Hash functions in post-quantum cryptography

Christian Majenz
CWI
Cryptography is everywhere
Cryptography is everywhere

https://
Cryptography is everywhere
Cryptography is everywhere
Cryptography is everywhere
Cryptography is everywhere
Quantum computers
Quantum computers

- Accelerating effort to build a quantum computer
Quantum computers

- Accelerating effort to build a quantum computer
- Major investments:
Quantum computers

- Accelerating effort to build a quantum computer
- Major investments:

Google, IBM, Intel, Microsoft, Quantum Flagship

We need to prepare cryptography for the arrival of quantum computers!
Quantum computers

- Accelerating effort to build a quantum computer
- Major investments:

 Google IBM
 intel Microsoft

We need to prepare cryptography for the arrival of quantum computers!

- Security against quantum attackers
- Quantum cryptography
Quantum computers

- Accelerating effort to build a quantum computer
- Major investments:
 - Google
 - IBM
 - US National Security Agency
 - US National Institute of Standards and Technology
 - Microsoft
 - QuSpin (China)

We need to prepare cryptography for the arrival of quantum computers!

- This talk: Security against quantum attackers
 (post-quantum cryptography)
Elements of post-quantum crypto
Elements of post-quantum crypto

- Quantum Cryptanalysis
Elements of post-quantum crypto

- Quantum Cryptanalysis
Elements of post-quantum crypto

- Quantum Cryptanalysis

Shor’s algorithm: Complete break
Elements of post-quantum crypto

- Quantum Cryptanalysis

- Shor's algorithm: Complete break
- Grover's algorithm: Might necessitate increased key length
Elements of post-quantum crypto

- Quantum Cryptanalysis: Shor, Grover

- Quantum-secure computational assumptions
 - Lattice problems
 - Decoding random codes
 - Inverting multivariate polynomials
 - Secure hash functions
 - Supersingular isogeny Diffie-Hellman
Elements of post-quantum crypto

- Quantum Cryptanalysis: Shor, Grover

- Quantum-secure computational assumptions
 - Lattice problems
 - Decoding random codes
 - Inverting multivariate polynomials
 - Secure hash functions
 - Supersingular isogeny Diffie-Hellman

- Models: Quantum Random Oracle Model (QROM)
Hash functions
Hash functions

Ubiquitous in cryptography. Example: digital signatures
The (Q)ROM
The (Q)ROM

Reality | Model
The (Q)ROM

Reality

Model
The (Q)ROM

Reality

Model

$H : \{0,1\}^* \rightarrow \{0,1\}^n$

Uniformly random
The (Q)ROM

Reality

Model

$H : \{0,1\}^* \rightarrow \{0,1\}^n$

Uniformly random

All agents have (quantum) oracle access to H

$(x, y) \mapsto (x, y \oplus H(x))$
The (Q)ROM

Reality

Model

\[H : \{0,1\}^* \rightarrow \{0,1\}^n \]

Uniformly random

All agents have (quantum) oracle access to \(H \)

\[(x, y) \mapsto (x, y \oplus H(x)) \]

- Outrageously optimistic

- SHA-3
The (Q)ROM

<table>
<thead>
<tr>
<th>Reality</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outrageously optimistic</td>
<td>$H : {0,1}^* \rightarrow {0,1}^n$</td>
</tr>
<tr>
<td>Seems to work in practice</td>
<td>Uniformly random</td>
</tr>
</tbody>
</table>

All agents have (quantum) oracle access to H

$$(x, y) \mapsto (x, y \oplus H(x))$$
The (Q)ROM

<table>
<thead>
<tr>
<th>Reality</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outrageously optimistic</td>
<td>$H : {0,1}^* \rightarrow {0,1}^n$</td>
</tr>
<tr>
<td>Seems to work in practice</td>
<td>Uniformly random</td>
</tr>
<tr>
<td>Enables very efficient crypto</td>
<td>All agents have (quantum) oracle access to H</td>
</tr>
</tbody>
</table>

$(x, y) \mapsto (x, y \oplus H(x))$
QROM challenges
QROM challenges

ROM techniques:
1. Query transcripts
QROM challenges

ROM techniques:
1. Query transcripts
2. Rewinding
QROM challenges

ROM techniques:
1. Query transcripts
2. Rewinding
3. Reprogramming
QROM challenges

ROM techniques:
1. Query transcripts
2. Rewinding
3. Reprogramming

Quantum theory makes things difficult! No-cloning, Measurement disturbance
QROM challenges

ROM techniques:
1. Query transcripts
2. Rewinding
3. Reprogramming

Quantum theory makes things difficult! No-cloning, Measurement disturbance

QROM:
QROM challenges

ROM techniques:
1. Query transcripts
2. Rewinding
3. Reprogramming

Quantum theory makes things difficult! No-cloning, Measurement disturbance

QROM:
1. Query transcripts
QROM challenges

ROM techniques:
1. Query transcripts
2. Rewinding
3. Reprogramming

Quantum theory makes things difficult! No-cloning, Measurement disturbance

QROM:
1. Query transcripts
2. Rewinding 3 specialized rewinding techniques that don’t cover all applications
QROM challenges

