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Safety and security risks in AI decision making

• Well known that neural networks are unstable to adversarial perturbations

Adversarial example    Physical attack          Patch attack             Real traffic sign
  

• For high-stakes applications, need provable guarantees on correctness
• Yet AI/ML community focuses on performance – formal verification to the rescue?

Feature-Guided Black-Box Safety Testing of Deep Neural Networks. Wicker et al, In Proc. TACAS, 2018.
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Formal verification provides provable guarantees

• Modelling = rigorous, mathematical abstraction
• Verification = proof that the model satisfies specification
• Synthesis = correct-by-construction model/policy from specification
• Automated = algorithmic, implemented in software

ModelSoftware

void add(Object o) {
 buffer[head] = o;

 head = (head+1)%size;
}

Object take() {
 …

 tail=(tail+1)%size;
 return buffer[tail];

}
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Probabilistic Model Checking in Autonomy. Kwiatkowska et al, Ann Rev of Control, Robotics and Aut. Sys. (2022).



Multiple applications and use cases!

    Protocol debugging                                                     Protocol verification

Prediction of DNA folding                                           Optimal controller synthesis



Formal verification for neural networks (NNs)

• Rigorous formal verification
− can provide provable guarantees, e.g. that 

no adversarial examples exist
− enables robustness certification and 

correct-by-construction synthesis 
− crucial part of safety assurance

• Neural network models more challenging
− black box, lack interpretability
− high-dimensional function
− interplay between architecture and 

training (non-linear optimization)

•  Much progress since 2017: Reluplex, DLV, DeepPoly, ReluVal, CROWN, …

Safety Verification of Deep Neural Networks. CAV 2017 keynote

Image classifier is a function f: Rn → {c1,…ck}
Learnable weights and bias

Approximates human perception from M 
training examples



This talk: provable guarantees via formal verification

• Overview of recent research
• Focus on (data-driven) NN/RL policies and components
• Brief recap of (local) adversarial robustness certification

− crucial part of safety assurance, pre-deployment
• A selection of snapshots

− pre-image approximation
− quantitative verification
− exploiting causality
− handling uncertainty
− neuro-symbolic models

• Conclusions and future directions



Recap of adversarial robustness

• Focus on local adversarial robustness, for a specific input

• Informally, no perturbation results in a misclassification
• More formally, assume given

− trained neural network classifier f : Rm → {c1,…ck} 
− region η centred at x wrt distance function, e.g. L2, L∞ 

• Define local robustness at x wrt η by (SAT friendly)
− ∄y ∈ η such that f(x) ≠ f(y)

• Here, focus on computing provable guarantees on correctness, rather 
than constructing defences

x
y

η

Label: 30



Neural network verification

• Given a neural network 𝑓: 𝑅! → 𝑅", the NN verification problem is defined as 
(𝜑#$% , 𝜑#&'() requiring that 
− ∀𝑥	 ∈ 	𝑅! . 𝑥	 ⊢ 𝜑"#$ ⟶ 𝑓(𝑥) ⊢ 𝜑"%&'

• Simplification to polyhedral input and 
output sets

• Typically, exact verification intractable, focus on computing lower/upper bounds

                                                                    

Input Output
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6030

0.9

0.1
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Neural network verification: forward analysis

• Given a neural network 𝑓: 𝑅! → 𝑅", the NN verification problem is defined as 
(𝜑#$% , 𝜑#&'() requiring that 
− ∀𝑥	 ∈ 	𝑅! . 𝑥	 ⊢ 𝜑"#$ ⟶ 𝑓(𝑥) ⊢ 𝜑"%&'

• Typical approach: forward analysis
− start from 𝑋 = {𝑥 ∈𝑅𝑛 |𝑥 ⊢𝜑𝑝𝑟𝑒} 
− bound the worst case on each layer
− propagate bounds through layers
− check whether the predicted labels are 

preserved

• Computes over-approximation of output set
• Note may result in loose bounds…

Input Output



Progress in neural network verification

• Compute provable guarantees by lower/upper bounding the reachable 
values

• Methods include exact/approximate
− search-based/Lipschitz, e.g. DLV
− constraint solving/SMT/MIP, e.g., Reluplex
− convex relaxation, e.g., interval/linear bound 

propagation, as in CROWN
− abstract interpretation, e.g., DeepPoly
− global optimisation, under assumption of 

Lipschitz continuity, e.g., DeepGO

• Hard problems, typically NP-completeness
• Convex relaxation best performers, see VNN-Comp
• Scaling, loose bounds and complex architectures an issue…

