Playing nonlocal games with quantum resources

Jop Briët
PNA 6

Based on joint works with Harry Buhrman, Troy Lee, Fernando de Oliveira-Filho, Ben Toner, Frank Vallentin and Thomas Vidick
What is a nonlocal game? Example:

- Two non-communicating players: Alice and Bob
What is a nonlocal game? Example:

- Two non-communicating players: Alice and Bob
- We give Alice a picture of either
- We give Bob a picture of either
- The players reply 0 or 1
- If BOTH got Dutch items their answers must DIFFER
- OTHERWISE their answers must AGREE
What is a nonlocal game? Example:

- Two non-communicating players: Alice and Bob
- We give Alice a picture of either
- OR
- We give Bob a picture of either
- OR
- The players reply 0 or 1
- If BOTH got Dutch items their answers must DIFFER
- OTHERWISE their answers must AGREE
What is a nonlocal game? Example:

- Two non-communicating players: Alice and Bob
- We give Alice a picture of either OR
- We give Bob a picture of either OR
- The players reply 0 or 1
What is a nonlocal game? Example:

- Two non-communicating players: Alice and Bob
- We give Alice a picture of either
- We give Bob a picture of either
- The players reply 0 or 1
- If BOTH got Dutch items their answers must DIFFER
What is a nonlocal game? Example:

- Two non-communicating players: Alice and Bob
- We give Alice a picture of either
- We give Bob a picture of either
- The players reply 0 or 1
- If BOTH got Dutch items their answers must DIFFER
- OTHERWISE their answers must AGREE
Excellent framework for many interesting problems

- Quantifying the power of quantum entanglement
Excellent framework for many interesting problems

- Quantifying the power of quantum entanglement
- Approximating ground state energies in physics
Excellent framework for many interesting problems

- Quantifying the power of quantum entanglement
- Approximating ground state energies in physics
- Modeling combinatorial optimization problems
Excellent framework for many interesting problems

- Quantifying the power of quantum entanglement
- Approximating ground state energies in physics
- Modeling combinatorial optimization problems
- Lower bounding communication complexity
Excellent framework for many interesting problems

- Quantifying the power of quantum entanglement
- Approximating ground state energies in physics
- Modeling combinatorial optimization problems
- Lower bounding communication complexity
- Making quantum key distribution protocols secure
Quantifying the power of quantum entanglement

- Alice and Bob can determine their answers by doing experiments on private quantum systems.

$$|0\rangle|0\rangle + \sqrt{2}|1\rangle|1\rangle$$ can give a strict advantage over "classical" players.
Quantifying the power of quantum entanglement

- Alice and Bob can determine their answers by doing experiments on private quantum systems.

- If the quantum systems are entangled, their answers can be correlated in a “non-classical” way (Bell’64).
Quantifying the power of quantum entanglement

- Alice and Bob can determine their answers by doing experiments on private quantum systems.

- If the quantum systems are entangled, their answers can be correlated in a “non-classical” way (Bell’64).

- An EPR pair (Einstein-Podolsky-Rosen’35)

\[
\frac{|0\rangle|0\rangle + |1\rangle|1\rangle}{\sqrt{2}}
\]

can give a strict advantage over “classical” players.
Quantifying the power of quantum entanglement

- Classical players can win the Dutch-or-Not game with prob. at most 0.75

- With an EPR pair, with prob. \(\cos(\pi/8)^2 \approx 0.85 \)

Nonlocal games can exhibit a key difference between classical and quantum physics: entanglement
Quantifying the power of quantum entanglement

- Classical players can win the Dutch-or-Not game with prob. at most 0.75

- With an EPR pair, with prob. \(\cos(\pi/8)^2 \approx 0.85 \)
Quantifying the power of quantum entanglement

- Classical players can win the Dutch-or-Not game with prob. at most 0.75

- With an EPR pair, with prob. \(\cos(\pi/8)^2 \approx 0.85 \)

- Nonlocal games can exhibit a key difference between classical and quantum physics: entanglement
Approximating ground state energies

- Physical model: Lattice of interacting particles represented by unit vectors (Ising, Heisenberg, etc.)
Approximating ground state energies

- Physical model: Lattice of interacting particles represented by unit vectors (Ising, Heisenberg, etc.)
- Can be modeled by a nonlocal game
Approximating ground state energies

- Physical model: Lattice of interacting particles represented by unit vectors (Ising, Heisenberg, etc.)
- Can be modeled by a nonlocal game
- Minimum winning probability gives ground state energy
Approximating ground state energies

- Physical model: Lattice of interacting particles represented by unit vectors (Ising, Heisenberg, etc.)
- Can be modeled by a nonlocal game
- Minimum winning probability gives ground state energy
- Computing this exactly is likely computationally hard
Approximating ground state energies

- Physical model: Lattice of interacting particles represented by unit vectors (Ising, Heisenberg, etc.)

- Can be modeled by a nonlocal game

- Minimum winning probability gives ground state energy

- Computing this exactly is likely computationally hard

- In the context of nonlocal games, one can show that it can be approximated well efficiently!
Thank you!

Nonlocal games: An excellent framework for many interesting problems