)(U ⌦Mi)|⌦i = h⌦|(IA ⌦M †

i
Mi)|⌦i

and the same post-measurement state:

|⌦i
i = (U ⌦Mi)|⌦i .

2.2 No-Cloning

The goal of cloning is to turn an unknown quantum state into two copies of the original state.
Clearly, if the state to be cloned is promised to be one out of two (or more) given states
that are perfectly distinguishable, then the state can be (perfectly) cloned: simply perform a
measurement that tells which state it is, and then prepare this state twice “from scratch”. The
no-cloning theorem tells us that this is the only case where cloning is possible.

Theorem 2.1 (No-cloning theorem). Let V 2 L(HA,HA⌦HA0) be an isometry with HA = HA0,
and let |'i, | i 2 S(HA). Then, unless h'| i = 0 or |'i ⌘ | i, it is not possible that both

V |'i ⌘ |'i|'i and V | i ⌘ | i| i .

Note that Theorem 2.1 considers cloning by means of an isometry, whereas above we speak of
cloning in terms of measuring and preparing new states. We will later see that there is no loss
of generality here.

Proof. We show the contraposition and thus assume that both equalities do hold. By taking
the inner product of these two equalities, we obtain

h'| i = h'|V †V | i ⌘ h','| , i = h'| i2

from which it follows that either h'| i = 0, and we are done, or |h'| i| = 1. In case of the
latter, by the tightness condition for Cauchy-Schwarz, |'i and | i must then be equal up to a
scalar !, which must then be in S(C).
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2.3 Naimark’s Dilation Theorem

We show here that projective measurements are equally powerful as general measurements
when allowing “pre-processing”, in the sense that any general measurement M on a system
A can be “simulated” by means of appending an ancilla system B to A, applying a unitary
transformation to the joint system AB, and then doing a projective measurement, actually
doing a rank-1 projective measurement on B.

Theorem 2.2 (Naimark’s dilation theorem). Let M = {Mi}i2I 2 MeasI(HA), and let {|ii}i2I
be an orthonormal basis of HB = C|I|. Then, there exists an isometry V 2 L(HA,HAB) such
that for every |'i 2 S(HA) and i 2 I

Mi|'i ⌦ |ii = (IA ⌦ |iihi|)V |'i .

By basic properties of isometries, as discussed in Section 0.2, V can be chosen to be of the form
UV�, for V� the particular isometry HA ! HAB, |'i 7! |'i|0i, and U 2 U(HAB); such a state
|0iB that is “appended” to a given state in this manner is called an ancilla. Naimark’s dilation
theorem then means that every general measurement is equivalent to appending an ancilla,
applying a unitary (to the joint system), and performing a rank-1 projective measurement on
the ancilla system (and ignoring the collapsed state of the ancilla).

Proof. Consider V 2 L(HA,HAB) defined by

V |'i =
X

i2I
Mi|'i ⌦ |ii

for any |'i 2 HA. It is then clear that (IA ⌦ |iihi|)V |'i = Mi|'i ⌦ |ii. Furthermore, V is an
isometry since for any |'i, | i 2 HA it holds that

h |V †V |'i =
X

i,j2I
(h |M †

j
⌦ hj|)(Mi|'i ⌦ |ii)

=
X

i,j2I
h |M †

j
Mi|'ihj|ii =

X

i2I
h |M †

i
Mi|'i = h |'i .

This proves the claim.

If one is merely interested in the measurement outcome (and its distribution), but not in
the post-measurement state, then also the converse holds: applying an isometry V followed
by a measurement, given by a POVM {Ei}i2I , gives rise to the same distribution as directly
performing the measurement given by the POVM {V †EiV }i2I .

2.4 Quantum Teleportation

By teleportation, we understand the process of transporting a physical system from one place
to another, without actually moving the physical system through the intervening space, merely
classical information is communicated. We capture this by the following theorem.

Theorem 2.3. Let HA = HB = HE = C2, and let |�i 2 S(HA ⌦HB) be an EPR pair. Then,
there exists M 2 MeasI(HE ⌦HA) and a family {Ui}i2I of unitaries in U(HB), such that for
every |'i 2 S(HE) and i 2 I there exists | i

i 2 S(HE) such that

�
IEA ⌦ Ui

��
1p
pi
Mi ⌦ IB

�
|'i|�i = | i

i ⌦ |'i .
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In other words, Alice can teleport the state |'i 2 S(HE) to Bob by measuring EA and sending
the measurement outcome i to Bob, and Bob can recover |'i by applying Ui to B (see Figure 2.1).

|'i
M�����

�
i

Ui |'i

Figure 2.1: Quantum teleportation.