Linear bounding of 
ReLU activations

ReLU(x) := max(0, x)
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Neural network verification: backward analysis

• Given the NN verification problem (𝜑#$% , 𝜑#&'() for a neural network 𝑓: 𝑅! → 𝑅", 
requiring that 
− ∀𝑥	 ∈ 	𝑅! . 𝑥	 ⊢ 𝜑"#$ ⟶ 𝑓(𝑥) ⊢ 𝜑"%&'

• Focus instead on backward analysis
• Characterize the inputs for 

output constraints Y = {𝑦 ∈𝑅𝑚│𝑦 ⊢𝜑𝑝𝑜𝑠𝑡 } 

• Advantages
− more precise correctness guarantees, particularly under-approximation

• but
− exact preimage computation is intractable at scale, 𝑂(2𝑛) for 𝑛 unstable ReLU neurons 

ImagePreimage

Provably bounding neural network preimages. Koha et al, In Proc. NeurIPS 2023.
Provable Preimage Under-Approximation for Neural Networks. Zhang et al, In Proc. TACAS 2024.



Preimage approximation

• Work backwards to generate preimage approximation via convex relaxation 
in terms of disjoint union of polytopes

• Given output specification y = 𝑓(𝑥) ≥ 0 (any polyhedral property)
• Compute symbolic lower/upper bounding functions for 

activations from output layer to input:
− 𝐴𝑥 + 𝑏 	≤ 𝑓 𝑥 ≤ 𝐴𝑥 + 𝑏	

• Preimage under-approximation as a polytope:
− x	 𝐴𝑥 + 𝑏 ≥ 0} ⟶ x	 𝑓(𝑥) ≥ 0}

• Also over-approximation
• Method relies on

− backward propagation
− preimage refinement through input/ReLU splitting planes
− heuristics and optimisations, to deal with exponential growth in constraints

PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks, arXiv:2408.09262
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ReLU activations



Preimage under/over-approximation

• Anytime algorithm, backward propagation via convex relaxation
• Preimage refinement to handle approximation loss

− parallel processing of split regions
− tightening of approximation by optimizing relaxation parameters
− (novel differential objective)

• Two types of (sound) preimage refinement 
− via input-feature-aligned cutting plane (not shown)
− via ReLU-aligned cutting plane
− (unstable ReLU neuron into two stable

cases: approximation becomes exact)
• Volume-estimated prioritization of 

splitting subregions
• Exact volume for final verification

PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks, arXiv:2408.09262
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Experimental results: preimage under-approximation

• Method scales to high-dimensional tasks 
− first method to scale to 𝒍1 attack (noise in all image pixels) and patch attack 

− evaluation on MNIST (GTSRB in progress) with varied size and position of the 
patch, indicating areas of vulnerability

− provides quantitative coverage results for larger perturbation bounds

Provable Preimage Under-Approximation for Neural Networks. Zhang et al, In Proc. TACAS 2024.



Quantitative neural network verification

• Preimage under-approximation enables quantitative verification
− i.e. estimating proportion of inputs that satisfy 𝜑"%&'
− sound and complete

• Useful in cases when verification fails
• Complementary to robustness verifiers, benchmarked against winner of 

VNN-Comp 2023

Provable Preimage Under-Approximation for Neural Networks. Zhang et al, In Proc. TACAS 2024.



Reachability for RL controllers

• Backward reachability analysis, with quantitative guarantees

• Efficient, often bounding with few polytopes 
• Over- and under-approximation

27PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks, arXiv:2408.09262
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Supply side costs
e.g., jet fuel price Airplane ticket salesAirplane ticket price

A: action
R: outcome
C: context

Z: InstrumentPopular conferences

• The data generating model can be expressed as follows:

• It has been shown that we cannot learn the causal effect 
of actions in the presence of hidden confounders without 
structural assumptions.

• Thus, we assume access to instrumental variables (IVs)

• Geographical distance from a medical facility can be an instrument for medical treatment

Decision policies with optimality guarantees

Learning Decision Policies With Instrumental Variables Through Double Machine Learning. Shao et al, In Proc. ICML 2024.
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DML-IV

• Double Machine Learning (DML) is a statistical technique that debiases two-
stage estimators and provides fast convergence rate guarantees of for general
two-stage regressions, where N is the sample size

• We propose DML-IV, a novel IV regression algorithm utilising the DML
framework

• Derive a Neyman Orthogonal score function that describes the IV regression
problem:

• Design a k-fold cross-fitting learning algorithm.

