Cooperation **Under Uncertain** Incentive Alignment

A Multi-Agent Reinforcement Learning Perspective

Nicole Orzan

perate under Uncertain Incentive Alignment

Niki Orzan

Erman Acar

Davide Grossi

UNIVERSITY OF AMSTERDAM

Roxana Radulescu

REVIEW

Science 2015 Isoning and

Economic reasoning and artificial intelligence

David C. Parkes^{1*} and Michael P. Wellman^{2*}

Economics is drawn to rational decision models because <u>they directly connect choices and values</u> in a mathematically precise manner. Critics argue that the field studies a mythical species, *homo economicus* ("economic man") and produces theories with limited applicability to how real humans behave. Defenders acknowledge that rationality is an idealization but counter that the abstraction supports powerful analysis, which is often quite predictive of people's behavior. [...]

Artificial intelligence research is likewise drawn to rationality concepts, because they provide an ideal for the computational artifacts it seeks to create. Core to the modern conception of AI is the idea of designing agents: entities that perceive the world and act in it. The quality of an AI design is judged by how well the agent's actions advance specified goals, conditioned on the perceptions observed. This coherence among perceptions, actions, and goals is the essence of rationality. If we represent goals in terms of preference over outcomes, and conceive perception and action within the framework of decision-making under uncertainty, then the AI agent's situation aligns squarely with the standard economic paradigm of rational choice.

Thus, the AI designer's task is to build rational agents, or agents <u>that best approximate rationality</u> <u>given the limits of their computational resources</u>. In other words, AI strives to construct---out of silicon (or whatever) and information---a synthetic *homo economicus*, perhaps more accurately termed <u>machina economica</u>.

COOPERATION WITHOUT COMMUNICATION

Michael R. Genesereth, Matthew L. Ginsberg, and Jeffrey S. Rosenschein*

Logic Group, Inowledge Systems Laboratory, Computer Science Department, Stanford University, Stanford, California 94305

"Intelligent agents will inevitably need to interact flexibly with other entities. The existence of conflicting goals will need to be handled by these automated agents, just as it is routinely handled by humans."

Open Problems in Cooperative AI

Allan Dafoe¹, Edward Hughes², Yoram Bachrach², Tantum Collins², Kevin R. McKee², Joel Z. Leibo², Kate Larson^{2, 3} and Thore Graepel² ¹Centre for the Governance of AI, Future of Humanity Institute, University of Oxford, ²DeepMind, ³University of Waterloo

"Since machines powered by artificial intelligence are playing an ever greater role in our lives, it will be important to equip them with the capabilities necessary to cooperate and to foster cooperation."

Public Goods Problems

Public Goods Problems

- (Cooperate) or not (Defect)

Each player owns **c** tokens, and decides whether to invest them

The return to the total investment is a multipe \mathbf{f} of the total investment and is evenly divided among players

f modulates how attractive the investment is:

f < 1 ... obviously better not to invest

n < f ... obviously better to invest

1 < f < n ... better not to invest, but hopefully others do (dilemma)

Pareto dominated Nash equilibria

A multiplier factor game is a tuple $\langle N, \mathbf{c}, A, f, \mathbf{r}
angle$, where: $\square N$ is the set of players, with |N| = n being the number of players \Box $c = (c_1, \ldots, c_n)$ with $c_i \in \mathbb{R}$ is the tuple of endowments \square $A = \{C, D\}$ is the action set of each player: cooperate (**C**) or defect (**D**) \Box $f \in F \subseteq \mathbb{R}_{>0}$ is the multiplier factor *r* is the tuple of agents' payoffs

 $r_i(\boldsymbol{a}, f, \boldsymbol{c}) = \left| \frac{1}{n} \sum_{i=1}^n c_j I \right|$ J=1

Multiplier Factor Games

- all in! all out!

$$I(a_{j}) \cdot f + c_{i}(1 - I(a_{i}))$$

$$I(a_{j}) = \begin{cases} 1 & \text{if } a_{j} = C \\ 0 & \text{otherwise} \end{cases}$$

POSG!

