The immutability of Blockchain

Marc Stevens
Cryptology Group
CWI
Blockchains & Applications
Blockchain Protocol

- Blockchain definition

 "A blockchain is a distributed digital ledger that contains a continually updated chain of all transactions."

- Chain of Blocks of Transactions

- Protocol: Distributed versus Centralized:
 - all parties in a network maintain a copy
 - decide together on next block of transactions
Blockchain Applications

• Distributed Ledger
 – Digital- / Crypto-currencies

• Distributed Database

• Distributed Filesystem

• Any distributed information system where a (virtual) State is continuously modified by (blocks of) Transactions
 – Virtual Machines on a Blockchain
 – Smart Contracts
 – Programmable Economy
Dutch Blockchain Coalition

Jointly developed partnership by industry, government and knowledge institutions

Support Partners

Kernpartners

Kennispartner
Dutch Blockchain Coalition

DBC Action Agenda

• The focus of the coalition lies in properly arranging the fundamental principles of Blockchain:

 1. ensuring the technology works well

 2. developing the conditions for blockchain, such as explaining and applying the legislation

 3. realizing a human capital agenda, in other words developing education and talent.
Blockchain for Good

De Dutch Blockchain Coalition presenteert zes use cases voor betrouwbare en maatschappelijk geaccepteerde blockchaintoepassingen waar op publiek-private basis aan wordt gebouwd. De toepassingen zijn van belang voor de samenleving en de economie van Nederland. Daarmee zijn het aantonbaar waardevolle toepassingen van deze technologie.

Self-Sovereign Identity (SSI)
Digitale identiteit is van cruciaal belang. De SSI is het puzzelspel dat diverse vraagstukken rondom blockchain kan verbinden. Bijvoorbeeld de bevestiging dat jij jij bent en/of dat jij 18+ bent.

Pensioen
Een simpele vraag zoals: “Hoeveel pensioen heb ik waar opgebouwd?” kan door blockchain technologie makkelijker beantwoord worden dan met de huidige systemen.

Compliance by design
Meer transparantie en automatisering van subsidie-processen zodat het voor iedereen makkelijker, eerlijk en efficiënter wordt. Blockchain biedt die mogelijkheid. In de taal van technologie: “Compliance by design”.

Logistiek
Transparantie, betrouwbaar en eerlijke ketens. Minder administratieve lasten en efficiënter transport.

Onderwijscertificaten en diploma’s
Officiële documenten zoals diploma’s, certificaten en registers betrouwbaar delen en verifiëren.

Hypotheken
Bij een hypotheekaanvraag kan de tijdrovende (papieren) administratie vervangen worden door een digitaal en dus sneller proces.

2018: Werkende demo.

Bij vaak wisselen van baan kunnen de administratiekosten omlaag wat een goedkoop komt aan jouw pensioenopbouw.
Ideal Cryptographic Properties of Blockchain

• **Consensus: One Truth**
 – all parties agree on the same blockchain
 – thus all parties agree on processed transactions

• **Immutable: Final Truth**
 – Can only append a new Block of Transactions
 – Previous Blocks cannot be altered:
 Transactions are final

• **Verifiable Correct: Accountable**
 – Anyone can check entire Blockchain

• **Sound: Democratic**
 – A Transaction, when valid, will eventually be accepted

• **Secure**
 – If all above properties hold

Conflicting Transactions: Double Spending
Re-Spending
Illegitimate transactions
Denial-Of-Service
The First Blockchain:
The Bitcoin Solution
Digital Currencies

• “Digital currency is a digital medium of exchange exhibiting properties similar to physical currencies.”

• Secure digital currency pioneered by David Chaum (head Cryptology Group, CWI, 1980s)

• DigiCash
 – Anonymous
 – Centralized
 – Fixed-value token signed by Bank

A Digicash Transaction
decentral digital ‘currency’

decentral immutable chain of transactions
Cryptographic Tools

- **hash**
- ‘digital fingerprint’

\[
\begin{align*}
144g8xpNFUsKxHovczACoxDSoDhotiA & \\
QhL16j2kwD1eTmaUMiuWgqNSHncrsu2 & \\
69Z4nz147XLq8r7xnQSicx19cNEd1j6 & \\
hJn3gnmqJ15AJMyf5Qx489hL81oziMN & \\
\cdots \cdots \cdots \cdots \cdots & \\
144g8xpNFUsKxHovczACoxDSoDhotiA & \\
QhL16j2kwD1eTmaUMiuWgqNSHncrsu2 & \\
69Z4nz147XLq8r7xnQSicx19cNEd1j6 & \\
hJn3gnmqJ15AJMyf5Qx489hL81oziMN & \\
\end{align*}
\]

\[
\begin{align*}
RgHjLHA4cjJt6cFB8JJ9cH5768PfSbx & \\
cf3kb8XX3D386q1Gx1HpCBp7RjGbnS3 & \\
BZ3KWZgtGwv5Vc4351FoMpj2NT12FPE & \\
\end{align*}
\]

\[
\begin{align*}
a441b15fe9a3cf56 & \\
661190a0b93b9dec & \\
7d04127288cc8725 & \\
0967cf3b52894d11 & \\
\end{align*}
\]

hash pseudo-random
inverting hash is practically impossible

Creating forgeries is practically impossible
Transactions are verified in Blocks with Proof-of-Work

