Parallel Adams methods

P.J. van der Houwen, E. Messina

Modelling, Analysis and Simulation (MAS)

MAS-R9810 July 31, 1998
Parallel Adams Methods

P.J. van der Houwen & E. Messina
CWI
P.O. Box 94079, 1090GB Amsterdam, The Netherlands

ABSTRACT
In the literature, various types of parallel methods for integrating nonstiff initial-value problems for first-order ordinary differential equation have been proposed. The greater part of them are based on an implicit multistage method in which the implicit relations are solved by the predictor-corrector (or fixed point iteration) method. In the predictor-corrector approach the computation of the components of the stage vector iterate can be distributed over s processors, where s is the number of implicit stages of the corrector method. However, the fact that after each iteration the processors have to exchange their just computed results is often mentioned as a drawback, because it implies frequent communication between the processors. Particularly on distributed memory computers, such a fine grain parallelism is not attractive.
An alternative approach is based on implicit multistage methods which are such that the implicit stages are already parallel, so that they can be solved independently of each other. This means that only after completion of a step, the processors need to exchange their results. The purpose of this paper is the design of a class of parallel methods for solving nonstiff IVPs. We shall construct explicit methods of order k+1 with k parallel stages where each stage equation is of Adams-Bashforth type and implicit methods of order k+2 with k parallel stages which are of Adams-Moulton type. The abscissae in both families of methods are proved to be the Lobatto points, so that the Adams-Bashforth type method can be used as a predictor for the Adams-Moulton type corrector.

1991 Mathematics Subject Classification: 65L06
Keywords and Phrases: numerical analysis, general linear methods, parallelism.
Note: Work carried out under project MAS 1.4 - Exploratory research: Analysis of ODEs and PDEs.

1. Introduction
We consider parallel methods for nonstiff initial-value problems (IVPs) for the first-order ordinary differential equation (ODE)

\[
\frac{dy}{dt} = f(y), \quad y, f \in \mathbb{R}^d, \quad t \geq t_0.
\]

In the literature, various types of parallel methods for integrating such IVPs have been proposed. The greater part of them are based on an implicit method, usually a classical Runge-Kutta (RK) method or a multistep RK method, in which the implicit relations are solved by the predictor-corrector (or fixed point iteration) method. Within each iteration, the predictor-corrector approach is highly parallel. The parallel aspects of the predictor-corrector approach using RK type correctors were analysed in e.g. Lie [15], Nørsett and Simonsen [18], Jackson and Nørsett [14], van der Houwen and Sommeijer [11], Burrage [3], and in Burrage and Suhartanto [5]. More general correctors for parallel computation were constructed in e.g. Miranker and Liniger [17], Chu and Hamilton [8], Birta and Osman Abou-Rabia [2]. The correctors in these last three papers are based on block methods, in which the blocks consist of solution values corresponding with equally spaced abscissae. Extensions to nonequidistant
abscissae were studied in [12], [13] and [21]. An extensive survey of parallel predictor-corrector methods can be found in the text book of Burrage [4].

In all parallel approaches indicated above, the computation of the components of the stage vector iterate can be distributed over s processors, where s is the number of implicit stages of the corrector method. However, the fact that after each iteration the processors have to exchange their just computed results is often mentioned as a drawback, because it implies frequent communication between the processors. Particularly on distributed memory computers, such a fine grain parallelism is not attractive.

An alternative approach is based on implicit multistage methods which are such that the implicit stages are already parallel, so that they can be solved independently of each other. This means that only after completion of a full integration step, the processors need to exchange their results. An example of an implicit method with only parallel stages is an RK method with a diagonal Butcher matrix. Unfortunately, such methods have a low order of accuracy. Higher orders can be obtained in the class of General Linear Methods (GLMs) of Butcher (see [6]). GLMs with parallel stages have been constructed in [20] and [7]. As an example, consider the method [20]

\[
y_{n+21/10} = y_n + \frac{1}{660} h \left[541f(y_{n+11/10}) + 483f(y_n) + 462f(y_{n+21/10}) \right],
\]

\[
y_{n+1} = y_n + \frac{1}{660} h \left[-1000f(y_{n+11/10}) + 230f(y_n) + 1430f(y_{n+1}) \right],
\]

(1.2)

where \(y_{n+21/10}\) and \(y_{n+1}\) provide a 2nd-order and a 3rd-order approximation to \(y(t_{n+21/10})\) and \(y(t_{n+1})\), respectively. Evidently, the two associated implicit relations can be solved concurrently. Hence, effectively the method behaves as a one-implicit-stage method, provided that two processors are available. However, the methods of [20] and [7] are meant for stiff IVPs and great care was taken to make them A-stable. For a given number of stages, this of course limits the order of accuracy.

