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• Basic PID to bootstrap RL-algorithm, i.e. to provide initial behavior to 
the Fuzzy Q-learning algorithm

• RL gradually improves with PID as backup, i.e. when RL proposes a 
potentially unsafe action, it can be overruled by the PID controller 

Red: Reinforcement Learning
Yellow: PID (RL uncertain)
Green: PID (out of bounds)
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Highlights
- RL learns policies that outperform MPC
- A (near-to) optimal multi-energy management policy can be learned safely.
- Constraints can be formulated independently from the (optimal) control technique
- Better policies can be found starting with an initial safe fallback policy.
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Rule Distillation
• IF COND1 AND COND2 AND …. THEN ACTION1

Action Influence Graphs
Structural Causal Models

with actions

IF (1, 5)=BRICK AND 
(1, 0)=COIN_RED 

THEN Action=RIGHT

Transparency / Interpretability / Explainability

I’m building up momentum

Formally, a signature Sa for an action influence model
is a tuple (U , V, R, A), in which U , V, and R are as in
SCMs, and A is the set of actions.
Definition 2. An action influence model is a tuple
(Sa, F), where Sa is as above, and F is the set of
structural equations, in which we have multiple for each
X œ V — one for each unique action set that influences
X. A function FX.A, for A œ A, defines the causal ef-
fect on X from applying action A. The set of reward

variables Xr ™ V are defined by the set of nodes with
an out-degree of 0; that is, the set of sink nodes.

We define the actual instantiation of a model M as
MV̨ΩS̨ , in which S̨ is the vector of state variable val-
ues from an MDP. In an actual instantiation, we set
the values of all state variables in the model, e�ectively
making the exogenous variables irrelevant.

Figure 1 shows the graphical representation of Def-
inition 2 as an action influence graph of the Starcraft
II agent described in the previous section, with exoge-
nous variables hidden. These action influence models

are SCMs except that each edge is associated with an
action. In the action influence model, each state vari-
able has a set of structural equations: one for each
unique incoming action. As an example, from Figure
1, variable An is causally influenced by S and B only
when action Am is executed, thus the structural equa-
tion FAn.Am (S, B) captures that relationship.

Explanation Generation

In this section, we present definitions that generate ex-
planations from an action influence model. The process
of explanation generation has 3 phases: 1) defining the
qualitative causal relationships of variables as an action
influence model; 2) learning the structural equations
during RL; and 3) generating explanans from SCMs us-
ing the definitions given below.

We define an explanation as a pair that consist of:
1) an explanandum, the event to be explained; and 2)
an explanan, the subset of causes given as the expla-
nation (Miller 2018b). Consider the example ‘Why did
you do P?’ and the explanation ‘Because of Q’. Here,
the explanandum is P and explanan is Q. Identifying
the explanandum from a question is not a trivial task.
In this paper, we define explanations for questions of
the form ‘Why A?’ or ‘Why not A?’, where A is an ac-
tion. In the context of a RL agent we define a complete

explanan below.
Definition 3. A complete explanan for an action
a under the actual instantiation MV̨ΩS̨ is a tuple1

X̨r = x̨r, X̨h = x̨h, X̨i = x̨i

2
, in which X̨r is the vec-

tor of reward variables reached by following the causal
chain of the graph to sink nodes; X̨h the vector of vari-
ables of the head node of action a, X̨i the vector of inter-
mediate nodes between head and reward nodes, and x̨r,
x̨h, x̨i gives the values of these variables under MV̨ΩS̨ .

Informally, this defines a complete explanan for
action a as the complete causal chain from action

Rewards

State variables:

W - Worker number
S - Supply depot number
B - barracks number
E - enemay location
An - Ally unit number
Ah - Ally unit health
Al - Ally unit location
Du - Destoryed units
Db - Destroyed buildings
Actions:

As - build supply depot
Ab - build barracks
Am - train o�ensive unit
Aa - attack
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Figure 1: Action influence graph of a Starcraft II agent

a to any future reward that it can receive. From
Figure 1, the causal chain for action As is de-
picted in bold edges, and the extracted explanan tu-
ple ([S = s] , [An = an] , [Du = du, Db = db]) is shown
as darkened nodes. We use depth-first search to traverse
the graph until all the sink nodes are reached from the
head node of the action edge.

‘Why?’ Questions

Lim, Dey, and Avrahami (2009) found that the most
demanded explanatory questions are Why and Why not

questions. To this end, we focus on explanation gener-
ation for why and why not questions in this paper.

