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Are we smart enougn
for the good life”?



The good life for all within a healthy planet

IS the challenge of the 21st century

Azote for Stockholm Resilience Centre, based on analysis in Persson et al. (2022) and Richardson et al. (20Raworth (2012, 2017), Steffen et al. (2018)



Urgent & large-scale collective action
How to enter a safe and just space?
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Why | Collective action challenges in human-machine ecologies
How | Building bridges

What | Emergent phenomena from cognition in contexts



WHY | Collective action challenges
IN human-machine ecologies



Planetary commons
Nature’s regulating and maintenance services requiring cooperation

Atmosphere Hydrosphere Biosphere Lithosphere Cryosphere
(Air) (Water) (Life) (Land) (Ice & Snow)

West African Monsoon Atlantic Meridional Tundra Permafrost System

Overturning Circulation i
9 Amazon Rainforest
Boreal Forests
Low-latitude Coral Reefs

5 East Antarctic Ice Sheet

Greenland Ice Sheet

Arctic Winter Sea Ice

Tipping elements

West Antarctic Ice Sheet

South American Monsoon

Methane Hydrates Congo and Southeast Asian Rainforests

. 5 Extrapolar Mountain
(Arctic Ocean) Temperate Forests : pG| oy

Coastal "Blue Carbon" Ecasystems (Mangrove Forests, Tidal Marshes, Seagrass Meadows) Arctic Summer Sea Ice

El Nino-Southern Oscillation Global Soil Carbon Pool
Ocean Biological Carbon Pump
Net Primary Production

Biosphere Integrity (Species Richness, Ecological Resilience)

Biogeochemical Cycles

Hydrological Cycle: Blue Water Flows (Environmental Water Flows) & Green Water Flows (Soil Moisture, Vapor Flows)

South-East Asian Monsoon

Stratospheric Ozone Layer

Other systems

Rockstrom et al. 2024 The planetary commons: A new paradigm for safeguarding Earth-regulating systems in the Anthropocene



The challenge of collective action | Cooperation

Individual Collective
pays a cost ¢ > All receive benefit b

with b<c<Nb



The tragedy of the commons e
A conflict of interest between individual and collective

Greed to exploit others and | cooperate | defect
fear of being exploited by others
- = - : e —
Individual interest — defection you COOperate 2h-C ‘ 2bh-C -C ‘ b
I ‘\ I
. . |
Everyone is better off cooperating vou defect | _—Y—C 5 \b

Collective interest — cooperation

Solution | Outside central authorities or privatization

Problem | Not possible for planetary commons
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Governance of local commons

Tragedy Is not inevitable - Things are not as simple
as they seem in the prototypical model. Human
motivation is complex [...], and the resource
systems themselves have dynamics that influence
their response to human use.

Centralized authorities tend to overuse the commons
as well.

Solution | Bottom-up approaches, decentralized
governance, social reciprocity

Problem | Difficult to scale to the global level

Ostrom et al. (2002). The drama of the commons
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Intelligent technology should also cooperate

Setting the agendainresearch

Comment

“To help humanity solve fundamental
problems of cooperation, scientists
need to reconcelive artificial
Intelligence as deeply social”

e, T Q .

huddle at the 2017 United Nations Climate Change Conference, where attendees cooperated on mutually beneficial joint actions on climate.

Cooperative Al: machines must
learn to find commonground

Allan Dafoe, Yoram Bachrach, Gillian Hadfield, Eric Horvitz, Kate Larson & Thore Graepel

Dafoe et al. 2021 Cooperative Al: machines must learn to find common ground
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Cooperation challenges in human-machine ecologies
Why are we not cooperating more toward a sustainable future for all?

Collective Behavior %%
Social context

Heterogeneity
Structure

Cognitive Agency « Scale Environmental context @
Perception Smooth changes
Valuation Good modeling practices ** Abrupt changes
Decision-making Coherence | Transparency | Sparsity Uncertain changes
Action Delayed consequences

\ Dynamics o /

Nonlinearities & Feedbacks
Stability & Resilience
Transient evolution
Critical transitions

Personal synthesis based on Schill et al. (2019), Elsawah et al. (2020), Muller et al. (2020), Constantino et al. (2021), Levin & Xepapadeas (2021), Farahbakhsh et al. (2022), Giupponi et al. (2022)13



