Marco Virgolin

- Full Name
- M. Virgolin
- Function(s)
- Scientific Staff Member
- M.Virgolin@cwi.nl
- Telephone
- +31 20 592 4017
- Room
- M277b
- Department(s)
- Life Sciences and Health
- Homepage
- https://marcovirgolin.github.io/
Biography
Marco Virgolin is a junior researcher (tenure track) at CWI. He works on eXplainable AI (XAI), most notably by means of Symbolic Regression to obtain interpretable models. He is also interested in medical applications of machine learning, conversational AI, and human-machine interaction. Before, Marco was a postdoc with Mattias Wahde at Chalmers University of Technology, a PhD student with Peter A. N. Bosman and Tanja Alderliesten at Centrum Wiskunde & Informatica, and a master student with Alberto Bartoli and Eric Medvet at the Machine Learning Lab of the University of Trieste.
Publications
-
Virgolin, M, Alderliesten, T, Witteveen, C, & Bosman, P.A.N. (2021). Improving model-based Genetic Programming for Symbolic Regression of small expressions. Evolutionary Computation, 29(2), 211–237. doi:10.1162/evco_a_00278
-
Den Ottelander, T, Dushatskiy, A, Virgolin, M, & Bosman, P.A.N. (2021). Local Search is a remarkably strong baseline for Neural Architecture Search. In Evolutionary Multi-Criterion Optimization (pp. 465–479). doi:10.1007/978-3-030-72062-9_37
-
Virgolin, M, Wang, Z, Balgobind, B.V, Dijk, van, I.W.E.M, Wiersma, J, Kroon, P. S., … Alderliesten, T. (2020). Surrogate-free machine learning-based organ dose reconstruction for pediatric abdominal radiotherapy. Physics in Medicine and Biology, 65(24). doi:10.1088/1361-6560/ab9fcc
-
Virgolin, M, Wang, Z, Alderliesten, T, & Bosman, P.A.N. (2020). Machine learning for the prediction of pseudorealistic pediatric abdominal phantoms for radiation dose reconstruction. Journal of Medical Imaging, 7(4). doi:10.1117/1.JMI.7.4.046501
-
Virgolin, M. (2020, June 8). Design and application of gene-pool optimal mixing evolutionary algorithms for genetic programming. SIKS Dissertation Series.
-
Virgolin, M, Wang, Z, Alderliesten, T, & Bosman, P.A.N. (2020). Machine learning for automatic construction of pediatric abdominal phantoms for radiation dose reconstruction. In Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications. doi:10.1117/12.2548969
-
Virgolin, M, Alderliesten, T, & Bosman, P.A.N. (2020). On explaining machine learning models by evolving crucial and compact features. Swarm and Evolutionary Computation, 53. doi:10.1016/j.swevo.2019.100640
-
Virgolin, M, De Lorenzo, A, Medvet, E, & Randone, F. (2020). Learning a formula of interpretability to learn interpretable formulas. In Lecture Notes in Computer Science/Lecture Notes in Artificial Intelligence. doi:10.1007/978-3-030-58115-2_6
-
Wang, Z, Virgolin, M, Bosman, P.A.N, Crama, K.F, Balgobind, B.V, Bel, A, & Alderliesten, T. (2020). Automatic generation of three-dimensional dose reconstruction data for two-dimensional radiotherapy plans for historically treated patients. Journal of Medical Imaging, 7(1). doi:10.1117/1.JMI.7.1.015001
-
Virgolin, M, Alderliesten, T, & Bosman, P.A.N. (2019). Linear scaling with and within semantic backpropagation-based genetic programming for symbolic regression. In Proceedings of the 2019 Genetic and Evolutionary Computation Conference (pp. 1084–1092). doi:10.1145/3321707.3321758