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Robot Learning
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Traditional Robot Programming
Zabri Zakaria

https://youtu.be/Ry8H75X0CGw
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What’s the problem?
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What’s the problem?

• Uncertainties and variations

– Objects

– Environment

– Tasks

– Human behavior

• Occurring in all robot domains!
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(Reinforcement) Learning in Robotics

• Safe with real robots

• Fast learning
– Sample efficient – “small” data

– Incorporate prior knowledge

– Few open parameters

• Real time computations
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Dealing with Continuous States/Actions

• Discretization

• Function approximation

– Value function

– Policy



11https://youtu.be/nR3kWznvfaI
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13Kober & Peters, 2008  https://youtu.be/cNyoMVZQdYM
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Guided Policy Search

• Real world

• Instrumented training

Levine et al. 2016



16https://youtu.be/CE6fBDHPbP8
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Sim2Real
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Sim2Real

• Learn in Simulation, Transfer to Real-World

• Advantages:
– Faster than real-time training

– Simulated learning is inherently safe

– Simulators can reset to any arbitrary state

– Evaluating different task specifications is easier in 
simulation
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Training on Simulated Data

• Pre-train and finetune

• Direct Transfer

– Make simulation very 

realistic

– Make behavior robust

Tobin et al. (2017)
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Solving a Rubik's Cube

Akkaya et al. 2019

• Deep RL in simulation



21https://youtu.be/x4O8pojMF0w
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Will it transfer?

Credits: Nathan Lambert (@natolambert)
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Guidelines for Sim2Real 

• Minimize model mismatch

• Acknowledge all models are wrong

• Mitigate relevant mismatches
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(None-Open) Tools

• Isaac Lab https://developer.nvidia.com/isaac/lab

• Unity https://unity.com/solutions/automotive-transportation-
manufacturing/robotics

• Many more

https://developer.nvidia.com/isaac/lab
https://unity.com/solutions/automotive-transportation-manufacturing/robotics
https://unity.com/solutions/automotive-transportation-manufacturing/robotics


27

Common Pitfalls



28

Inaccuracies in the Simulated Dynamics

Inaccurate Model Domain Randomization
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Unknowingly Changing the Markov-Decision Process

Trained without

evaluated with 

collision avoidance.

Trained with

evaluated with 

collision avoidance.

Training Evaluation
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Delays

Ignored Included in Simulation
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Asynchronous Frameworks
Naive
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EAGERx (Engine Agnostic Graph Environments for Robotics)

“A Python3 framework that lets you easily define OpenAI gym 

compatible environments that work both in simulation and the 

real-world.”

https://eagerx.readthedocs.io/

Van der Heijden, Luijkx, Ferranti, Kober, & Babuška, RAM 2024



33https://youtu.be/D0CQNnTT010



34Van der Heijden et al. 2025, https://youtu.be/7j30LUjTx_I
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Other Ideas
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Language conditioned robot policy learning

• Method: Foundation Models + RL

• Utilizing the commonsense knowledge 
in foundation models to help end-to-
end reinforcement learning

• Foundation models guide 
exploration for reinforcement learning

• Foundation models extract 
observation space

Ma, Luijkx, Ajanović, & Kober, ICRA 2025
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ExploRLLM
LLM generated code 
program guide RL 
exploration

VLM & LLM extract
observation space

Residual
action space

Ma, Luijkx, Ajanović, & Kober, ICRA 2025
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Experiment

Analyze influence of LLM exploration frequency

Ma, Luijkx, Ajanović, & Kober, ICRA 2025



39https://explorllm.github.io/



40

Central Pattern Generators in DRL

• Perform as well

• But are a lot more efficient

• And a lot more robust

Ijspeert et al. 2007

Raffin et al., RLC 2024



41Raffin et al., RLC 2024
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Interactive Reinforcement Learning
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Interactive Learning

Environment

Agent

state 𝑠𝑡

𝜋(𝑠𝑡; 𝜃)

action  𝑎𝑡

Teacher

correction ℎ𝑡



44

IL + RL: Simultaneous

Celemin, Maeda, Ruiz-del-Solar, Peters, & Kober, IJRR 2019

exploration



45https://youtu.be/ptslNZdum2s

Celemin, Maeda, Ruiz-del-Solar, Peters, & Kober, IJRR 2019



46https://youtu.be/ptslNZdum2s

Celemin, Maeda, Ruiz-del-Solar, Peters, & Kober, IJRR 2019
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Results

Celemin, Maeda, Ruiz-del-Solar, Peters, & Kober, IJRR 2019
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Summary
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Summary

• Specific challenges
– Small (real) data

– Safety

• Tractability through prior knowledge
– Policy structure

– Demonstrations

– Simulations

– Foundation models

– Etc.
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