ROM techniques:
1. Query transcripts
2. Rewinding
3. Reprogramming

Quantum theory makes things difficult! No-cloning, Measurement disturbance

QROM:
1. Query transcripts
2. Rewinding \Rightarrow 3 specialized rewinding techniques that don’t cover all applications
3. Reprogramming: Sure, if you know how without 1. and 2.
The Fiat Shamir transformation
The Fiat Shamir transformation

Σ-protocol: Interactive proof system

Prover

Verifier

x

a

$c \in_R \{0,1\}^\ell_c$

r

b
The Fiat Shamir transformation

\[\text{Σ-protocol: Interactive proof system} \]

\[x \rightarrow \text{Prover} \]

\[a \]

\[c \in_R \{0,1\}^\ell \]

\[r \rightarrow \text{Verifier} \]

Fiat Shamir (FS) transformation: \[c = H(x, a) \]
The Fiat Shamir transformation

Σ-protocol: Interactive proof system

Prover

Verifier

Fiat Shamir (FS) transformation: $c = H(x, a)$
The Fiat Shamir transformation

Σ-protocol: Interactive proof system

Fiat Shamir (FS) transformation: $c = H(x, a)$

non-interactive!!!
The Fiat Shamir transformation

Σ-protocol: Interactive proof system

Fiat Shamir (FS) transformation: $c = H(x, a)$

non-interactive!!! \implies used for efficient digital signatures
ROM security

The FS transformation is secure in the ROM (Pointcheval, Stern 96):
The FS transformation is secure in the ROM (Pointcheval, Stern 96):
ROM security

The FS transformation is secure in the ROM (Pointcheval, Stern 96):

\[x \rightarrow A \rightarrow S \rightarrow \text{Verifier} \]

\[a \]

\[c \in_R \{0,1\}^\ell_c \]

\[r \]
ROM security

The FS transformation is secure in the ROM (Pointcheval, Stern 96):

\[
\mathcal{S} \subseteq R \{0,1\}^\ell_c
\]

Success probability: \(\epsilon(\mathcal{S}[\mathcal{A}]) \geq \frac{\epsilon(\mathcal{A})}{O(q)} \)
ROM security

The FS transformation is secure in the ROM (Pointcheval, Stern 96):

\[
\mathcal{A} \xrightarrow{c \in_R \{0,1\}^{\ell_c}} \mathcal{S} \xrightarrow{a} \text{Verifier}
\]

Success probability: \(\varepsilon(\mathcal{S}[\mathcal{A}]) \geq \frac{\varepsilon(\mathcal{A})}{O(q)} \)

\# of queries \(\mathcal{A} \) makes to \(H \)
QROM security

The FS transformation is secure in the QROM (Don, Fehr, M, Schaffner ’19):

\[H \]

\[\mathcal{A} \]

\[x \]

\[p \]
QROM security

The FS transformation is secure in the QROM (Don, Fehr, M, Schaffner ‘19):

\[a \in \mathcal{R} \{0,1\}^\ell_c \]

\[c \in \mathcal{R} \{0,1\}^\ell_c \]

\[r \]
QROM security

The FS transformation is secure in the QROM (Don, Fehr, M, Schaffner ’19):

\[a \in \mathbb{R} \{0,1\}^{\ell_c} \]

Success probability: \(\varepsilon(\mathcal{S}[\mathcal{A}]) \geq \frac{\varepsilon(\mathcal{A})}{O(q^2)} \)
Technique

\[x \rightarrow a, r(x, a, H(x, a)) \rightarrow b \]
Suppose r was injective $\implies \mathcal{A}$ essentially needs to classically query H on (x, a).
Suppose r was injective \Rightarrow A essentially needs to classically query H on (x, a).
Technique

Suppose r was injective $\implies A$ essentially needs to classically query H on (x, a).

Measure-and-Reprogram: Pick a random query, measure it and reprogram with c from the Σ-protocol.
Popular belief about QROM: Grover speed-up is as good as it gets.
Long term goal

Popular belief about QROM: Grover speed-up is as good as it gets.

⟹ Dream: QROM-to-ROM reduction should solve all our problems!
Popular belief about QROM: Grover speed-up is as good as it gets.

Dream: QROM-to-ROM reduction should solve all our problems!

Reality:
Popular belief about QROM: Grover speed-up is as good as it gets.

Dream: QROM-to-ROM reduction should solve all our problems!

Reality: QROM security of FS
Summary

- The (Q)ROM is extremely useful for efficient cryptography
- Quantum theory complicates things, much less coherent picture of QROM security
- Important cases solved, e.g. Fiat Shamir
- General reduction from QROM to ROM would be nice to have!