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Quantum advantage
P: solvable in poly time
NP: solution verifiable in poly time
Pspace: solvable with poly memory
BQP: Bounded Quantum Polynomial

It is conjectured that BQP solves hard problems outside 
of P, specifically, problems in NP. Examples are

• Integer factorization (Shor’s algorithm)

• Solving sparse linear system (HHL)







Quantum state preparation

• Prepare a quantum state that
• Represents the ground state of a complex molecule (drug design, 

material design)
• Solves a complex optimization problem (traveling salesman problem)
• Sample from a complex distribution (statistical problems)







Noise improves convergence

Engineered dissipation to mitigate barren plateaus
Sannia et al. 2024



Optimal control for analog quantum circuits

Analog controlled superconducting qubits have significantly shorter 
circuit times:  
H2, HeH+, 2 qubits: 9 ns versus 500-800 ns
LiH, 4 qubits: 40 ns versus 3.500-82.000 ns
T1,T2 times of IBMQ are order 70.000 ns on average

(Meitei et al. 2021)





Approach

• Stochastic optimal control of analog open quantum systems
• Analog yields shorter circuits
• Stochastic yields better optimization

• Unravelings aka quantum trajectories

• Quantum state preparation as a stochastic optimal control 
problem
• path integral control formulation



Outline

• Open quantum systems
• Unravelings

• Stochastic optimal control
• Path integral control

• Stochastic optimal control of open quantum systems
• Examples of quantum state preparation





























Non-linear stochastic
optimal control solution 
computed in real time 
(Williams et al. 2016)



Thijssen Kappen 2015



Importance weights

Stochastic integral

Kappen et al. 2015





K=128, n_traj= 400. mean asymptotic fidelity = 0.9759



QDC versus Open GRAPE
(Open) GRAPE (Boutin 2017) solves the deterministic control problem using the Lindblad equation. 
It requires large number of pulses for accurate approximation of gradient

Histogram of 505 different initializations. Some Open GRAPE solutions. Clustering of solutions



The sweet spot: Stochastic optimal control 
solution as a proxy for deterministic optimal 
control solution

Left: X -> Y. Reaches F>0.98 for D< 0.8. 
Right: X -> Haar. Reaches F > 0.98 for all instances, often with large noise  



NMR physics preparation of n=4 GHZ state

GRAPE needs large number of pulses for accuracy (1760) and Fidelity 0.998 (Chen et al. 2023).
 QDC has no such requirement (32). Annealing yields infidelity 1e-10.

Use nuclear spins of small molecules as coupled qubits.



Scaling up: classical computing 

Parallelization of importance sampling is very efficient

Tensor networks for efficient 
representation of large wave functions 



Scaling up: quantum computing

• Scalability requires that the parameter optimization is executed 
on a quantum device. 
• This holds for VQE for digital circuits
• This does not hold for optimal control methods for analog quantum 

devices (Grap, Crab) 
• QDC can be optimized on quantum hardware



Scaling up: quantum computing

• QDC on quantum device:
• Weights depend on noise trajectory and end cost
• End cost obtainable from measurement
• The noise realization is unknown

• Approach
• Assume noiseless device
• provide the noise externally
• Exploit sweet spot idea



Summary

• Analog quantum computing is promising alternative for digital quantum 
circuits
• Shorter circuit times

• Open quantum system approach is promising to mitigate barren 
plateaus

• New control framework for open analog quantum systems based on 
unravelings and path integral control. 
• Provides quadratic speed-up
• Exploits quantum-noise sweet spot
• Outperforms deterministic control methods
• Scalable on quantum computers



Future work

• Application on analog quantum 
devices

• Scale up quantum simulation 
• Tensor networks
• Parallel hardware, GPUs

• Benchmark studies comparing analog 
and digital circuits (quantum 
chemistry, QUBO)

• (Optimization of ) quantum annealing



Peyman Najafi Aaron Villanueva Eduardo Dominguez
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