• We are able to prove that the DML-IV estimator converges to the true causal
effect function at rate   under mild regularity assumptions.

• Furthermore, the suboptimality of the induced decision policy is also

Learning Decision Policies With Instrumental Variables Through Double Machine Learning. Shao et al, In Proc. ICML 2024.
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Experiments

• Evaluate DML-IV on benchmarks and semi-synthetic real-world datasets (Infant
development and cardiovascular mortality rate datasets).

• Compare the error of the learned causal effect of actions (lower is better):

 Low-dimensional    High-dimensional     Real-World
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Experiments

• Compare the expected reward of the induced decision policy from the learned
causal effect function (higher is better).

 Low-dimensional    High-dimensional     Real-World



Extensions

• Extension to imitation learning incorporating causal inference
− A Unifying Framework for Causal Imitation Learning with Hidden Confounders. Shao 

et al, In Workshop on Spurious Correlation and Shortcut Learning: Foundations and 
Solutions, Workshop at The International Conference on Learning Representations 
(ICLR) 2025

• Learning of optimal policies from temporal logic specifications
− Sample Efficient Model-free Reinforcement Learning from LTL Specifications with 

Optimality Guarantees. Shao et al, Proc. IJCAI 2023
− Converts LTL to limit-deterministic Buchi automata

• Learning temporal logic specifications to debug/explain RL policies
− Learning Probabilistic Temporal Logic Specifications for Stochastic Systems. Roy et al, 

Proc. IJCAI 2025
− Learns concise probabilistic LTL from positive and negative examples

35

http://fun2model.org/bibitem.php?key=SBK25


But what about uncertainty?

• Autonomy, yet highly uncertain scenarios!

• Main focus so far on deterministic neural networks
− deterministic outcomes, fixed (trained) weights
− potentially overconfident predictions

• Probabilistic verification 
− enables reasoning, planning, etc, in 

the presence of uncertainty
− many tools (PRISM, Storm, etc)
− limited to state-based models

• Can we extend probabilistic verification to neural network settings?

36
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Probabilistic Model Checking for Strategic Equilibria-based Decision Making: Advances and Challenges, Kwiatkowska 
et al., In Proc MFCS 2022



Uncertainty in decision making

• Requiring that no adversarial examples exist too strict!
• Uncertainty as a first-class citizen: Bayesian neural networks (BNNs)

− allow for ‘don’t know’ answers, can increase trust in decisions
− pass distributions through softmax

• Define safety with prob 1-𝜀
	 𝑃𝑟𝑜𝑏(∃y ∈ η s.t. f(x) ≠ f(y) | D) ≤ 𝜀
• i.e., conditioned on training data D

• Aim to provide provable probabilistic guarantees for BNNs
− certified bounds on decision probability
− also under adverse conditions 
− (certifiable adversarial robustness training)

Statistical Guarantees for the Robustness of Bayesian Neural Networks. Cardelli et al, In Proc. IJCAI 2019.
Probabilistic Safety for Bayesian Neural Networks, Wicker et al., In Proc UAI 2020
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http://qav.comlab.ox.ac.uk/bibitem.php?key=WLPK20


Certification of Bayesian CNN on medical images

• MedMNIST
(PneumoniaMNIST)

• Decision safety

• Certified robust 
(lower bound on 
decision safety),
vs image
resolution

• Limited scalability, more progress needed!
• Also need stronger methodologies beyond certification: correctness by design

Adversarial Robustness Certification for Bayesian Neural Networks. FM 2024



Risk-averse certification for BNNs

• Averaging over full input distributions does not suffice
• Risk-averse certification: robustness under adverse 

conditions, say 5% of most adversarially unstable cases
• Principled approach incorporating CVar (Conditional 

Value at Risk)
• Compute certified CVar bounds with probabilistic 

guarantees

Risk-Averse Certification of Bayesian Neural Networks. arXiv:2411.19729

Output support set
(empirical)

Safety 
threshold



Probabilistic guarantees for autonomous controllers

• So far only one-step predictions; now consider iterated prediction steps
• Here, environment specified as a Bayesian neural network

• Synthesised controllers and 
reach-avoid probabilities
− controller benchmarks
− obstacles

Probabilistic reach-avoid for Bayesian Neural Networks. Wicker et al, Artificial Intelligence, 2024.

π

Controller

Environment

Dataset

Policy Acts in Env.

