

Reinforcement Learning for Robot Control

Jens Kober

March 24, 2025 Workshop on Themes across Control and Reinforcement Learning

Robot Learning

Traditional Robot Programming

What's the problem?

What's the problem?

- Uncertainties and variations
 - Objects
 - Environment
 - Tasks
 - Human behavior
- Occurring in all robot domains!

Kober, Bagnell & Peters, IJRR 2013

(Reinforcement) Learning in Robotics

- Safe with real robots
- Fast learning
 - Sample efficient "small" data
 - Incorporate prior knowledge
 - Few open parameters
- Real time computations

Google

Types of RL Algorithms

Types of RL Algorithms

Dealing with Continuous States/Actions

Discretization

TUDelft

- Function approximation
 - Value function - Policy $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3$

https://youtu.be/nR3kWznvfal

Types of RL Algorithms

Kober & Peters, 2008 https://youtu.be/cNyoMVZQdYM

Environment Sensors Sensor Data The promise of Feature Extraction **Deep Learning** Representation **Classical** Machine Learning **Reinforcement Learning** Knowledge 🖌 Reasoning The promise of Planning **Deep Reinforcement Learning** Action Effector

Guided Policy Search

- Real world
- Instrumented training

automatically collect visual requires robot pose data learn initial train pose CNN local controllers initial initial controllers visual features collect samples from p_i train global optimize local policy π_{θ} to match controllers p_i local controllers p_i **Guided Policy Search**

Levine et al. 2016

https://youtu.be/CE6fBDHPbP8

5 D. real time autonomous execution

Sim2Real

Sim2Real

• Learn in Simulation, Transfer to Real-World

• Advantages:

- Faster than real-time training
- Simulated learning is inherently safe
- Simulators can reset to any arbitrary state
- Evaluating different task specifications is easier in simulation

19

Training on Simulated Data

- Pre-train and finetune
- Direct Transfer

ŤUDelft

- Make simulation very realistic
- Make behavior robust

Solving a Rubik's Cube

Deep RL in simulation

Akkaya et al. 2019

Gr

AI algorithm outcompetes human champions in *Gran Turismo* racing game

Science September 2023 Robotics

MAAAS

The international journal of science / 31 August 2023

nature

ukune Racer

AI pilot beats human champions in aerial contest

Offset agreement Overhaul pricing of carbon credits to help fund climate projects Supplies run low

Dining companions Corals devour algal partners when food supplies run low Supplies run low Supplies run low 23

Will it transfer?

Credits: Nathan Lambert (@natolambert)

Guidelines for Sim2Real

- Minimize model mismatch
- Acknowledge all models are wrong

25

• Mitigate relevant mismatches

(None-Open) Tools

• Isaac Lab https://developer.nvidia.com/isaac/lab

Unity <u>https://unity.com/solutions/automotive-transportation-manufacturing/robotics</u>

Many more

Common Pitfalls

Inaccuracies in the Simulated Dynamics

Applied Voltage

Inaccurate Model

Trained with domain randomization

Unknowingly Changing the Markov-Decision Process

Trained **without** evaluated **with** collision avoidance.

Trained **with** evaluated **with** collision avoidance.

Delays

Included in Simulation

Asynchronous Frameworks

Applied Voltage

Naive

fuDelft

EAGERX (Engine Agnostic Graph Environments for Robotics)

"A Python3 framework that lets you easily define OpenAI gym compatible environments that work both in simulation and the real-world."

Van der Heijden, Luijkx, Ferranti, Kober, & Babuška, RAM 2024

32

https://youtu.be/D0CQNnTT010

Van der Heijden et al. 2025, https://youtu.be/7j30LUjTx_I

Path following with R=1.0 meter (see fig. 9a)

Other Ideas

Language conditioned robot policy learning

Method: Foundation Models + RL

TUDelft

- Utilizing the commonsense knowledge in foundation models to help end-toend reinforcement learning
- Foundation models guide exploration for reinforcement learning
- Foundation models extract observation space

ExploRLLM

Ma, Luijkx, Ajanović, & Kober, ICRA 2025

Experiment

Analyze influence of LLM exploration frequency

Ma, Luijkx, Ajanović, & Kober, ICRA 2025

ŤUDelft

Zero-shot

Sim2Real

https://explorllm.github.io/

"Place the Letter V in the Green Bowl"

"Place all Letters in the Bowl with matching Colors" FRAMESA ST

Central Pattern Generators

• But are a lot more efficient

	SAC		PPO		DDPG		ARS		Open-Loop	
	CPU	GPU	CPU	GPU	CPU	GPU	CPU	GPU	CPU	GPU
Runtime (in min.)	80	30	10	14	60	25	5	N/A	2	N/A

And a lot more robust

Perform as well

Number of Parameters (log)

Raffin et al., RLC 2024

RL in Simulation

Interactive Reinforcement Learning

Interactive Learning

fuDelfi

IL + RL: Simultaneous

Celemin, Maeda, Ruiz-del-Solar, Peters, & Kober, IJRR 2019

https://youtu.be/ptsINZdum2s

https://youtu.be/ptsINZdum2s

Results

Celemin, Maeda, Ruiz-del-Solar, Peters, & Kober, IJRR 2019

Summary

Summary

- Specific challenges
 - Small (real) data
 - Safety
- Tractability through prior knowledge
 - Policy structure
 - Demonstrations
 - Simulations
 - Foundation models
 - Etc.