The measurement on Alice’s side is given by the Bell states

|�+
i =

1
p
2

�
|0i|0i+ |1i|1i

�
| +

i =
1
p
2

�
|0i|1i+ |1i|0i

�

|��
i =

1
p
2

�
|0i|0i � |1i|1i

�
| �

i =
1
p
2

�
|0i|1i � |1i|0i

�
,

which form a basis of the 2-qubit state space C2
⌦C2. The first state vector, |�+

i, is called an
EPR pair, named after Einstein, Podolsky and Rosen; | +

i is called a singlet state. As can
easily be verified, the inverse basis transformation is given by

|0i|0i =
1
p
2
(|�+

i+ |��
i) |1i|0i =

1
p
2
(| +

i � | �
i)

|0i|1i =
1
p
2
(| +

i+ | �
i) |1i|1i =

1
p
2
(|�+

i � |��
i) .

Proof. M is the projective rank-1 measurement given by the Bell basis; the unitaries, we will
fix later. Consider now an arbitrary qubit state |'i = ↵|0i+ �|1i 2 HE. The joint state is then
given by the 3-qubit state

|⌦i = |'i ⌦ |�+
i = (↵|0i+ �|1i)⌦

1
p
2

�
|0i|0i+ |1i|1i

�

=
↵
p
2
|0i|0i|0i+

↵
p
2
|0i|1i|1i+

�
p
2
|1i|0i|0i+

�
p
2
|1i|1i|1i .

To understand the e↵ect of the Bell measurement, we rewrite the two qubits that Alice controls
in the Bell basis, and obtain

|⌦i =
1

2
|�+

i
�
↵|0i+�|1i

�
+

1

2
|��

i
�
↵|0i��|1i

�
+

1

2
| +

i
�
�|0i+↵|1i

�
+

1

2
| �

i
�
��|0i+↵|1i

�
.

Hence, depending on the measurement outcome, the state collapses to one of the following four
states.

|�+
i
�
↵|0i+�|1i

�
, |��

i
�
↵|0i��|1i

�
, | +

i
�
�|0i+↵|1i

�
, or | �

i
�
� �|0i+↵|1i

�

Note the similarity of Bobs qubit to the original state |'i = ↵|0i+ �|1i; in all cases, the qubit
Bob controls can be transformed into the right state by a suitable unitary: in case of the first of
the four possible measurement outcomes, it is simply the identity, in case of the second possible
outcome, it is the unitary that maps |0i to |0i and |1i to �|1i, etc.
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2.5 “Quantum” versus “Classical” Information

So far, and we will to a large extent continue doing so, we have carefully distinguished between
classical and quantum information. Formally, “classical information”, like the outcome of a
measurement, is captured by an element x of some given non-empty finite set X . On the other
hand, “quantum information” is captured by a state vector |'i in some given Hilbert space. We
want to argue here that we may also use the quantum formalism to capture classical information,
i.e., in other words, we may understand quantum information as a generalization of classical
information.

For this purpose, for any given (non-emtpy finite) set X , we consider a fixed orthonormal
basis {|xi}x2X of the state space H = C|X |, and we identify x 2 X with |xi 2 S(H). It is in this
sense that the qubit states |0i and |1i represent the respective classical bits 0 and 1. We note
that such an “encoding of classical information into a quantum state” can be “decoded” simply
by measuring the “encoding” |xi in the considered basis {|xi}x2X : the classical measurement
outcome x is observed with probability 1.

We can also use the quantum formalism to capture classical information processing, by
identifying classical functions by unitary operators. For example, we see that the logical not
function ¬ : {0, 1} ! {0, 1}, x 7! x � 1, where � is the addition modulo 2, is captured by the
the Pauli-X unitary, as introduced in Section 1.2:

|¬xi = X|xi

for any x 2 {0, 1}. Another example is the 2-qubit SWAP operator SWAP 2 U(C2
⌦ C2),

defined by
SWAP |xi|yi = |yi|xi

for all x, y 2 {0, 1}, which captures the 2-bit function that swaps the input bits by means of a
2-qubit unitary. Another simple yet important example is the 2-qubit control-NOT operator
CNOT 2 U(C2

⌦ C2), defined by

CNOT |xi|yi = |xi|x� yi

for all x, y 2 {0, 1}, which captures the 2-bit function that applies the logic not to the second
bit if and only if the first is 1. We emphasize that this representation of a function by means
of a unitary crucially depends on the choice of basis used for representing classical information
by means of quantum states. Indeed, it is interesting to see how CNOT acts on an input that
is classical with respect to the Hadamard basis, i.e., what CNOT (H|xi ⌦ H|yi) evaluates to
(when expressed in the Hadamard basis {H|0i, H|1i} again). We leave this as an exercise.