The purpose of this paper is the design of a class of parallel GLMs for solving nonstiff IVPs. Since the stability region is allowed to be finite, we can derive methods such that for a given number of stages, the orders of accuracy are greater than those of the A-stable methods derived in [20] and [7]. In fact, we shall construct explicit GLMs of order \(k+1\) with \(k\) parallel stages where each stage equation is of Adams-Bashforth type and implicit GLMs of order \(k+2\) with \(k\) parallel stages which are of Adams-Moulton type. The abscissae in both families of GLMs are proved to be the Lobatto points, so that the Adams-Bashforth type GLM can be used as a predictor for the Adams-Moulton type corrector.
2. General linear methods

In 1966 Butcher proposed the general linear method

\[
Y_{n+1} = (R \otimes I)Y_n + h(S \otimes I)F(Y_n) + h(T \otimes I)F(Y_{n+1}), \quad n = 1, 2, \ldots
\]

Here \(R, S \) and \(T \) denote \(k \times k \) matrices, \(\otimes \) the Kronecker product, \(h \) is the stepsize \(t_{n+1} - t_n \), and each of the \(k \) components \(y_{n+1,i} \) of the \(kd \)-dimensional solution vector \(Y_{n+1} \) represents a numerical approximation to \(y(t_n + a_ih) \), to \(hy'(t_n + a_ih) \) or "to any other quantity which enables us to construct and describe useful methods" (see Butcher [6, p. 339]). The vector \(a := (a_i) \) is called the abscissa vector, the quantities \(Y_n \) the stage vectors and their components \(y_{ni} \) the stage values. Furthermore, for any vector \(Y_n = (y_{ni}) \), \(F(Y_n) \) contains the righthand side values \((f(y_{ni})) \).

The GLM (2.1) is completely determined by the arrays \(\{R, S, T\} \) and the starting vector \(Y_1 \). Thus, given \(\{Y_1, R, S, T\} \), (2.1) completely defines the sequence of vectors \(Y_2, Y_3, Y_4, \ldots \).

In this paper, we shall assume that \(a_k = 1 \) and that all components of \(Y_{n+1} \) represent numerical approximations to solution values \(y(t_n + a_ih) \). Furthermore, we restrict our considerations to the case where \(T \) is a diagonal matrix with nonnegative diagonal entries \(d_i \). Such GLMs will be referred to as GLMs with parallel stages.

2.1. Solution of the implicit relations

If the matrix \(T \) has one or more nonzero diagonal entries \(\delta_i \), then \(y_{n+1,i} \) has to be obtained by solving an (uncoupled) implicit relation of the form

\[
y - \delta_i hf(y) = v_{ni},
\]

where \(v_{ni} \) is the corresponding \(d \)-dimensional vector component of \(V_n := (R \otimes I)Y_n + h(S \otimes I)F(Y_n) \). Note that the equations (2.2) can be solved concurrently. The conventional way of solving (2.2) in nonstiff situations is a fixed point iteration (briefly FP iteration) process of the form

\[
y^{(j)} = \delta_i hf(y^{(j-1)}) + v_{ni}, \quad j \geq 1,
\]

where \(y^{(0)} \) represents an initial stage value iterate. These initial iterates can be generated by the GLM (2.1) with \(T = 0 \) and with the same abscissa vector as the underlying implicit GLM. A sufficient condition for the convergence of the process (2.3) is

\[
h < \frac{1}{\delta_i\|\partial f/\partial y\|}.
\]

Thus, in the construction of GLMs with parallel stages, we should take care that \(\delta_i \) is sufficiently small.

2.2. Consistency

Consistency is defined by substitution of the exact solution into the GLM and by requiring that the residue vanishes as \(h \) tends to zero. The rate by which the residue tends to zero determines the order
of consistency. We shall call the GLM (and the stage vector Y_{n+1}) consistent of order p if the residue upon substitution of the exact solution values $y(t_n + a_i h)$ into (2.1) is of order h^{p+1}. This leads to a set of order conditions to be satisfied by the matrices R, S and T. In addition, in order to have convergence, the GLM should satisfy the necessary condition of zero-stability, that is, the matrix R should have its eigenvalues on the unit disk and the eigenvalues of modulus one should have multiplicity not greater than 1.

From the consistency definition given above, the order conditions follow immediately. Let for any function g, the vector $g(a_i)$ be defined by $(g(a_j))$. Then, on substitution of the exact solution into (2.1) and requiring the Taylor series expansion of the residue to be of order $p+1$ in h yields

\[
(2.5) \quad (R + hS) \exp(bh) - (I - hT) \exp(ah) = O(h^{p+1}), \quad b := a - e.
\]

In the construction of GLMs, we shall start with a given zero-stable matrix R and a diagonal matrix T. The matrix S is then determined by imposing the order conditions. From (2.5) it easily follows that we obtain order of consistency $p = k$ if

\[
(2.6) \quad Re = e, \quad Sb^{j-1} = \frac{1}{j} (a^j - Rb^j) - Ta^{j-1}, \quad j = 1, \ldots, k.
\]

Let us introduce the k-by-k matrices V_x and W_x:

\[
(2.7) \quad V_x := (x, \ldots, x^k), \quad W_x := (e, 2x, 3x^2, \ldots, kx^{k-1}).
\]