Record Interactions 
as Dataset

Fit the BNN to the 
dataset

BNN used to 
Update Policy

BNN

BNN Model of System Real System

Variational Posterior



Neuro-symbolic games

• Agents endowed with neural perception and symbolic decision making 
− here: NN classifiers (or other machine learning) for perception tasks
− constrained interface: convert inputs such as images to symbolic percepts
− plus: local strategies for control decisions

• Neuro-symbolic games (two players/coalitions)
− finite-state agents + continuous-state environment E

• S  =  (Loc1×Per1) × (Loc2×Per2) × SE

− agents only use a (learnt) perception function to observe E
• obsi : (Loc1×Loc2) × SE → Peri

− joint actions update state probabilistically

• Example: dynamic vehicle parking 
− NN maps exact vehicle position to perceived grid cell
− stochasticity from, e.g., motion imprecision

65

Agent 1      Environment

percept

action

Neural network

𝑎!
𝑠": 𝑙𝑜𝑐, 𝑝𝑒𝑟

𝑝𝑒𝑟

𝑠#



Strategy synthesis for neuro-symbolic games

• Consider zero-sum (discounted) expected reward over infinite horizon
− for now, we assume full observability
− value exists under Borel assumptions, fixed point of minimax
− but optimal value may not be finitely representable

• Value iteration (VI) approach, exploit structure
− continuous state-space decomposed into regions

with the same percept (and reward)
− further subdivision at each iteration

via Borel decomposition, under assumptions
− abstraction based on piecewise-continuous

value functions, preserved by NNs and VI
• Implementation

− pre-image computations of NNs
− polytope representations of regions (ReLU)
− LPs to solve zero-sum games at each step

Dynamic vehicle parking
with larger (8x8) grid and

simpler (regression) perception

Value function
(fragment)

Optimal strategy
(fragment)

66Strategy synthesis for zero-sum neuro-symbolic concurrent stochastic games, Inf & Comp, 2024



Neuro-symbolic POMDPs

• Need partial observability for neural perception, not just continuous environment!

• NS-POMDP (partially 
observable MDP)
− finite-state agent + continuous-state environment E

• S  =  (Loc×Per) × SE

− agent uses a (trained) perception function to observe E
• obs : (Loc×SE ) → Per

− and transitions based on local state and percept
• δ : (Loc×Per×A ) → Dist(Loc)

• Work in belief space over S (probability distributions)

70

Agent 1      Environment

percept

action

Neural network

𝑎!
𝑠": 𝑙𝑜𝑐, 𝑝𝑒𝑟

𝑝𝑒𝑟

𝑠#

Car parking (4x4)
Localisation NN
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Neuro-symbolic POSGs

• Restrict to one-sided variant, new subclass of hybrid-state POSGs

NS-POSGs (same syntax as NS-CSGs)
− finite-state agents + continuous-state environment E
− Agent 1 uses a (learnt) perception function to observe E

• obs1 : (Loc1× SE )→ Per1

− and transitions on percepts and local states δ : (Loc1×Per1×A ) → Dist(Loc)
− Agent 2 fully informed

Agent 1      Environment       Agent 2

percept

action

access

access

action

Neural network

𝑠#𝑠!: 𝑙𝑜𝑐!, 𝑝𝑒𝑟!

𝑝𝑒𝑟!

𝑎! 𝑎$

𝑠!

𝑠#

Partially informed agent fully informed agent
maximize minimize

𝑌 𝜋 =<
%&'

(
𝛽%𝑟(𝜋 𝑘 , 𝜋[𝑘])

discounted reward:

zero-sum

Partially observable stochastic games with neural perception mechanisms, In Proc FM 2024



Example: pedestrian-vehicle interaction

• Autonomous vehicle
− partially informed
− aims to predict pedestrian’s intention
− using NN trained from video data

• Pedestrian
− fully informed for worst-case analysis
− decides whether to cross or return to 

sidewalk
• Goal: synthesise strategy for vehicle to 

minimize likelihood of crash (opposite for pedestrian)
72https://data.nvision2.eecs.yorku.ca/PIE_dataset/



Pedestrian-vehicle interaction as NS-POSG

• Agent 1: vehicle
− 𝑙𝑜𝑐1: speed
𝑝𝑒𝑟1: pedestrian intention

− 𝑎1: acceleration (e.g. +3,-3)
• Agent 2: pedestrian

− 𝑎2: cross, back 
• Environment E

− two successive pedestrian positions
 (𝑥1,𝑦1,𝑥2,𝑦2) 