HOW | Building bridges



How to model? | Three types of models

Dynamic-system

models Model desiderata
Transparent Transpal_rent
Dynamics Dynamics
Collective behavior
? agency 7 :
9
Environmental contexts How to integrate

Often opaque
Dynamic
Collective behavior
Arbitrary agency
Environmental contexts

Agent-based models

Equilibrium-based
models

Transparent
Static

Collective behavior

Hyper-rational agency
Environmental contexts

15



Building bridges between communities

Complex Systems Science

Insightful - produced rich
understanding on how cooperation
can emerge

Simplistic - ignoring individual-level
complexity and environmental
context

Multiagent reinforcement learning

Rich - combining collectives of
individually intelligent agents in
changing'environments

Obscure - highly stochastic,
computationally expensive, and
challenging to interpret

16



CSS Example | Five rules for the evolution of cooperation

Kin selection

e_-e Cooperation as an emergent phenomenon, given ...

Cooperation is...

Direct reciprocity Payoff matrix - N ~
o O C D ESS RD AD
Indirect reciprocity Kin , C G-c)i+r) br ¢ 2 > L 2 > - 2 > L r...genetic relatedness
. selection D b—rc 0 c r c r c r
’ O
Dir?Ct _ C b-c)/(1-w) —C Il>l Il> 2-w Il> 32w w...probability of next round
reciprocity p b 0 c w c w W
Network reciprocity
Ind!rect _ C b—c —c(l-¢) b > 1 b S 2-q b > 3-2q g...social acquaintanceship
reCIprOCIty D b(l—q) 0 c q C q C q
Network C b—c H-c b b b .
reciprocity - 0 . >k ;>k ;>k K...number of neighbors
Group selection
.. ... Group. C b—c)(m+n) (b—c)m—cn 2>1+£ 2>1+£ 2>1+£ n...group size
selection D bn 0 c m m c m m...number of groups

@ Cooperators @ Defectors

Nowak 2006 Five Rules for the Evolution of Cooperation
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MARL Example | Cooperation in sequential social dilemmas

Cooperation not readily available as a single action
- must be learned as a sequence of action

cleaning beam
waste

Solution approaches river
* Other-regarding preferences

e Other-influence

 Reputation and norms

 Contracts

fining beam ®»

agent observation window

Frontiers: LLM-based agents Rppie

agent

Leibo et al. 2017 Multi-agent Reinforcement Learning in Sequential Social Dilemmas, Hughes et al. 2018 Inequity aversion improves cooperation in intertemporal social dilemmas, Du et al. 2023 A Review of Cooperation in Multi-agent Learning 18



How to build bridges?

Realize: focus on modeling for understanding - not scaling for engineering
All models are wrong
Study low-dimensional environments

Controll stochasticity

19



Collective reinforcement learning dynamics
Treat reinforcement learning as a nonlinear dynamical system

Deterministic approximation from strategy averaging

|
Xt+1 — Z—XXt CXP (d&x)

5(—6X+€

Agents learn how to act as if having a perfect model of the world

20



Integrating three types of models

Dynamic-system
models

Adaptation

Environment

reward-prediction temporal-difference error o
tells aacents how to gdant

Agent-based models

Equilibrium-based
models

21



Not a new idea
Building upon an interdisciplinary but scattered foundation

Machine
Learning
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Engineering

Statistical
Mechanics
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ur focus | non-linear dynamics of biologically-inspired learning of

cooperation




WHAT | MARL—CSS
Cognition in contexts




Cooperation challenges in human-machine ecologies
Why are we not cooperating more toward a sustainable future for all?

Collective Behavior %%
Social context

Heterogeneity
Structure

Cognitive Agency « Scale Environmental context @
Perception Smooth changes
Valuation Good modeling practices ** Abrupt changes
Decision-making Coherence | Transparency | Sparsity Uncertain changes
Action Delayed consequences

T~ _—

Personal synthesis based on Schill et al. (2019), Elsawah et al. (202v), viulier et al. (£uzu), Lonslantuno et di. (£us 1), Levin & xepapadeas (2021), Farahbakhsh et al. (2022), Giupponi et al. (2022)24



Individual cognition | Intelligent and adaptive behavior

Reinforcement learning as a general prototype model for intelligent &
adaptive decision-making

Do dopamine neurons report an error
in the prediction of reward?