Minimally Complete Explanations Striking a
balance between complete and minimal explanations
depend on the epistemic state of the explainee (Miller
2018b). In this paper, we assume that we know nothing
about the epistemic state of the explainee.

Recall from the definition of explanans (Definition 3),
a ‘complete’ explanation would include explanans of all
the intermediate nodes between the head and reward
node of the causal chain. Clearly, for a large graph, this
risks overwhelming the explainee. For this reason, we
define minimally complete explanations.

McClure and Hilton (1997) show that referring to the
goal as being the most important for explaining actions.
In our causal models, the rewards are the ‘goals’, but
these alone do not form meaningful explanations be-
cause they are merely numbers. We define the human
interpretable ‘goal’ using the variables in the predeces-
sor nodes of the rewards. These define the immediate
causes of the reward, and therefore which states will
result in rewards. However, this alone is only a longer-
term motivation for taking an action. As such, we also
include the head node of the action edge as the imme-
diate reason for doing the action. We use this model to
define our minimally complete explanations.
Definition 4. A minimally complete explanation is a
tuple

1
X̨r = x̨r, X̨h = x̨h, X̨p = x̨p

2
, in which X̨r = x̨r

and X̨h = x̨h do not change from Definition 3, and
X̨p = x̨p is the vector of variables that are immediate
predecessors of any variable in Xr within the causal
chain, with x̨p the values in the actual instantiation.

Madumal, P., Miller, T., Sonenberg, L., Vetere, F.: 
Explainable reinforcement learning through a causal lens. AAAI’20

IF COND1 AND COND2 AND …. THEN ACTION1



Visualisation

Local Advantage Networks for Multi-Agent Reinforcement Learning in Dec-POMDPs
Raphaël Avalos et al, JMLR (2023)
Starcraft Multi-agent Challenge (SMAC)
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● Hybridization of Neural Networks and Decision Trees
○ Originally for image classification

● Branching nodes are perceptrons 
⇒ soft decisions for tree traversal

● Leaves represent softmax distributions:

Soft Decision Trees (SDT) 

Frosst, N., & Hinton, G. (2017). Distilling a Neural Network Into a Soft Decision Tree. In T. R. Besold & O. Kutz (Eds.), Proceedings of the 
First International Workshop on Comprehensibility and Explanation in AI and ML 2017 (Vol. 2071). Tarek R. Besold & Oliver Kutz.

Post-HOC Feature Importance



Post-HOC Feature Importance

Examining branching nodes' filters shows important 
regions of the state

9

Coppens, Y., Efthymiadis, K., Lenaerts T., and Nowé A., (2019) Distilling Deep 
Reinforcement Learning Policies in Soft Decision Trees, XAI workshop at IJCAI  
2019.

● Hybridization of Neural Networks and Decision Trees
○ Originally for image classification

● Branching nodes are perceptrons 
⇒ soft decisions for tree traversal

● Leaves represent softmax distributions:

Soft Decision Trees (SDT) 



• Summarize policy behavior into a surrogate white box model 
• Driven by performance rather than model accuracy

POST-HOC Policy distillation

1. IF X THEN Class=A
2. IF Y THEN

Class=B
   ... 

N. IF TRUE THEN
   Class=B



Exploiting meta information

Distilled PolicyGreedy Policy



Inductive Rule Learning

From Interpretable Machine Learning. A Guide for Making Black Box Models Explainable, by Christoph Molnar, 2019. https://christophm.github.io/interpretable-ml-book/. (CC BY-NC-SA 4.0) 
 

https://christophm.github.io/interpretable-ml-book/


Mining rules from multi-labelled data

1. IF X<=1.0 THEN Class=A
2. IF X>=1.01 THEN Class=B



Example Muddy world

8 Y. Coppens et al.

(a) In each cell, the most optimal action(s)
to perform are shown by arrows. Notice
how some cells in the grid contain two op-
timal actions leading to the top rightmost
goal state. The cross in the middle indi-
cates the muddy states

(b) Distillation of the muddy gridworld
policy with standard CN2: Samples pro-
vided to CN2 are state-action pairs. When
multiple optimal actions exist for a state,
an action is selected at random.

Fig. 1: Muddy gridworld environment with its optimal policy, and a distillation
of this policy using standard CN2 (no support for equally-good actions).

set, respectively denoted by E and Ê:

WRAset =
Ê

E
⇥
 
P̂

Ê
� P

E

!
(2)

This will have the e↵ect that the heuristic will only count the multi-labelled
instances as a positive example when the majority class is one of the options,
and as a negative example otherwise.