The consistency conditions (2.6) can now be expressed as

\[
(2.8) \quad Re = e, \quad SW_b = V_a \cdot RV_b - TW_a.
\]

Given an abscissa vector a with distinct abscissae, a zero-stable matrix R satisfying the condition $Re = e$ and a matrix T, we obtain a family of kth-order GLMs by defining

\[
(2.9) \quad S = (V_a \cdot RV_b - TW_a)W_b^{-1}.
\]

In the case of the predictor formula needed in the FP iteration process, we set $T = O$, so that the S is completely defined as soon as a is prescribed. In the next section, we try to choose the abscissa vector a and the matrix T such that the order of the corrector is greater than k under the constraint that the diagonal entries of T are nonnegative and sufficiently small.

3. Construction of GLMs with parallel stages

If the GLM (2.1) is consistent of order k, then its error constants are given by the components of the vector

\[
(3.1) \quad C(k) := \frac{1}{(k+1)!} \left(Rb^{k+1} + (k+1) (Sb^k + Ta^k) - a^{k+1} \right).
\]
Hence, given a, R, T, and defining S by (2.9), this error vector can be written as

\[(3.2)\quad C(k) := \frac{1}{(k+1)!} \left(Tp(k) - q(k) \right), \]

where the vectors $p(k)$ and $q(k)$ are defined by

\[(3.3)\quad p(k) := (k+1)(a^k - WaWb^{-1}b^k), \quad q(k) := a^{k+1} - Rb^{k+1} - (k+1)((Va - RVb)Wb^{-1}b^k). \]

The order can be raised to $k+1$ by setting $C(k) = 0$, that is, $Tp(k) = q(k)$. Observing that δ_i may be chosen arbitrary whenever $p_i(k)$ and $q_i(k)$ both vanish, we have the following theorem:

Theorem 3.1. Let $p(k)$ and $q(k)$ be defined by (3.2) where the matrix R is a given zero-stable matrix, and let the abscissae vector a be such that if an entry of $p(k)$ vanishes, then the corresponding entry of $q(k)$ also vanishes. Then all stage values in the GLM (2.1) have order of consistency $k+1$ if the matrices S and T are defined by

\[(3.4)\quad T = \text{diag} \left(q(k)p^{-1}(k) \right), \quad S = (Va - RVb - TWa)Wb^{-1}. \]

3.1. Parallel Adams-Moulton and Adams-Bashforth methods

Let us choose the zero-stable matrix $R = ee_k^T$, that is, each stage value $y_{n+1,k}$ is defined by $y_{n,k}$ and the last k evaluations of f. Such stage equations are very similar to the classical Adams-Moulton formula, and therefore we shall call the special family of GLMs with $R = ee_k^T$ and T diagonal, *parallel Adams-Moulton methods*, or briefly *PAM methods*.

For PAM methods, the quantities p and q defined in (3.3) are given by

\[(3.5)\quad p(k) = (k+1)(a^k - WaWb^{-1}b^k), \quad q(k) = a^{k+1} - (k+1)VaWb^{-1}b^k. \]

A second consequence of the choice $R = ee_k^T$ is that we can obtain order $k+2$ accuracy if the last component of the second error vector

\[C(k+1) := \frac{1}{(k+2)!} \left(Rb^{k+2} + (k+2)(Sb^{k+1} + Ta^{k+1}) - a^{k+2} \right) \]

vanishes. In order to derive a simple expression for this condition, we consider the last equation in the system (2.1), viz.

\[(3.6)\quad y_{n+1,k} = y_{n,k} + h(e_k^T S \otimes I)F(Y_n) + h\delta f(y_{n+1,k}). \]

and we compare this equation with the continuous analogue satisfied by the solution of (1.1), i.e. the relation
\[y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(y(t)) \, dt. \] (3.7)

Thus, \(h(e_k^T S \odot I) F(U_n) + h \delta_k f(u_{n+1,k}) \) may be considered as an interpolatory quadrature formula for the integral term in (3.7) using the \(k \) quadrature points \(\{ t_{ni}, i = 1, \ldots, k \} \) and the additional point \(t_{n+1,k} \) with \(t_{ji} := t_j - 1 + a_i h \). Assuming that \(f(y(t)) \) is sufficiently differentiable, such quadrature formulas possess a quadrature error of the form (see e.g. [1, p. 886])

\[
Q_{k+1} := \frac{1}{(k+1)!} \int_{t_n}^{t_{n+1}} q_{k+1}(t) g_{k+1}(t) \, dt,
\]

where \(\theta(t) \) assumes values in the interval \(\langle t_n, t_{n+1} \rangle \). Defining the polynomial \(B_k \) and the integral \(I_p(q) \)

\[B_k(x) := \prod_{i=1}^{k} (x - b_i), \quad I_p(q) := \int_{0}^{1} x^p B_q(x) \, dx, \]

and substituting \(t_{n+1,k} = t_n + h, t_{ni} = t_n + b_i h, \) where \(b_i := a_i - 1 \), we can write

\[(k+1)! Q_{k+1} = h^{k+2} \int_{0}^{1} (x - 1) B_k(x) g_{k+1}(t_n + xh) \, dx = h^{k+2}\left(I_1(k) - I_0(k) \right) g_{k+1}(t_n) + \]

\[+ h[I_2(k) - I_1(k)] g'_{k+1}(t_n) + \frac{1}{2} h^2[I_3(k) - I_2(k)] g''_{k+1}(t_n) + \ldots \].

