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The quantum picture
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A quantum state ¥(s) represents possible outcomes s simultaneously.



The quantum picture

A quantum state y¥(s) represents possible outcomes s simultaneously.

Define a procedure to map a probability distribution to a quantum state:

q(s) © Y(s)

Estimate expected values by performing repeated measurement on the same
quantum state.
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\ BQP: Bounded Quantum Polynomial
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Quantum Computing in the NISQ era and beyond
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Noisy Intermediate-Scale Quantum (NISQ) technology will be available in
the near future. Quantum computers with 50-100 qubits may be able to perform
tasks which surpass the capabilities of today’s classical digital computers, but
noise in quantum gates will limit the size of quantum circuits that can be
executed reliably. NISQ devices will be useful tools for exploring many-body
quantum physics, and may have other useful applications, but the 100-qubit
quantum computer will not change the world right away — we should regard
it as a significant step toward the more powerful quantum technologies of the
future. Quantum technologists should continue to strive for more accurate
quantum gates and, eventually, fully fault-tolerant quantum computing.



Quantum state preparation

* Prepare a quantum state that

* Represents the ground state of a complex molecule (drug design,
material design)

* Solves a complex optimization problem (traveling salesman problem)
« Sample from a complex distribution (statistical problems)

AlphaFold Experiment




Quantum variational algorithms

Most famous example is the variational quantum eigensolver VQE to find the
ground state of a Hamiltonian
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Figure 1a: Gate-based quantum circuit

0 is found by minimizing R() = Y29 with |y) = U(6) |0) with respect to 6 using

Wlw)
gradient descend.



0 is found by minimizing R(0) =

gradient descend.
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Gradients vanish almost everywhere
for large problems



Noise improves convergence

(a) (b)
Unitary —1.832
_1.0i\ Non-unitary 1 1
Hybrid — %858
~1.8501
~1.8521 Error threshold
0 50 100 150 200 250 300
Number of iterations Number of iterations

Engineered dissipation to mitigate barren plateaus
Sannia etal. 2024



Optimal control for analog quantum circuits
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Figure 1b: Pulse-based quantum circuit

(Meitei et al. 2021)



Quantum computing
with neutral atoms

QuEra’s quantum computing technology uses lasers to arrange
and excite individual neutral atoms into highly energetic states.
These excited-atom qubits naturally interact at a distance,
enabling entanglement and a multi-qubit connectivity that can be
turned on and off at will. As atomic positions can be rearranged

from one calculation to the next, these processors present
extremely flexible and programmable layouts for their users. The
ease of assembly and control, and the strong quantum coherence
properties of neutral atoms, uniquely positions the technology to
access new frontiers in simulating large quantum systems,
exploring quantum optimization, and sampling.

QuEra’s Aquila processor

Aquila is QuEra’s first generation of quantum processing units (QPU) available on Amazon Braket. It operates up to 256 qubits in analog mode. The qubits have long lifetimes, supp
tens of qubit flips before decoherence sets in.



Approach

* Stochastic optimal control of analog open quantum systems
* Analogyields shorter circuits
e Stochastic yields better optimization

* Unravelings aka quantum trajectories

* Quantum state preparation as a stochastic optimal control
problem
* path integral control formulation



Outline

* Open guantum systems
* Unravelings

e Stochastic optimal control
* Path integral control

* Stochastic optimal control of open quantum systems
* Examples of quantum state preparation
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The Lindblad equation

When coupling between system and environment is weak and environment is suf-
ficiently large’:

: 1
p = —ilH,p] + Dy (Ckpc;r - E{C;Ckap})

unitary part —— ~
coupling to environment

Examples of Lindblad operators are measurement operators in which case Cy is
Hermitian, or dissipation operators such as o . for a single qubit.



Unravelings

Define the stochastic Schrodinger equation

1
dlﬁ = —l'Hl,ﬁdt — EDkl (C;er —2¢Cr + ckcl) lﬁdt + (Cy — Ck)l,ﬁdfk

dé, is a real-valued Wiener process with (d&;) = 0 and (déidé)) = Dydt.
Cp = wTC,(Ch)n,b real-valued make SSE non-linear and d||¥||*> = 0.

This defines an unraveling of the Lindblad equation, meaning that the expectation
p = (WW) satisfies the Lindblad equation.

: 1
p = —ilH,p] + Dy (CIQOC;r - E{C;Ckap}



Measuring a single qubit

Consider a single qubit with H =0and C = §,and D = 1.

The Lindblad equation is

p=0p5,—p LN
The SSE is
1
d*ﬁ - _5 (&z - mz)2 Wdt + (&z - mz)wdf
dm, = 2(1-m’)d¢ | oy

with m, = y'6-y and (d&?) = dt

Note, that 6, — iG, leaves Lindblad equation invariant but makes the unraveling
linear

1
dy = —Zydi + iGpde  dm, =0



Optimal control theory

Given a current state and a future desired state, what is the best/cheapest/fastest
way to get there.



Stochastic optimal control

Consider a stochastic dynamical system
dx = f(t,x,u)dt + g(t, x, u)dé

dé Gaussian noise (dédé€’) = vdt.

The cost is an expectation:

T
C,(t,x) = <q§(x(T))+ f drV(t, x(1), u(t, x)))

u
over all stochastic trajectories with control function u starting at ¢, x.