We also emphasize that the above approach for representing a classical function f by means
of the operator |xi 7! |f(x)i only works if the function is injective, as otherwise the operator is
not unitary. In order to deal with an arbitrary function, one uses the following approach.

Definition 2.1. For any function f : X ! Y, we define Uf 2 U(HX ⌦HY ) given by

Uf : |xi|yi 7! |xi|y � f(x)i

so that
Uf |xi|0i = |xi|f(x)i .

Here, it is understood that fixed bases {|xi}x2X and {|yi}y2Y of HX = C|X | and HY = C|Y|

have been respectively chosen, and � is an operation that turns Y into an Abelian group with
neutral element 0. Often, this group structure is naturally given.

In this light (and with the obvious way to understand the binary set {0, 1} as a group), we
actually have that CNOT = Uid for the identity function id : {0, 1} ! {0, 1}, x 7! x, but this is
not how we think of CNOT.
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2.6 Control Unitaries

The control-NOT operator CNOT 2 U(C2
⌦ C2) can also be understood in that it applies the

Pauli X operator to the target qubit if (and only if) the control (qu)bit is set. This naturally
generalizes.

Definition 2.2. For any U 2 U(H), the corresponding control unitary C(U) 2 U(C2
⌦H)

(w.r.t. {|0i, |1i}) is defined as

C(U) := |0ih0|⌦ I+ |1ih1|⌦ U ,

so that C(U)|xi|'i = |xi ⌦ Ux
|'i for arbitrary x 2 {0, 1} and |'i 2 H. More generally, for

arbitrary n 2 N the multi-control unitary Cn(U) 2 U(C2
⌦ · · ·⌦ C2

⌦H) is defined to map

Cn(U) : |x1i · · · |xni|'i 7! |x1i · · · |xni ⌦ Ux1···xn |'i

for arbitrary x1, . . . , xn 2 {0, 1} and |'i 2 H.

We note that the above definition of C(U) is so that the first qubit is the control qubit and
the second qubit is the target state, but we also speak of a control unitary and write C(U)
if it is the other way round, or, in case of a multi-control unitary, if the target state is at an
arbitrary position. For instance, one could consider labeled Hilbert spaces, say using “1” and
“2” as labels, and C1(U2) would then be controlled by (the system labeled with) “1” and have
(the system labeled with) “2” as target, and vice versa for C2(U1) then. However, we typically
clarify this matter in an ad-hoc manner, or by means of picturing them appropriately as gates
in a quantum circuit (see the upcoming figures)

We also emphasize that even though the definition of a (multi-)control unitary is in terms
of how Cn(U) acts when the control qubits are classical, i.e. |0i or |1i, the action of the control
unitary is well defined on the entire space, and thus may be applied to an arbitrary state.
Furthermore, maybe somewhat counterintuitive, Cn(U) may in such a case then actually modify
the control qubits.

Obviously, we have CNOT = C(X). Furthermore, C2(X) is referred to as To↵oli gate.
Of course, we can also consider variations of (multi-)control unitaries, where the unitary U is
applied conditioned on another setting of the control qubit(s) than being (all) one. Formally,
for any c = (c1, . . . , cn) 2 {0, 1}n we can consider

Cn[c](U) := (Xc1�1
⌦ · · ·⌦Xcn�1

⌦ I)Cn(U) (Xc1�1
⌦ · · ·⌦Xcn�1

⌦ I) ,

which is such that

Cn[c](U)|xi|'i =

⇢
|xi ⌦ U |'i if x = c

|xi|'i else
.

• •

•

•

U

•

•

U

Figure 2.2: Pictorial gate representations of CNOT, the To↵oli gate, C(U) and C3[1, 0, 1](U).
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2.7 Decomposing Control Unitaries

Our goal here will be to show that for any single-qubit unitary U 2 U(C2), the corresponding
(multi-)control unitary Cn(U) can be decomposed into CNOT and single-qubit unitaries.

First, we need the following technical result.

Lemma 2.4. For any U 2 U(C2) there exist A,B,C 2 U(C2) and ↵ 2 R so that

ABC = I and ei↵AXBXC = U .