Hence, the order of accuracy of the method can be raised by one if \(I_0(k) = I_1(k) \). Imposing this superconvergence condition yields a \((k-2) \)-parameter family of PAM methods of order \(p = k+2 \) (we recall that \(b_k = 0 \)). For \(k = 2 \), we immediately find \(b_{k-1} = b_1 = 1/2 \), so that the abscissae \(a_1 = 3/2 \). For \(k \geq 3 \) we shall exploit the additional degrees of freedom by choosing \(b \) such that the predictor formula to be used to start the FP iteration process (see Section 2.1) becomes also superconvergent.

Let us define the predictor by the GLM (2.1) with

\[R = ee_k^T, \quad S = V_a W b^{-1}, \quad T = O, \]

where the abscissa vector is the same as in the PAM corrector. The method \{ (2.1), (3.9) \} will be called a parallel Adams-Bashforth method and is denoted by PAB. Proceeding as above, we find for the approximation error the relation

\[k! Q_k = h^{k+1} \int_{0}^{1} B_k(x) g(t_n + xh) \, dx = h^{k+1}\left(I_0(k) g_k(t_n) + h I_1(k) g'_k(t_n) + \right. \]
Thus, we have the result:

Lemma 3.1. The PAB and PAM methods are respectively of order \(k+1 \) and \(k+2 \) if the abscissae vector is such that \(I_0(k) = I_1(k) = 0 \). ♦

It is easily verified that for \(k = 3 \) these conditions are satisfied by

\[
\begin{align*}
(3.12) \quad b_1 &= \frac{6 + \sqrt{6}}{10}, \quad b_2 = \frac{6 - \sqrt{6}}{10}, \quad b_3 = 0.
\end{align*}
\]

If \(k \geq 4 \), then we have a \((k-3)\)-parameter family of solutions. The following theorem is straightforwardly verified.

Lemma 3.2. Let \(k \geq 4 \) and let the shifted abscissae \(b_i \) be chosen symmetrically in the interval \([1,1]\). Then, \(I_0(k) = I_1(k) = 0 \) for \(k \) odd and \(I_0(k) - 2I_1(k) = 0 \) for \(k \) even. ♦

From this theorem, we immediately conclude that for \(k \) odd the Lobatto points in the interval \([1,1]\) generate PAB methods of order \(k+1 \) and PAM methods of order \(k+2 \). The question now arises whether this is also true if \(k \) is even, or equivalently, does \(I_0(k) \) also vanish in the case of an even number of Lobatto points in the interval \([1,1]\). These Lobatto points are given by \(b_1 = 1, \ b_k = 0, \) and by \(b_i = z_i, \ i = 2, \ldots, k-1, \) where \(z_i \) is the \((i-1)\)st zero of the derivative of the shifted Legendre polynomial \(P_{k-1}(2x-1) \) (see e.g. [1, p. 888]). Hence, \(B_k(x) = c(x-1)P'_{k-1}(2x-1) \), where \(c \) is some constant. Transformation to the interval \([-1,1]\), integration by parts and observing that \(P_1(y) = y \) yields

\[
I_0(k) = \frac{c}{4} \int_{-1}^{1} P_1(y)P_{k-1}(y) \, dy = \frac{c}{4} \int_{-1}^{1} P_1(y)P_{k-1}(y) \, dy
\]

which does vanish for \(k \geq 3 \).

Theorem 3.1. Let \(k \geq 4 \) and let the shifted abscissae \(b_i \) be defined by the Lobatto points in the interval \([1,1]\). Then, the PAB methods are of order \(k+1 \) and the PAM methods of order \(k+2 \). ♦

In computing the matrices \(S \) and \(T \) corresponding to the Lobatto points, it turned out that for \(4 \leq k \leq 8 \), the last component of both vectors \(p(k) \) and \(q(k) \) are of quite small magnitude (less than \(10^{-18} \)), so that the value of \(\delta_k \) is more or less free (cf. (3.2)). In our experiments, we have chosen \(\delta_k = 0.15 \) for \(4 \leq k \leq 8 \).