4.1 Impact of Set-Valued Labels on Policy Distillation

Before we discuss our approach on the Mario AI benchmark, we illustrate the
e↵ect of our set-valued rule mining heuristic on a simple 20 by 20 discrete-state
gridworld problem, where a navigating agent has to walk to the top rightmost
cell from any initial position.1 Actions are up, down, right and left. Near the
center of the grid, a couple of cells contain mud. The agent receives a reward of
-1 per time-step, -10 when entering a muddy cell.

Figure 1a shows the environment, and the optimal policy learned by a Q-
learning agent in this setting. In most cells, two optimal actions exist to navigate
to the goal, namely moving upward or to the right. Meaning there are quite a
lot of optimal policies in this example. In the cells neighboring the muddy cells
however, the agent has learned not to walk towards the muddy parts, but rather
walk around it. In essence, the general behavior of the agent can be summarized

1 Another illustration can be found on pages 8 and 9 of https://www.ida.liu.se/
⇠frehe08/tailor2020/TAILOR 2020 paper 48.pdf
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Phase 1

1. IF X<=18 THEN Class=RIGHT 
2. IF X=19 THEN Class=UP 
 

Rule mining on greedy policy

greedy policy Synthesising RL Policies through Set-Valued Inductive Rule Learning 9

1. IF X<=18 THEN Class=RIGHT
2. IF X=19 THEN Class=UP

(a) An initial distillation of the muddy
gridworld policy using our Set-Valued ex-
tension of CN2, taking multiple possible
actions into account. The rules are simple,
but do not yet consider the policy details
in the muddy states into account, leading
to sub-optimal performance.

1.1 IF X<=18 AND Y=10 AND X>=8 AND
X<=9 THEN Class=UP

1.2 IF X<=18 AND X>=10 THEN
Class=RIGHT

1.3 IF X<=18 AND X<=8 THEN
Class=RIGHT

1.4 IF X<=18 AND Y=11 THEN Class=UP
1.5 IF X<=18 AND Y=9 THEN Class=DOWN
1.6 IF X<=18 THEN Class=RIGHT
2 IF X=19 THEN Class=UP

(b) Refining the rules shown in (a), as de-
tailed in Section 5, identifies the state near
the mud that requires a di↵erent action
from the surrounding states, leading to op-
timal behavior.

Fig. 2: Distilled policy with our modified CN2 algorithm, without and with our
refinement step.

as moving upward or to the right. Hence an acceptable simplified policy would be
to first walk to either the upper or right border and then walk straight to the goal.
Such a simplified policy would be a desired outcome of the rule mining process,
as it provides a first high level view on the policy. This high level policy can be
refined, see Section 5 below. As explained in that section, this refinement is not
driven by increasing the accuracy requirements of the rule-mining algorithm, but
rather by improving the performance of the distilled policy.

Figure 1b shows the resulting policy derived from the standard single-labeled
CN2 algorithm, using the regular WRA heuristic. As the algorithm expects single
labeled data, whenever multiple optimal actions exist for a state, one of these
had to be sampled randomly. The resulting rule list covers several sectors in the
grid where the agent either moves upward or to the right, eventually ending up
in the goal. As standard CN2 cannot take alternative actions into account during
the mining process, it cannot distil a simple policy, meaning a policy expressed
with few rules, yet having a good performance.
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WRAset =
Ê
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1. IF X<=18 THEN Class=RIGHT
2. IF X=19 THEN Class=UP

(a) An initial distillation of the muddy
gridworld policy using our Set-Valued ex-
tension of CN2, taking multiple possible
actions into account. The rules are simple,
but do not yet consider the policy details
in the muddy states into account, leading
to sub-optimal performance.

1.1 IF X<=18 AND Y=10 AND X>=8 AND
X<=9 THEN Class=UP

1.2 IF X<=18 AND X>=10 THEN
Class=RIGHT

1.3 IF X<=18 AND X<=8 THEN
Class=RIGHT

1.4 IF X<=18 AND Y=11 THEN Class=UP
1.5 IF X<=18 AND Y=9 THEN Class=DOWN
1.6 IF X<=18 THEN Class=RIGHT
2 IF X=19 THEN Class=UP

(b) Refining the rules shown in (a), as de-
tailed in Section 5, identifies the state near
the mud that requires a di↵erent action
from the surrounding states, leading to op-
timal behavior.