No prediction
Reward occurs

Transition
model

5
Plannin
h -

Observation iy |
Reward predicted

Reward occurs

Reward percept &+ %

Reward predicted
No reward occurs

Temporal-difference reinforcement learning
empirically grounded in biology

Sutton 2022 The Quest for a Common Model of the Intelligent Decision Maker, LeCun 2022 A Path Towards Autonomous Machine Intelligence, Schultz et al. 1997 A Neural Substrate of Prediction and Reward 25



Embedded cognition | Ecology & environment

Partially observable stochastic games as a general model for
environmental context with delayed and stochastic consequences

1'6?71—1“ | | ric
@harvest I *. L e
f 1-noise X T-r
@ Lr,’ | noise NOISeE |
A~ 2 / \ |
8 - @ probabilistic discretization 'S Left .11/ Right +1 1\
) 00 0 0 0 ¢ G 9
Basic stock level Shase R S 4 1 R’i_q ht, _1
Resource states @
Abrupt transitions Smooth dynamics Partial observability Spatial Social environment

Pure strategic interactions or noisy reward feedback included

Discretization powerful - numerically and conceptually

Barfuss et al. 2020 Caring for the future can turn tragedy into comedy for long-term collective action under risk of collapse, Barfuss & Mann 2022 Modeling the effects of environmental and perceptual uncertainty using deterministic
reinforcement learning dynamics with partial observability, Perolat et al. 2017 A multi-agent reinforcement learning model of common-pool resource appropriation, Barfuss & Meylahn 2023 Intrinsic fluctuations of reinforcement learning og
promote cooperation



Collective cognition | Multi-agent systems
Multi-agent systems as a general model to micro-found collective behavior

> >

>

<

Anonymous Structurally linked Heterogeneous Hierarchical

<

<

Large collectives cause a curse of dimensionality

Mean-field approaches can help

27



WHAT | CSS—MARL
Emergent phenomena




Cooperation challenges in human-machine ecologies
Why are we not cooperating more toward a sustainable future for all?

Collective Behavior 1%
Social context
/ Heterogeneity
Structure \
Scale

Good modeling practices **
Coherence | Transparency | Sparsity

T Dynamics % —

Nonlinearities & Feedbacks
Stability & Resilience
Transient evolution
Critical transitions

Personal synthesis based on Schill et al. (2019), Elsawah et al. (2020), Muller et al. (2020), Constantino et al. (2021), Levin & Xepapadeas (2021), Farahbakhsh et al. (2022), Giupponi et al. (2022)29



A minimal model of

Prosperous
state Agent 1

Defect

Collective action

from individual adaptive intelligent
decision-making via RL

INn environmental commons with
catastrophic thresholds

Barfuss et al. 2020 Caring for the future can turn tragedy into comedy for long-term collective action under risk of collapse

30



Complex emergent phenomena

X4(s=CC,a=C)
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Basin of attraction (of the cooperative
equilibrium) as a measure of
collective Intelligence t«oasiein 2022

Encoding information in equilibrium
strategy as emergent collective
memory

Geometric view for ad-hoc
teamwork

Basin of attraction as a measure of
(social-ecological) resilience

Multi-stability in commons with catastrophic thresholds
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Agents’ learning almost converged until
suddenly drastic and fast changes may
happen again

Emergent separation of time scales

Multi-stability in commons with catastrophic thresholds
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Multi-stability in commons with catastrophic thresholds

— 109 ==aa <~ - > 7 )
Critical slowing down at the Q. S e
social tipping point
e convergence less relevant 300 -

* transient learning dynamics
e early warning indicators
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Critical transitions in commons with thresholds
when agents become more future-caring

e convergence less relevant
* transient learning dynamics
e early warning indicators
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Hysteresis

e.g., when agent’s future-caring weakens again

Another form of collective
memory

Important for social tipping
elements

Potential for sustainabllity
Interventions

=

o
I

"

0.8 - End

Cooperation

Start

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Discount Factor
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Complex collective action dynamics in social dilemma