The Lobatto-based PAM methods are only useful if the size of the entries of \(S, T \), and of the vector of error constants

\[
E(k) := (C_1(k+1), C_2(k+1), \ldots, C_{k-1}(k+1), C_k(k+2))
\]

Therefore, we have the result:

Lemma 3.1. The PAB and PAM methods are respectively of order \(k+1 \) and \(k+2 \) if the abscissae vector is such that \(I_0(k) = I_1(k) = 0 \). ♦

It is easily verified that for \(k = 3 \) these conditions are satisfied by

\[
(3.12) \quad b_1 = \frac{6 + \sqrt{6}}{10}, \quad b_2 = \frac{6 - \sqrt{6}}{10}, \quad b_3 = 0.
\]

If \(k \geq 4 \), then we have a \((k-3)\)-parameter family of solutions. The following theorem is straightforwardly verified.

Lemma 3.2. Let \(k \geq 4 \) and let the shifted abscissae \(b_i \) be chosen symmetrically in the interval \([1,1]\). Then, \(I_0(k) = I_1(k) = 0 \) for \(k \) odd and \(I_0(k) - 2I_1(k) = 0 \) for \(k \) even. ♦

From this theorem, we immediately conclude that for \(k \) odd the Lobatto points in the interval \([1,1]\) generate PAB methods of order \(k+1 \) and PAM methods of order \(k+2 \). The question now arises whether this is also true if \(k \) is even, or equivalently, does \(I_0(k) \) also vanish in the case of an even number of Lobatto points in the interval \([1,1]\). These Lobatto points are given by \(b_1 = 1, \ b_k = 0, \) and by \(b_i = z_i, \ i = 2, \ldots, k-1, \) where \(z_i \) is the \((i-1)\)st zero of the derivative of the shifted Legendre polynomial \(P_{k-1}(2x-1) \) (see e.g. [1, p. 888]). Hence, \(B_k(x) = c(x-1)P'_{k-1}(2x-1) \), where \(c \) is some constant. Transformation to the interval \([-1,1]\), integration by parts and observing that \(P_1(y) = y \) yields

\[
I_0(k) = \frac{c}{4} \int_{-1}^{1} P_1(y)P_{k-1}(y) \, dy = \frac{c}{4} \int_{-1}^{1} P_1(y)P_{k-1}(y) \, dy
\]

which does vanish for \(k \geq 3 \).

Theorem 3.1. Let \(k \geq 4 \) and let the shifted abscissae \(b_i \) be defined by the Lobatto points in the interval \([1,1]\). Then, the PAB methods are of order \(k+1 \) and the PAM methods of order \(k+2 \). ♦

In computing the matrices \(S \) and \(T \) corresponding to the Lobatto points, it turned out that for \(4 \leq k \leq 8 \), the last component of both vectors \(p(k) \) and \(q(k) \) are of quite small magnitude (less than \(10^{-18} \)), so that the value of \(\delta_k \) is more or less free (cf. (3.2)). In our experiments, we have chosen \(\delta_k = 0.15 \) for \(4 \leq k \leq 8 \).

The Lobatto-based PAM methods are only useful if the size of the entries of \(S, T \), and of the vector of error constants

\[
E(k) := (C_1(k+1), C_2(k+1), \ldots, C_{k-1}(k+1), C_k(k+2))
\]
is acceptably small. Table 3.1 lists the abscissa vector a, the diagonal entries of T, $\|E(k)\|_\infty$, and $\|S\|_\infty$ for $2 \leq k \leq 8$. In all cases, the value of $\|E(k)\|_\infty$ is quite acceptable. However, the value of $\|S\|_\infty$ rapidly increases with k and becomes inconveniently large for $k \geq 7$. Therefore, it is of interest to construct PAM methods in which the abscissae are chosen such that $\|E(k)\|_\infty$ is minimized under the constraint that $\|S\|_\infty$ is small.

Table 3.1a. PAB and PAM methods.

<table>
<thead>
<tr>
<th>k</th>
<th>Lobatto points</th>
<th>Abscissae obtained by minimization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>$q p^{-1} = (\delta_i)$</td>
</tr>
<tr>
<td>2</td>
<td>$3/2$</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.17</td>
</tr>
<tr>
<td>3</td>
<td>$(16 - \sqrt{6})/10$</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>$(15 - \sqrt{5})/10$</td>
<td>0.10</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>3 - a_2</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.15</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>1.6426157582</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>3 - a_2</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>3 - a_3</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.15</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>1.7344243967</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>3 - a_2</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>3 - a_3</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.15</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>1.7958500907</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>1.6046496909</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>3 - a_2</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>3 - a_3</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>3 - a_4</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.15</td>
</tr>
</tbody>
</table>
For that purpose, we first derive the general solution to the superconvergence condition of Lemma 3.1 by expressing the abscissae b_{k-2} and b_{k-1} explicitly in terms of the other abscissae. Let $\sigma := b_{k-2} + b_{k-1}$ and $\pi := b_{k-2}b_{k-1}$. Then $I_p(k)$ can be written as

$$I_p(k) = I_{p+3}(k-3) - I_{p+2}(k-3)s + I_{p+1}(k-3)p,$$

so that the superconvergence condition leads to a linear system for $\sigma = b_{k-2} + b_{k-1}$ and $\pi = b_{k-2}b_{k-1}$. Hence, solving this linear system for σ and π, the shifted abscissae b_{k-2} and b_{k-1} are the solutions of the equation $b^2 - \sigma b + \pi = 0$, provided that this equation has real zeros. Thus, we have:

Theorem 3.2. Let $k \geq 4$ and let σ and π be defined by.