The optimal cost to go: J(¢, x) = min, C,(z, x) satisfies the Bellman equation
. 1 172
—0,J =min|V + fVJ + EvTr(gvg VS

is a PDE with boundary condition J(-,T) = ¢(-).



Delayed choice

Compute the optimal control in x, t when

T
dx = udt + dé C,t x) = <¢(xT) + f dsl 2)

0.5 1 1.5 2

Decision is made at7 =7 — 1.



Path integral (Pl) control methods

dx f(t, x)dt + g(t, x)(u(t, x)dt + d&) (d€) = vdt

C,(t, x)

T
(S ,(1)), S.(1) = ¢(x(T)) + f dsV(t, x) + %u’Ru + u'Rd¢

with T = x,.r a trajectory starting at ¢, x.

When R = Av~! the Bellman equation can be linearized by a log transform. The
solution is given as a path integral

J(t, x) ~Alog ( o~ Su® //l)u

1 (d&e—su(r)@

wit,x) = u(t,x)+1lim—
(&, %) (62) + W0 2 (oS

The optimal control solution can be obtained by sampling [Kappen, 2005,
Thijssen and Kappen, 2015].



Delayed choice

Compute the optimal control in x, r when

T
dx = udt + dé Cu(t,x)=<¢(xT)+ f dS%u2>

Solution

J(t, x) = —vlog (7?01} u(t,x) = -VJt, x)

u=0




2560, 2.5 second trajectories sampled
with cost-weighted average @ 60 Hz

Non-linear stochastic
optimal control solution
computed inrealtime
(Williams et al. 2016)




Pl needs importance sampling
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All u are unbiased estimators, but with some are more effective (smaller variance):
- Better u (smaller C) is better sampler (smaller variance, higher Nggg)
- Optimal u (minimal C) is optimal sampler (zero variance, Ngss = N)
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Adaptive importance sampling (PICE)

With parametrized control u(x,t|0), adaptive importance sampling improves the
control solution 87 — §P*1, starting with some inital control solution 6.

§

—_Su A T Bu(X“,tlgp)
(t0)/ A df;) Stochastic integral

Importance weights

0 0.5 1 15 2
Kappen etal. 2015



Control of the Lindblad equation

Define H = Hy + uyH;. The (deterministic) control problem is

, 1
pr = —ilH,p] + Dy (Ck}OtC;r - E{C;Ckapt}

T
1
Cloou) = Tr(Gpr) + fo u R

with G some targer Hamiltonian.

When the C; can be transformed into anti-Hermitian operators C; = —iH; and
D > 0, the stochastic optimal control problem is of the path integral form:®

| 1. | )
dy, = _lHO’vbtdt_EDlelkatdt_l(ukdt+d§k)kat

T
Co,u) = <¢J}G¢T+% f u;Rutdt>
0 U

3In the case of feedback control, the control problem depends on the unraveling.



Control of one qubit

Unitary control H = u,6, + u,6, and dissipation &, and J_ has Lindblad equation

p=—ilH,pl+D(G.pb_+6_pb,—p)

control

cost and fidelity
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QDC versus Open GRAPE

(Open) GRAPE (Boutin 2017) solves the deterministic control problem using the Lindblad equation.
It requires large number of pulses for accurate approximation of gradient
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The sweet spot: Stochastic optimal control

solution as a proxy for deterministic optimal
control solution
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Left: X->Y. Reaches F>0.98 for D<0.8.

Right: X-> Haar. Reaches F > 0.98 for all instances, often with large noise



NMR physics preparation of n=4 GH/Z state

Use nuclear spins of small molecules as coupled qubits.
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GRAPE needs large number of pulses for accuracy (1760) and Fidelity 0.998 (Chen et al. 2023).
QDC has no such requirement (32). Annealing yields infidelity 1e-10.



Scaling up: classical computing

Tk+1
uTD = P Z""* f i

Parallelization strategy
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Parallelization of importance sampling is very efficient

Tensor networks for efficient
representation of large wave functions



Scaling up: guantum computing

* Scalability requires that the parameter optimization is executed
on a quantum device.
* This holds for VQE for digital circuits

* This does not hold for optimal control methods for analog quantum
devices (Grap, Crab)

* QDC can be optimized on quantum hardware



Scaling up: guantum computing

(p+1) (p) S T ;
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* QDC on quantum device: U U, + E w,-f dé,
* Weights depend on noise trajectory and end cost =1 T

e End cost obtainable from measurement
e The noise realization is unknown

° Ap proac h On-hardware QDC

* Assume noiseless device »[YJ: =) + WP .
* provide the noise externally o

: . 1 Qo ‘—rx“ 3
* Exploit sweet spotidea [)]




Summary

* Analog quantum computing is promising alternative for digital quantum
circuits

e Shorter circuit times

* Open quantum system approach is promising to mitigate barren
plateaus

* New control framework for open analog quantum systems based on
unravelings and path integral control.
* Provides quadratic speed-up
* Exploits quantum-noise sweet spot
* Outperforms deterministic control methods
* Scalable on quantum computers



Future work

* Application on analog quantum

devices
e Scale up quantum simulation p
* Tensor networks Ca— 1z
 Parallel hardware, GPUs e )
* Benchmark studies comparing analog oy o)
and digital circuits (quantum R
chemistry, QUBO)

» (Optimization of ) quantum annealing m
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