Description

Leader of the group Machine Learning: Peter Grünwald.

Our research group focuses on how computer programs can learn from and understand data, and then make useful predictions based on it. These algorithms integrate insights from various fields, including statistics, artificial intelligence and neuroscience.  

 Machine-learning applications are increasingly part of every aspect of life, from speech recognition on cell phones to illness prediction in healthcare. One common problem is extremely polluted data, for which no single model can provide adequate explanations. At CWI we address this issue with statistical machine learning based on combining predictions from different models and experts in order to achieve reliable conclusions.

We also study how networks of neurons in the brain process information, and how modern deep-learning methods can benefit from neuroscience. We develop novel neural networks, like Deep Adaptive Spiking Neural Networks, and also theoretical models of neural learning and information processing in biology. Applications of our work range from low-energy consumption neural machine learning to neuroprosthetics, to increased insight into the question of how the brain works.

 

News

CWI builds new supercomputer

CWI has started the construction of a new supercomputer cluster in the beginning of October 2003. The cluster, consisting of 48 dual and quad AMD Opteron systems, is the first quad Opteron cluster in the Benelux. The new supercomputer, funded by the Netherlands Organization for Scientific Research NWO, is expected to be operational in two months.

CWI builds new supercomputer - Read More…

Sander Bohte receives NWO grants

The Netherlands Organization for Scientific Research NWO has granted a VENI subsidy to CWI researcher Sander Bohte. Bohte will use the grant, approved in March 2003, to further his research on spiking neural networks. These types of networks incorporate the latest insights in functional biological neurons. In theory they are much more powerful than traditional artificial neural networks. Bothe's work is aimed at using spiking neurons in large-scale networks that can learn to deal with symbolic structures like grammar in language or compact descriptions of objects in vision.

Sander Bohte receives NWO grants - Read More…

Current events

Event-based Asynchronous Neuro-Cognitive Control

  • 2019-08-26T12:00:00+02:00
  • 2019-08-28T15:00:00+02:00
August 26 Monday

Start: 2019-08-26 12:00:00+02:00 End: 2019-08-28 15:00:00+02:00

Centrum Wiskunde & Informatica (CWI)

Centrum Wiskunde & Informatica, Amsterdam (26 – 28 August 2019)

Compared to modern Deep Learning, the human brain needs vastly fewer examples to learn tasks and is massively more energy efficient. The brain’s ability to control, and learn to control, hundreds of flexible and variable muscles for motion remains unsurpassed. Sensory information processing, cognitive deliberation and subsequent muscle control is also an ongoing continuous-time process, a fact mostly ignored in deep learning models. Finally, the brain solves an inherently multi-scale problem: fast high-dimensional sensory information feeds, (relatively) slow and low dimensional cognitive deliberations, which are then translated into fast and high-dimensional muscle activations resulting in typically low-dimensional feedback for learning from the environment in the form of success or failure of actions. Recently, models for a number of components in this sensori-cognitive-motor chain have been proposed.

In this workshop, we aim to bring together experts in computational neuroscience and machine learning to foster collaboration and start working on integrating the various components into coherent end-to-end cognitive models. Specifically, we aim to determine the `missing components’ that are needed to implement fast and effective sensori-cognitive-motor models.

At a high level, the main topics in the workshop include End-to-end time-continuous learning, Multi-level Motion Representation, Planning and Control and Event-based asynchronous neural computation.

The workshop will be held over a 3-day period at CWI, the Dutch National Centre for Mathematics and Computer Science. Invited speakers will bring broad-ranging expertise from neuroscience and machine learning, with a special focus on efficient platforms. The workshop will also have plenty of time for formal and informal discussions.

Confirmed invited speakers

Thomas Nowotny (Univ Sussex, UK)
Wulfram Gerstner (EPFL, CH)
Shih-Chii Liu (INI Zurich, CH)
Eleni Vasilaki (Univ Sheffield, UK)
Friedemann Zenke (FMI Basel, CH)
Terry Stewart (Univ Waterloo, CA)
De Ma (Zhejiang University,CN)
Chiara Bartolozzi (IIT Genova, IT)
Raoul-Martin Memmesheimer (Univ Bonn, DE)
Mihai Petrovici (Univ Heidelberg, DE)
Jamie Knight (Univ Sussex, UK)

Program

The current program can be found here. Directions are here.

Organising Committee

  • Sander Bohte – CWI / Univ. of Amsterdam / RUG Groningen, NL
  • Aditya Gilra – IST Austria, AT
  • Qinghai Guo – Huawei Research, CN
  • J. Camilo Vasquez Tieck – FZI Karlsruhe, GE

 

Members

Associated Members

Publications

Software

Current projects with external funding

  • Efficient Deep Learning Platforms (eDLP)
  • Enabling Personalized Interventions (EPI)
  • Safe Bayesian Inference: A Theory of Misspecification based on Statistical Learning (SAFEBAYES)
  • Spiking Neural Networks research program

Related partners

  • Philips
  • KPMG
  • SURFsara B.V.
  • Technische Universiteit Eindhoven
  • Universiteit Twente
  • Universiteit van Amsterdam
  • Vrije Universiteit Amsterdam