(3.14) $I_2(k-3)\sigma - I_1(k-3)\pi = I_3(k-3), \quad I_3(k-3)\sigma - I_2(k-3)\pi = I_4(k-3)$.

Then, the PAB and PAM methods are respectively of order $k+1$ and $k+2$ if $\sigma^2 > 4\pi$ and if b_{k-2} and b_{k-1} satisfy the equation $b^2 - \sigma b + \pi = 0$.

Next, we restricted the entries of T to the interval $[0, 0.5]$ and minimized the quantity

(3.15) $\|E(k)\|_\infty + c(\|S\|_\infty - k)$,

where $c = 0$ if $\|S\|_\infty < k$ and $c = 1$ otherwise. In this way, we computed for $4 \leq k \leq 8$ the abscissa vector a, the matrices T, $\|E(k)\|_\infty$ and $\|S\|_\infty$. It turned out that for $k = 4$, we again obtained the Lobatto points. For $5 \leq k \leq 8$, we found the results as listed in Table 3.1. These figures show that for $5 \leq k \leq 7$ the values of $\|E(k)\|_\infty$ and $\|S\|_\infty$ are close to those obtained for the Lobatto points. Only for $k = 8$, $\|E(k)\|_\infty$ is slightly reduced, however at the cost of a much larger value of $\|S\|_\infty$.

3.2. Stability

The linear stability region \mathcal{S} of the GLM (2.1) is defined by the set of points in the complex z-plane where the matrix

(3.16) $M(z) := (I - zT)^{-1}(R + zS)$

has its eigenvalues within the unit circle. The process (2.1) will be called linearly stable if the eigenvalues of the matrix $h\partial f/\partial y$ are in \mathcal{S}. The negative interval $(-\beta_{\text{real}}, 0)$ and the imaginary interval $(0, i\beta_{\text{imag}})$ of maximal length which is contained in \mathcal{S} is called the real and imaginary stability boundary, respectively. Approximate values to these boundaries are listed in the Tables 3.2a and 3.2b respectively for the PAM methods with the Lobatto abscissae and with the abscissae obtained by minimization (see Table 3.1). These boundaries are quite acceptable, except for the imaginary stability boundaries of the 2-stage and 4-stage PAM methods. However, if we look at the intersection of the region \mathcal{S}^* defined by the points z where $M(z)$ has eigenvalues of modulus less than say 1.001, then we obtain $\beta_{\text{imag}}^* = 0.75$ for $k = 2$ and $\beta_{\text{imag}}^* = 0.78$ for $k = 4$.

| Table 3.2a. PAM stability boundaries | Table 3.2b. PAM stability boundaries |
4. Numerical experiments

In this section we illustrate the performance of a few of the parallel GLMs constructed in the previous sections. In order to clearly see the algorithmic effects, we used a fixed stepsize strategy. The implicit relations were solved by FP iteration (see Section 2) with a fixed number of iterations for all stages. The tables of results list the total number of sequential righthand sides needed to produce a given number of correct digits Δ at the end point, that is, the maximal absolute end point error is written as $10^{-\Delta}$ (negative values are indicated by -).

We tested the k-stage PAM methods of order $p = k+2$ for $k = 6, 7, 8$ with Lobatto abscissae. The starting values were obtained by the 8th-order Runge-Kutta method of Dormand-Prince [9] and the predictor needed to start the FP iteration method (2.3) was defined by the PAB method (3.10) with the same Lobatto abscissae. The resulting predictor-corrector method is denoted by PABM. We distinguish the P(EC)m mode and the P(EC)m-E mode of the PABM method. On a k-processor computer system, each of these modes require m righthand sides per step that have to be computed sequentially.

We selected the following well-known test problems (cf. [10, p.174]), viz. the Fehlberg problem

\begin{align}
 y_1' &= 2t y_1 \log(\max\{y_2, 10^{-3}\}), \quad y_1(0) = 1, \quad 0 \leq t \leq 5, \\
 y_2' &= -2t y_2 \log(\max\{y_1, 10^{-3}\}), \quad y_2(0) = e,
\end{align}

the Euler problem JACB [10, p. 237]

\begin{align}
 y_1' &= y_2 y_3, \quad y_1(0) = 0, \\
 y_2' &= -y_1 y_3, \quad y_2(0) = 1, \quad 0 \leq t \leq 20, \\
 y_3' &= -0.51 y_1 y_2, \quad y_3(0) = 1,
\end{align}

and the Orbit problem TWOB [10, p.237]

\begin{align}
 y_1' &= y_3, \quad y_1(0) = 1 - \varepsilon, \\
 y_2' &= y_4, \quad y_2(0) = 0, \\
 y_3' &= \frac{-y_1}{(y_1^2 + y_2^2)^{3/2}}, \quad y_3(0) = 0, \quad 0 \leq t \leq 20, \\
 y_4' &= \frac{-y_2}{(y_1^2 + y_2^2)^{3/2}}, \quad y_4(0) = \sqrt{\frac{1 + \varepsilon}{1 - \varepsilon}}, \quad \varepsilon = \frac{1}{2},
\end{align}
4.1. Comparison of the PE, PEC, PECE and PECEC modes