Imperfect knowledge of multiplication factor

$$r_i(\boldsymbol{a}, f, \boldsymbol{c}) = \frac{1}{n} \sum_{j=1}^{\infty} c_j I(a_j) \cdot f + c_i (1)$$

$$\tilde{f}_Y = f + N(0, \sigma_Y)$$

observed with uncertainty

$1 - I(a_i))$

no predefined protocol

no predefined meaning

uncertainty leads to more cooperation in mixed-motives game

Extended Public Goods Game + Communication

possibly interpreted via a model **Gaussian Mixture** Model

Two Uncertain Agents

One Uncertain Agent

One Uncertain Agent $(\sigma_i = 2)$

The uncertain agent is brought to cooperate more across the board

Risk attitudes

uncertainty leads to more cooperation in mixed-motives game

Multi-Objective Reinforcement Learning

Defined by the tuple $< S, A, T, \gamma, \mathbf{R} >$ where:

- S set of states available to the agent
- A set of actions available to the agent
- T transition function (dynamics of the environment)
- $oldsymbol{R}$ vectorial reward function $oldsymbol{R}\colon S imes A imes S o \mathbb{R}^d$
- $\gamma \in [0, 1]$ discount factor

Multi-Objective Reinforcement Learning

Utility function maps a **vector reward to a scalar utility**:

$$V_{u}^{\pi} = u\left(\mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} \boldsymbol{r}_{t}\right]\right) \quad \text{SER Optimizat}$$
$$V_{u}^{\pi} = \mathbb{E}_{\pi}\left[u\left(\sum_{t=0}^{\infty} \gamma^{t} \boldsymbol{r}_{t}\right)\right] \quad \text{ESR Optimizat}$$

Defined by the tuple $< S, A, T, \gamma, \mathbf{R} >$ where:

- S set of states available to the agent
- A set of actions available to the agent
- Ttransition function (dynamics of the environment).
- ${old R}$ vectorial reward function $\ {old R}\colon S imes A imes S o {\mathbb R}^d$
- $\gamma \in [0, 1]$ discount factor

ion Criterion

tion Criterion

Flashback

A multiplier factor game is a tuple $\langle N, \boldsymbol{c}, \boldsymbol{A}, f, \boldsymbol{r} \rangle$, where: $\square N$ is the set of players, with |N| = n being the number of players $\Box \quad \boldsymbol{c} = (c_1, \ldots, c_n) \text{ with } c_i \in \mathbb{R}$ is the tuple of endowments \Box $A = \{C, D\}$ is the action set of each player: cooperate (**C**) or defect (**D**) $f \in \mathbb{R}_{>0}$ is the (investment) multiplier factor $m{r}$ is the tuple of agents' payoffs $r_i(\boldsymbol{a}, f, \boldsymbol{c}) = \left| \frac{1}{n} \sum_{j=1}^n c_j I \right|$ 1 = 1collective return individual return

- Multiplier Factor Games

$$r_i^C(a, f, c) , r_i^I(a, c)]$$

$$I(a_j) \cdot f + c_i(1 - I(a_i))$$

- **Risk aversion**: prefer a sure outcome over a lottery whose expected payoff may be higher than the outcome payoff
- **Risk propensity:** prefer a lottery over a sure outcome whose outcome may be higher than the expected payoff of the lottery.
- **Risk neutrality**: Indifference between lotteries and sure outcomes

Experimental Setup

$$V_u^{\pi} = u \left(\mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t \boldsymbol{r}_t \right] \right)$$

- Population of N=20 agents
- M=4 agents sampled at each epoch. plaving for 10 rounds
- f in $[f_{\min}, f_{\max}]$, with $f_{\min} = 0.5$ and $f_{\max} = 6.5$
- Agents implemented as MO-DQN
- 2000 epochs

SER Optimization Criterion

Learning with homogeneous preferences

for active agents, over last 50 epochs, over 20 runs

(a) f = 0.5

$$f_{obs}^{i} = f + \mathcal{N}(0,$$
$$\sigma_{i} = 2 \ \forall \ i \in N$$

uncertainty leads to more cooperation across the board for risk-neutral and riskseeking agents

Learning with heterogeneous preferences

but dominated choices are played with fairly high probability in the competitive game

for active agents, over last 50 epochs, over 20 runs

(a) f = 0.5

(b) f = 1.5

Conclusions

Uncertainty appears to have a positive impact on levels of cooperation □ ... with potential drawbacks (deception, dominated choices)

All results are empirical, it would be desirable to have a more fundamental cooperation, the extent of such improvement, and its tradeoffs

Simple environment for MARL when agents are uncertain about the game they play

understanding of the exact conditions under which uncertainty positively impact

Nash equilibria under SER