75



Strategy synthesis for neuro-symbolic POSGs

• Consider zero-sum (discounted) expected reward over infinite horizon
− one sided, so Agent 2 can recover beliefs of Agent 1
− assume determined, as value may not exist

• HSVI approach (extend Horak et al 2023)
− continuous state-space decomposed into regions
− further subdivision at each iteration
− work with a class of piecewise-continuous 
𝛼-functions, + closure properties

− anytime

• Implementation
− polyhedral pre-image computations of NNs
− LPs to compute lower/upper bound and minimax values

78
Partially observable stochastic games with neural perception mechanisms, In Proc FM 2024

PWC 𝛼-function
polyhedra + value vector



Efficient online minimax strategies

• How to synthesize strategies based on the lower and upper bound functions

86

NS-HSVI continual re-solving for 𝐴𝑔)

Online continual resolving
• keeps track of belief and counterfactual values
• builds and solves a game without storing 

complete strategy
Our variant
• precomputes HSVI lower bound
• keeps track of belief and PWC function 𝛼1
• solves a single LP at each stage

HSVI-based Online Minimax Strategies for Partially Observable Stochastic Games with Neural Perception Mechanisms, 
In Proc L4DC 2024



Safe planning in a crowd

• Robotic agent modelled as a partially observable 
MDP (POMDP)
− partial observability (e.g., perception inaccuracy)

• Environment is populated with pedestrians
• Pedestrian trajectory prediction

− data-driven trajectory predictor
− uncertainty quantification via 
    (statistical) adaptive conformal prediction (ACP) 

• Safe online planning via shielding
− on-the-fly safety shield construction

• Safety guarantee, given any probability threshold
− outperforms state of the art on real data

88Safe POMDP Online Planning Among Dynamic Agents via Adaptive Comformal Prediction. 
Sheng et al, RAL 2024.



Experimental evaluation using real-world data

89Safe POMDP Online Planning Among Dynamic Agents via Adaptive Comformal Prediction. 
Sheng et al, RAL 2024.



Multiple applications and NN verification use cases!

Efficient policy learning                                                 Protocol verification

Dynamic conformal prediction                                  Optimal controller synthesis

Variational Posterior

http://fun2model.org/ 

http://fun2model.org/


Beyond certification: robust learning

• So far, consider trained neural networks, need to retrain if verification fails
• Can we instead efficiently robustly learn? (correct-by-construction synthesis)

• Similar to PAC framework (polynomial sample complexity), except
− for concept c and hypothesis h, use robust risk 𝑃𝑟𝑜𝑏𝑅(∃z ∈ η(x,𝝔) s.t. c(z) ≠ h(z))
− instead of standard risk 𝑃𝑟𝑜𝑏(c(x) ≠ h(x)) 
− NB learning is exact in region η, different from previously required invariance/stability 

over η (constant)
• Show that no non-trivial concept can be learnt in the distribution-free setting

• For simple concepts, can efficiently 𝝔-robustly learn under classes of distributions 
(e.g., uniform)

On the Hardness of Robust Classification. Gourdeau et al, In Proc. NeurIPS 2019, extended JMLR, 22(273) 2021
When are Local Queries Useful for Robust Learning? Gourdeau et al, In Proc. NeurIPS 2022



Beyond adversaries: strategyproof robustness

• So far, consider only adversarial robustness to individual perturbations, but AI 
agents can behave strategically

• Can we instead strategyproof policy learning? (correctness by design)

• Consider RLHF (reinforcement learning from human feedback)
− multiple agents, diverse preferences, leading to potential bias in learnt policy decisions
− but agents can also strategically manipulate the decisions in their favour by 

misreporting their preferences
− existing RLHF methods not strategyproof…

• Aim to devise strategyproof RLHF through mechanism design
− how? incentivise truthful reporting
− can provide an algorithm that is approximately strategyproof and converges to the 

optimal policy as the number of individuals and samples increases
Strategyproof Reinforcement Learning from Human Feedback. Kleine Buening et al, arXiv:2503.09561v1



Concluding remarks

• Range of techniques developed in the AI/ML and formal methods communities
− robustness guarantees needed for high-stakes decisions
− optimality, explainability of policies desirable
− but likely to need human involvement in decisions and act as assistants 
− ML models increasing in complexity, take up of certification lagging behind

• Despite progress, major challenges remain
− scalability to complex architectures and properties
− foundational understanding needed
− ideally, semantic methods, not pixel-based perturbations
− need support for interactions with human decision makers
− robust learning for correct-by-construction models and policies

• Need integrated processes for validation and safety assurance, not just 
(probabilistic) verification
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