Proof. By means of the Z-Y decomposition (Theorem 1.4) and introducing a factor 2 for con-
venience, we can write U as U = ei↵RZ(2�)RY (2�)RZ(2�). Setting

A := RZ(2�)RY (�) , B := RY (��)RZ(�� � �) and C := RZ(�� + �) ,

we then immediately see that ABC = I, but also, by basic properties of X, RY and RZ ,

AXBXC = RZ(2�)RY (�)XRY (��)XXRZ(����)XRZ(��+�) = RZ(2�)RY (2�)RZ(2�) ,

which proves the claim.

Theorem 2.5. For any U 2 U(C2) there exist A,B,C 2 U(C2) and ↵ 2 R so that

C(U) = (S↵ ⌦A)CNOT (I⌦B)CNOT (I⌦ C)

See Figure 2.3 below for the representation of the claimed decomposition of C(U) in the form
of a (pictorially represented) quantum circuit.

•

U
=

• • S↵

C B A

Figure 2.3: Computing C(U) with CNOT and single qubit gates.

Remark 2.1. Note that, by convention, such a circuit acts on any input state vector by sequen-
tially applying the gates starting from the left, while e.g. the corresponding term in Theorem 2.5
acts by sequentially applying the unitaries starting from the right.

Proof. Choosing the unitaries A,B,C and ↵ 2 C as promised by Lemma 2.4, it is clear that
(I⌦A)CNOT (I⌦B)CNOT (I⌦ C), where the phase shift gate S↵ is omitted, maps

|0i|'i 7! |0i ⌦ABC|'i = |0i|'i and |1i|'i 7! |1i ⌦AXBXC|'i .

It remains to show that S↵, acting on the first qubit, leaves |0i|'i untouched and maps the
other into |1i ⌦ ei↵AXBXC|'i, but this holds by definition of S↵.

Arbitrary double-control unitaries can be computed from single-control unitaries as follows; the
proof is left as an exercise.

Proposition 2.6. Let U 2 U(H), and let V 2 U(H) be so that V 2 = U . Then C2(U) decom-
poses into CNOT, C(V ) and C(V †) operations, as given in Figure 2.4.
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•

•

U

=
• • •

• •

V V † V

Figure 2.4: Computing C2(U) with CNOT and single-control unitaries.

Remark 2.2. We could circumvent the representation of the claimed decomposition by means of
a quantum circuit by labelling the three qubits as 1, 2 and 3, say, and then express the claimed
operator equality as

C2

12(U3) = C1(V3)CNOT12C2(V
†
3
)CNOT12C2(V3) .

However, such an expression seems harder to parse than a quantum circuit.

By replacing U with Cn�2(U) and V with Cn�2(V ), and applying induction to compute
C
�
Cn�2(V )

�
= Cn�1(V ), we obtain the following.

Corollary 2.7. For any unitary U 2 U(H), the multi-control unitary Cn(U) decomposes into
a sequence of CNOT’s and control unitaries C(V ) with V 2 U(H), all acting on (C2)⌦n

⌦H.

Using Theorem 2.5 to further decompose the control unitaries (in case H = C2), we obtain the
following.

Corollary 2.8. For any single-qubit unitary U 2 U(C2), the multi-control unitary Cn(U) de-
composes into CNOT’s and single-qubit unitaries, all acting on (C2)⌦(n+1).

We point out that the number of gates to be computed in the above recursive construction for
Cn(U) is exponential in n. The following gives a more e�cient way. First, note that applying
Proposition 2.6 to V 2 U(C2) with V 2 = X gives us the means to compute the To↵oli gate
with a single-qubit unitary and CNOT. Then, Figure 2.5 illustrates how a multi-control unitary
Cn(U) can be computed by means of the single-control unitary C(U) and To↵olis, using n� 1
“work qubits” that start o↵ and end up again in state |0i.

•

•

•

•

U
=

• •

• •

• •

• •

U

|0i • • |0i

|0i • • |0i

|0i • |0i

Figure 2.5: Computing Cn(U) with To↵olis and C(U), for the case n = 4.

Formally, we have the following.

Proposition 2.9. For any U 2 U(H) and for V 2 U
�
(C2)⌦n

⌦H⌦ (C2)⌦(n�1)
�
defined by (the

obvious generalization to an arbitrary n of) the right hand side in Figure 2.5, we have

V |xi|'i|0i = Cn(U)|xi|'i ⌦ |0i
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for any x 2 {0, 1}n and |'i 2 H, and where |0i = |0i⌦(n�1).

Remark 2.3. In order for the above equality to extend to any |⌦i 2 (C2)⌦n
⌦H, not necessarily

|⌦i = |xi|'i, it is crucial that the “work qubits” end up again in state |0i, and not in something
that, say, depends on x.
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