First we want to know in what mode the PABMs are most efficient. We tested the PE, PEC, PECE and PECEC modes. The PABMs with 6, 7 and 8 stages were run on a lot of examples (not only the three test problems given above) and in most cases the PEC mode turned out to be the most efficient mode. A typical performance is given in the Tables 4.1 and 4.2 for the Fehlberg and Euler problems.

Table 4.1. Number of sequential righthand side evaluations for the Fehlberg problem (4.1).

<table>
<thead>
<tr>
<th>Method</th>
<th>$\Delta = 5$</th>
<th>$\Delta = 6$</th>
<th>$\Delta = 7$</th>
<th>$\Delta = 8$</th>
<th>$\Delta = 9$</th>
<th>$\Delta = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PABM(PE)</td>
<td>222</td>
<td>274</td>
<td>338</td>
<td>431</td>
<td>622</td>
<td>873</td>
</tr>
<tr>
<td>PABM(PEC)</td>
<td>218</td>
<td>267</td>
<td>317</td>
<td>382</td>
<td>585</td>
<td>809</td>
</tr>
<tr>
<td>PABM(PECE)</td>
<td>270</td>
<td>349</td>
<td>445</td>
<td>569</td>
<td>697</td>
<td>847</td>
</tr>
<tr>
<td>PABM(PECEC)</td>
<td>273</td>
<td>349</td>
<td>447</td>
<td>563</td>
<td>699</td>
<td>867</td>
</tr>
</tbody>
</table>

Table 4.2. Number of sequential righthand side evaluations for the Euler problem (4.2).

<table>
<thead>
<tr>
<th>Method</th>
<th>$\Delta = 5$</th>
<th>$\Delta = 6$</th>
<th>$\Delta = 7$</th>
<th>$\Delta = 8$</th>
<th>$\Delta = 9$</th>
<th>$\Delta = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PABM(PE)</td>
<td>96</td>
<td>123</td>
<td>158</td>
<td>210</td>
<td>281</td>
<td>374</td>
</tr>
<tr>
<td>PABM(PEC)</td>
<td>88</td>
<td>111</td>
<td>141</td>
<td>180</td>
<td>232</td>
<td>302</td>
</tr>
<tr>
<td>PABM(PECE)</td>
<td>103</td>
<td>135</td>
<td>173</td>
<td>221</td>
<td>283</td>
<td>363</td>
</tr>
<tr>
<td>PABM(PECEC)</td>
<td>105</td>
<td>137</td>
<td>177</td>
<td>223</td>
<td>283</td>
<td>363</td>
</tr>
</tbody>
</table>

4.2. Comparison with other methods

The PAMs in PEC mode were compared with a few methods from the literature, viz.

DOPRI Dormand-Prince method of order 8 using 13 stages
ABM Adams Moulton of order 8, 9 and 10 using AB predictors of order 7, 8 and 9
ABR Adams-Bahsforth-Radau methods of order 8 and 9 constructed in [13] and [21]

The ABR methods are also parallel predictor-corrector methods in which the predictor and the corrector are again of the form (2.1) but based on Radau abscissae. The corrector uses a nondiagonal matrix T and the FP iteration process is applied dynamically.

The Tables 4.3, 4.4 and 4.5 list the results obtained (the results by the ABR methods of order 8 and 9 were taken from [13] and [21], respectively. Furthermore, we listed the 'speed-down' factors of all methods with respect to the 10th-order PABM(PEC) method and the effective order of accuracy defined by $p_{\text{eff}} := (\Delta_2 - \Delta_1) \log_{10}(h_1 h_2^{-1})$, where (h_1, Δ_1) and (h_2, Δ_2) correspond with the results of highest and lowest accuracy, respectively.

Table 4.3. Number of sequential righthand side evaluations for the Fehlberg problem (4.1).

<table>
<thead>
<tr>
<th>Method</th>
<th>p</th>
<th>$\Delta = 5$</th>
<th>$\Delta = 6$</th>
<th>$\Delta = 7$</th>
<th>$\Delta = 8$</th>
<th>$\Delta = 9$</th>
<th>$\Delta = 10$</th>
<th>p_{eff}</th>
<th>Speed-down</th>
</tr>
</thead>
</table>

Table 4.4. Number of sequential righthand side evaluations for the Euler problem (4.2).