When agents condition on
the previous round’s action,
they can

» |earn to cooperate

» learn on oscillating and
unpredictable transients

s vt

—

0

500 1000 1500 2000 2500
Time steps

0.0

0.2 0.4 0.6 0.8 1.0
XY (s=CC,a=0C)
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CONCLUSION
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Cooperation at scale is critical for achieving a sustainable
future for humanity. However, achieving collective, coop-
erative behavior—in which intelligent actors in complex
environments jointly improve their well-being—remains
poorly understood. Complex systems science (CSS) pro-
vides a rich understanding of collective phenomena, the
evolution of cooperation, and the institutions that can
sustain both. Yet, much of the theory in this area fails
to fully consider individual-level complexity and environ-
mental context—largely for the sake of tractability and
because it has not been clear how to do so rigorously.
These elements are well captured in multiagent rein-

forcement learning (MARL), which has recently put focus
on coonerative (artificiall intellicence However tvbnical

or reward scheme, e.g., via taxes and subsidies, that
makes selfish actions less attractive to individuals, whereas
bottom-up arrangements and social reciprocity find a way
to punish defecting behavior through peers (4). However,
the challenge of cooperation is far from being solved.

First, large collectives complicate the emergence and
robustness of cooperation. Although many mechanisms
have been identified that support its emergence and main-
tenance, it is also widely recognized that effective scaling
mechanisms are rare (5): in global public goods, such as the
climate, there is no single outside actor with sufficient en-
forcement power to ensure cooperation authoritatively. In

situations involving many, mostly anonymous, participants,
recinrocitvmechanicme< are hard to <tabilize (Y Hence a kev
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pyYCRLD work-in-progress Python package

Collective Reinforcement Learning Dynamics (CRLD)

https://barfusslab.github.io/pyCRLD/

On this page
pyCRLD CRLD nstal

How to use
Collective Reinforcement Learning Dynamics in Python

CRLD Is a tool to model the collective dynamics emerging from multi-agent reinforcement learning.
Agents s
Strategy Actor-Critic Multi-agent reinforcement learning (MARL) provides a comprehensive framework for studying the
Strategy SARSA interplay among learning, representation, and decision-making between multiple actors. As a
Strategy AC (part. Obs.) : : i : - .
Value SARSA result, it offers an integrating platform to in-silico test hypotheses and build theory on how
alue

different cognitive mechanisms affect collective adaptive behavior in complex environments.
Strategy Base

Value Base
Strategy Base (part. Obs.)
Base (part. Obs.) a Ct| ons
Base
Environments v '
Environment Base
History Embedding 4

Social Dilemma observations, rewards
Ecological Public Good Agents Env"-onment

Uncertain Social Dilemma
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CSMofHEI course material
Complex Systems Modeling of Human-Environment Interactions

https://wbarfuss.github.io/csm-of-hei/

Complex Systems
Modeling of
Human-
Environment
Interactions

Preface

1T Intoduction
Dynamic Systems
2 Nonlinearity

3 Tipping elements

Three types of models

When addressing societal challenges, the concept of the three types of knowledge helps to
produce not only knowledge on problems but also knowledge that helps to overcome those
problems (Buser & Schneider, 2021). In general, the concept applies to all research
methodologies. We will specifically discuss it in the context of formal modeling, transforming
It into three types of models (Figure 1.10).

J)

Facts Values
Dynamic-systems = What ought io be? Target-equilibrium
models @“ms Tm models

Knowledge

/

Transformation ]

Knowledge

Agency
Transformation-agency (agent-based) model

Figure 1.10: Three types of models based on three types of Knowledge for transdisciplinary reserach

Table of contents

Learning goals

11 Human-environment
interactions for sustainability
transitions

The state of the planet

Why are we not acting?

A failure of systems thinking
1.2 Modeling

We cannot not model

All models are wrong

Some models are useful

Some models are good
1.3 Systems reductionism

Classical reductionism

The problem with experts

Complex systems

Systems reductionism

1.4 Sustainability Systems
Modeling

Structural challenges
Three types of models
1.5 Learning goals revisited
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Summary | CSS+MARL — SusEcon

Why | Collective action challenges in human-machine ecologies
- Why are we not cooperating towards a sustainable future?
» Transparent Analysis 4 of the Non-linear dynamics # of the Collective behavior 22

aas o
SrD

emerging from Individual intelligence « in some Environmental context &

How | Building bridges
» Bringing the level of understanding from CSS to the richness of MARL by

» (Collective Reinforcement Learning Dynamics: mitigating noise in low-dimensional
environments

What | Emergent phenomena from cognition in contexts

Discount Factor

vvvvvv

Discount factor
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Thank you >

wbarfuss@uni-bonn.de
pbarfusslab.github.io
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