Fig. 2: Distilled policy with our modified CN2 algorithm, without and with our
refinement step.

as moving upward or to the right. Hence an acceptable simplified policy would be
to first walk to either the upper or right border and then walk straight to the goal.
Such a simplified policy would be a desired outcome of the rule mining process,
as it provides a first high level view on the policy. This high level policy can be
refined, see Section 5 below. As explained in that section, this refinement is not
driven by increasing the accuracy requirements of the rule-mining algorithm, but
rather by improving the performance of the distilled policy.

Figure 1b shows the resulting policy derived from the standard single-labeled
CN2 algorithm, using the regular WRA heuristic. As the algorithm expects single
labeled data, whenever multiple optimal actions exist for a state, one of these
had to be sampled randomly. The resulting rule list covers several sectors in the
grid where the agent either moves upward or to the right, eventually ending up
in the goal. As standard CN2 cannot take alternative actions into account during
the mining process, it cannot distil a simple policy, meaning a policy expressed
with few rules, yet having a good performance.

Phase 2 1.1 IF X<=18 AND Y=10 AND X>=8 AND X<=9 THEN Class=UP 
 1.2 IF X<=18 AND X>=10 THEN Class=RIGHT 
 1.3 IF X<=18 AND X<=8 THEN Class=RIGHT 
 1.4 IF X<=18 AND Y=11 THEN Class=UP 
 1.5 IF X<=18 AND Y=9 THEN Class=DOWN 
 1.6 IF X<=18 THEN Class=RIGHT 
 2    IF X=19 THEN Class=UP 

Phase 1

1. IF X<=18 THEN Class=RIGHT 
2. IF X=19 THEN Class=UP 
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4. A real-valued reward function r : S × A → R. At present we use the goal function
goal:S → {true, false} to define r : r(S, a) = 1 if goal(� (S, a)) = true, r(S, a) = 0
otherwise.

5. Background knowledge generally valid about the domain (states in S). This includes
predicates that can derive new facts about a given state. In the blocks world, a predicate
above(A, B) may define that a block A is above another block B.

6. Declarative bias for learning relational representations of policies. Together with the
background knowledge, this specifies the language in which policies are represented. In
the blocks world, e.g., we do not allow policies to refer to the exact identity of blocks.

The task is to find a policy for selecting actions � : S → A that maximizes the expected
discounted reward. Policies can be either represented as real-valuedQ-functions or as binary
(optimal/non-optimal) classifier policies (P-functions).

5.3. The Q-RRL algorithm

The relational reinforcement learning (Q-RRL) algorithm is obtained by combining the
classical Q-learning algorithm with stochastic selection of actions and a relational regres-
sion algorithm. Instead of having an explicit lookup table for the Q-function, an implicit
representation of this function is learned in the form of a logical regression tree, called a
Q-tree.
The Q-RRL algorithm is given in Table 3. The main point where RRL differs from the

algorithm in Section 3.2 is in the for-loop where the Q̂-function is modified.
The initial tree Q̂0 assigns zero value to all state-action pairs. From each goal state g

encountered, an example (g,a,0) is generated for each action a whose preconditions are
satisfied in g. The rationale for this is that no reward can be expected from applying an
action in an absorbing goal state.
A possible initial episode (e = 1) in the blocks world with three blocks a, b, and c, where

the goal is to stack a on b (i.e., goal(on(a, b))) is depicted in figure 3. The discount factor
� is 0.9 and the reward given is one on achieving a goal state, zero otherwise.
The examples generated by RRL use the actions and the Q-values listed above the arrows

representing the actions. The actual format of these examples is listed in Table 4. It is exactly

Figure 3. A blocks-world example for relational Q-learning.

Džeroski, S., De Raedt, L. & Driessens, K. Relational Reinforcement Learning. Machine Learning 43, 7–52 (2001). 

Intrinsic transparency : Relational RL



Intrinsic transparency

Critic-Moderated 
Genetic Programming



Intrinsic transparency





Reinforcement Learning with Formal Guarantees

Framework for learning discrete latent models of unknown 
continuous-spaces environment with bisimulation 
guarantees
• Can be learned by executing an RL policy in the 

environment
• Yields a distilled version of the RL policy
• New local losses bounds for (i) bisimulation guarantees 

(ii) discrete setting (iii) action embedding function
• PAC schemes to formally retrieve confidence metrics to 

asses the quality of the learned model

Distillation of RL Policies with Formal Guarantees via Variational Abstraction of Markov Decision Processes
Florent Delgrange, Ann Nowé, Guillermo A. Pérez 

Wasserstein Auto-encoded MDPs: Formal Verification of Efficiently Distilled RL Policies with Many-sided Guarantees
Florent Delgrange, Ann Nowé, Guillermo A. Pérez 