<table>
<thead>
<tr>
<th>Method</th>
<th>p</th>
<th>$\Delta = 5$</th>
<th>$\Delta = 6$</th>
<th>$\Delta = 7$</th>
<th>$\Delta = 8$</th>
<th>$\Delta = 9$</th>
<th>$\Delta = 10$</th>
<th>p_{eff}</th>
<th>Speed-down</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOPRI</td>
<td>8</td>
<td>688</td>
<td>934</td>
<td>1244</td>
<td>1608</td>
<td>2085</td>
<td>2690</td>
<td>8.4</td>
<td>3.7 - 5.9</td>
</tr>
<tr>
<td>ABM(PECEC)</td>
<td>8</td>
<td>548</td>
<td>677</td>
<td>810</td>
<td>1044</td>
<td>1536</td>
<td>2161</td>
<td>8.4</td>
<td>3.0 - 4.7</td>
</tr>
<tr>
<td>ABR</td>
<td>8</td>
<td>240</td>
<td>335</td>
<td>430</td>
<td>532</td>
<td>689</td>
<td>846</td>
<td>9.1</td>
<td>1.3 - 1.9</td>
</tr>
<tr>
<td>PABM(PEC)</td>
<td>8</td>
<td>218</td>
<td>267</td>
<td>317</td>
<td>382</td>
<td>585</td>
<td>809</td>
<td>8.8</td>
<td>1.2 - 1.8</td>
</tr>
<tr>
<td>ABM(PECEC)</td>
<td>9</td>
<td>497</td>
<td>653</td>
<td>853</td>
<td>1110</td>
<td>1437</td>
<td>1850</td>
<td>8.8</td>
<td>2.7 - 4.0</td>
</tr>
<tr>
<td>ABR</td>
<td>9</td>
<td>256</td>
<td>361</td>
<td>466</td>
<td>571</td>
<td>677</td>
<td>9.5</td>
<td>1.1 - 1.5</td>
<td></td>
</tr>
<tr>
<td>PABM(PEC)</td>
<td>9</td>
<td>188</td>
<td>223</td>
<td>276</td>
<td>351</td>
<td>445</td>
<td>558</td>
<td>10.6</td>
<td>1.0 - 1.2</td>
</tr>
<tr>
<td>ABM(PECEC)</td>
<td>10</td>
<td>468</td>
<td>570</td>
<td>719</td>
<td>916</td>
<td>1139</td>
<td>1383</td>
<td>10.6</td>
<td>2.6 - 3.0</td>
</tr>
<tr>
<td>PABM(PEC)</td>
<td>10</td>
<td>184</td>
<td>223</td>
<td>267</td>
<td>318</td>
<td>380</td>
<td>456</td>
<td>12.7</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.4. Number of sequential righthand side evaluations for the Orbit problem (4.3).

<table>
<thead>
<tr>
<th>Method</th>
<th>p</th>
<th>$\Delta = 5$</th>
<th>$\Delta = 6$</th>
<th>$\Delta = 7$</th>
<th>$\Delta = 8$</th>
<th>$\Delta = 9$</th>
<th>$\Delta = 10$</th>
<th>p_{eff}</th>
<th>Speed-down</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOPRI</td>
<td>8</td>
<td>1418</td>
<td>1834</td>
<td>2367</td>
<td>3030</td>
<td>3862</td>
<td>4862</td>
<td>9.3</td>
<td>5.1 - 5.5</td>
</tr>
<tr>
<td>ABM(PECEC)</td>
<td>8</td>
<td>1014</td>
<td>1380</td>
<td>2293</td>
<td>3172</td>
<td>4304</td>
<td>5794</td>
<td>6.6</td>
<td>3.7 - 6.5</td>
</tr>
<tr>
<td>PABM(PEC)</td>
<td>8</td>
<td>409</td>
<td>570</td>
<td>738</td>
<td>945</td>
<td>1207</td>
<td>1554</td>
<td>8.6</td>
<td>1.5 - 1.7</td>
</tr>
<tr>
<td>ABM(PECEC)</td>
<td>9</td>
<td>1144</td>
<td>1548</td>
<td>2014</td>
<td>2586</td>
<td>3291</td>
<td>4188</td>
<td>8.9</td>
<td>4.1 - 4.7</td>
</tr>
<tr>
<td>PABM(PEC)</td>
<td>9</td>
<td>332</td>
<td>386</td>
<td>510</td>
<td>715</td>
<td>946</td>
<td>1227</td>
<td>8.8</td>
<td>1.2 - 1.4</td>
</tr>
<tr>
<td>ABM(PECEC)</td>
<td>10</td>
<td>1046</td>
<td>1314</td>
<td>1585</td>
<td>1783</td>
<td>2365</td>
<td>3590</td>
<td>9.3</td>
<td>3.8 - 4.0</td>
</tr>
<tr>
<td>PABM(PEC)</td>
<td>10</td>
<td>276</td>
<td>336</td>
<td>477</td>
<td>604</td>
<td>741</td>
<td>892</td>
<td>9.8</td>
<td>1</td>
</tr>
</tbody>
</table>
References