Block with new Transactions

transaction #5003
I, Alice, give from transaction #213
- 1BTC to Bob
- 22BTC to Alice

Variabele \(N = 5414 \)

Variable difficulty:
Goal is on average about 6 solutions per hour
Blockchain: Chain of Transaction Blocks

List of Transactions

transaction #5003
I, Alice, give from transaction #213
- 1BTC to Bob
- 22BTC to Alice

Variable N

Reward

I receive new BC #20001

Previous Block

Long chain of Blocks

Transactions and their order clear to everyone
Blockchain: Chain of Transaction Blocks

Every party maintains private copy

Longest Chain rules

Equally long Chains live till clear winner

Personal incentive to work on longest Chain

Adapting chain is race against the rest to Bob => to Alice

Insecure against Majority of comp. power

Without Majority: Security of a Block grows exponential in # subsequent Blocks

Incentive crucial to guard against Majority, thus crucial to Security
Ideal Properties

Properties of the Bitcoin Blockchain Protocol

• **Consensus: One Truth**
 – all parties agrees on the same blockchain
 – thus all parties agree on processed transactions
 Consensus up to last few blocks

• **Immutable: Final Truth**
 – Can only append a new Block of Transactions
 – Previous Blocks cannot be altered:
 Transactions are final
 Only if no adversarial group has Majority computational power

• **Verifiable Correct: Accountable**
 – Anyone can check entire Blockchain
 Transparent & Pseudonymous

• **Sound: Democratic**
 – A Transaction, when valid, will eventually be accepted
 Sufficiently many Honest Miners
 Limit on Transactions per Block

• **Secure**
 – If all above properties hold
Other blockchains: weak & strong immutability
Immutability without Proof-of-Work

• *Strong immutability:*
 if protection against malicious changes is computationally hard

• *Weak immutability:*
 Otherwise: protection against malicious changes is obtained through incentives or monitoring

• Without proof-of-work there is no computational problem creating additional problems to solve:
 – low cost simulations
 – cheap to have multiple forks
Immutability classification

Strong Immutability
- Proof-of-Work
- Proof-of-Work in small networks

Weak Immutability
- Proof-of-Stake
- Proof-of-Space
- ...

- BFT-based
- ...

Proof-of-Work is not sustainable

Energy Consumption by Country Chart

TWh per Year

45. Kuwait 44. Colombia 43. Switzerland 42. Bitcoin 41. Czech Republic 40. Chile 39. Austria

BitcoinEnergyConsumption.com
Another solution:
A new cryptographic tool: VDF

• Verifiable delay functions (VDF)
 – *Function*: unique output for every input
 – *Delay*: can be evaluated in time T on 1 CPU, but not faster than time T on N CPUs.
 – *Verifiable*: correctness can be verified very fast
 – Constructions by Wesolowski (CWI), working towards special hardware together with Ethereum foundation

• Unlike PoW a VDF cannot be used to build consensus

• Our work: VDFs can be used to add strong immutability
Timestamping with VDFs

• An immutable blockchain is a timestamping mechanism

3. Timestamp Server

The solution we propose begins with a timestamp server. A timestamp server works by taking a hash of a block of items to be timestamped and widely publishing the hash, such as in a newspaper or Usenet post [2-5]. The timestamp proves that the data must have existed at the time, obviously, in order to get into the hash. Each timestamp includes the previous timestamp in its hash, forming a chain, with each additional timestamp reinforcing the ones before it.

• Our result goes the other direction:
 – Build timestamping mechanism from VDFs
 – Timestamping adds strong immutability to blockchains
Timestamping with VDFs

- Our timestamping construction [Landerreche, Schaffner, Stevens, 2018]
 - Single prover protocol & multi-prover protocols
 - Based on VDFs
 - Non-interactive: timestamping proofs are publicly verifiable and transferable
 - Secure-by-design: proved secure in the universal composability framework
Strong immutability achieved

Strong Immutability
- Proof-of-Work
- **Proof-of-Work in small networks**
- Proof-of-Stake + VDF
- Proof-of-Space + VDF
- BFT-based + VDF

Weak Immutability
- Proof-of-Stake
- Proof-of-Space
- ...
- BFT-based
- ...

Digital Compass:

“Secure by design”

/ “provable-secure”
Provable security

• Many constructions in Blockchain are ad-hoc constructions
 – Providing arguments against common attacks, not proofs

• Some constructions are proven-secure (sometimes after-the-fact: Bitcoin)
 – Cryptographic proof that construction achieves ideal properties
 – Or cryptographic proof that construction behaves like an ideal functionality
 – Strong guarantees against entire classes of possible adversaries
Ideal / Real

- Ideal/real paradigm: outsiders should not be able to distinguish between worlds
Adversaries

- Moreover, for any adversary in the real world there should be an ‘equivalent’ ideal adversary

• Indistinguishability implies that any real adversary can only achieve things what the ideal functionality allows
Thank you for your attention!