
Why Does Q-learning Work?
The Projected Bellman Equation in Reinforcement Learning

Sean Meyn

Department of Electrical and Computer Engineering University of Florida

Inria International Chair Inria, Paris

Thanks to to our sponsors: NSF and ARO

https://indico.math.cnrs.fr/event/10541/overview/
https://meyn.ece.ufl.edu/


Why Does Q-learning Work?
Outline

1 Resources & Background

2 Watkins

3 Zap

4 Projected Bellman Equation

5 Conclusions & Future Directions

6 References



Resources & Background

Background: Stochastic Approximation
Control Techniques

FOR

Complex Networks

Sean Meyn

Pre-publication version for on-line viewing. Monograph available for purchase at your favorite retailer   
More information available at  http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9780521884419

Markov Chains
and

Stochastic Stability

S. P. Meyn and  R. L. Tweedie

August 2008 Pre-publication version for on-line viewing.   Monograph to appear Februrary 2009 

π
(f

)
<

∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, · ) − π‖f → 0

su
p

C
E
x [S

τ
C
(f

)]
<

∞

ODE Method (using different meaning than in the 1970s)

Goal: find solution to f̄(θ∗) = 0

f̄(θ) = E[f(θ, ξn+1)]

ODE algorithm:
d

dt
ϑt = f̄(ϑt) design for stability

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation: θn+1 = θn + αn+1f(θn,ξn+1)

f(θn, ξn+1): the reinforcement signal in Sutton’s early work [18]

Firm theory of RL based on SA initiated in Tsitsiklis, 1994 [21]

1 / 41

https://meyn.ece.ufl.edu/2021/08/01/control-systems-and-reinforcement-learning
http://www.meyn.ece.ufl.edu/archive/spm_files/CTCN/CTCN.html
http://www.meyn.ece.ufl.edu/archive/spm_files/book.html


Resources & Background

Background: Stochastic Approximation
Control Techniques

FOR

Complex Networks

Sean Meyn

Pre-publication version for on-line viewing. Monograph available for purchase at your favorite retailer   
More information available at  http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9780521884419

Markov Chains
and

Stochastic Stability

S. P. Meyn and  R. L. Tweedie

August 2008 Pre-publication version for on-line viewing.   Monograph to appear Februrary 2009 

π
(f

)
<

∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, · ) − π‖f → 0

su
p

C
E
x [S

τ
C
(f

)]
<

∞

ODE Method (using different meaning than in the 1970s)

Goal: find solution to f̄(θ∗) = 0 f̄(θ) = E[f(θ, ξn+1)]

ODE algorithm:
d

dt
ϑt = f̄(ϑt) design for stability

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation: θn+1 = θn + αn+1f(θn,ξn+1)

f(θn, ξn+1): the reinforcement signal in Sutton’s early work [18]

Firm theory of RL based on SA initiated in Tsitsiklis, 1994 [21]

1 / 41

https://meyn.ece.ufl.edu/2021/08/01/control-systems-and-reinforcement-learning
http://www.meyn.ece.ufl.edu/archive/spm_files/CTCN/CTCN.html
http://www.meyn.ece.ufl.edu/archive/spm_files/book.html


Resources & Background

Background: Stochastic Approximation
Control Techniques

FOR

Complex Networks

Sean Meyn

Pre-publication version for on-line viewing. Monograph available for purchase at your favorite retailer   
More information available at  http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9780521884419

Markov Chains
and

Stochastic Stability

S. P. Meyn and  R. L. Tweedie

August 2008 Pre-publication version for on-line viewing.   Monograph to appear Februrary 2009 

π
(f

)
<

∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, · ) − π‖f → 0

su
p

C
E
x [S

τ
C
(f

)]
<

∞

ODE Method (using different meaning than in the 1970s)

Goal: find solution to f̄(θ∗) = 0 f̄(θ) = E[f(θ, ξn+1)]

ODE algorithm:
d

dt
ϑt = f̄(ϑt) design for stability

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation: θn+1 = θn + αn+1f(θn,ξn+1)

f(θn, ξn+1): the reinforcement signal in Sutton’s early work [18]

Firm theory of RL based on SA initiated in Tsitsiklis, 1994 [21]

1 / 41

https://meyn.ece.ufl.edu/2021/08/01/control-systems-and-reinforcement-learning
http://www.meyn.ece.ufl.edu/archive/spm_files/CTCN/CTCN.html
http://www.meyn.ece.ufl.edu/archive/spm_files/book.html


Resources & Background

Background: Stochastic Approximation
Control Techniques

FOR

Complex Networks

Sean Meyn

Pre-publication version for on-line viewing. Monograph available for purchase at your favorite retailer   
More information available at  http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9780521884419

Markov Chains
and

Stochastic Stability

S. P. Meyn and  R. L. Tweedie

August 2008 Pre-publication version for on-line viewing.   Monograph to appear Februrary 2009 

π
(f

)
<

∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, · ) − π‖f → 0

su
p

C
E
x [S

τ
C
(f

)]
<

∞

ODE Method (using different meaning than in the 1970s)

Goal: find solution to f̄(θ∗) = 0 f̄(θ) = E[f(θ, ξn+1)]

ODE algorithm:
d

dt
ϑt = f̄(ϑt) design for stability

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation: θn+1 = θn + αn+1f(θn,ξn+1)

f(θn, ξn+1): the reinforcement signal in Sutton’s early work [18]

Firm theory of RL based on SA initiated in Tsitsiklis, 1994 [21]

1 / 41

https://meyn.ece.ufl.edu/2021/08/01/control-systems-and-reinforcement-learning
http://www.meyn.ece.ufl.edu/archive/spm_files/CTCN/CTCN.html
http://www.meyn.ece.ufl.edu/archive/spm_files/book.html


Resources & Background

Background: Stochastic Approximation
Control Techniques

FOR

Complex Networks

Sean Meyn

Pre-publication version for on-line viewing. Monograph available for purchase at your favorite retailer   
More information available at  http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9780521884419

Markov Chains
and

Stochastic Stability

S. P. Meyn and  R. L. Tweedie

August 2008 Pre-publication version for on-line viewing.   Monograph to appear Februrary 2009 

π
(f

)
<

∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, · ) − π‖f → 0

su
p

C
E
x [S

τ
C
(f

)]
<

∞

ODE Method (using different meaning than in the 1970s)

Goal: find solution to f̄(θ∗) = 0 f̄(θ) = E[f(θ, ξn+1)]

ODE algorithm:
d

dt
ϑt = f̄(ϑt) design for stability

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation: θn+1 = θn + αn+1f(θn,ξn+1)

f(θn, ξn+1): the reinforcement signal in Sutton’s early work [18]

Firm theory of RL based on SA initiated in Tsitsiklis, 1994 [21]

1 / 41

https://meyn.ece.ufl.edu/2021/08/01/control-systems-and-reinforcement-learning
http://www.meyn.ece.ufl.edu/archive/spm_files/CTCN/CTCN.html
http://www.meyn.ece.ufl.edu/archive/spm_files/book.html


Resources & Background

Background: Stochastic Approximation
Control Techniques

FOR

Complex Networks

Sean Meyn

Pre-publication version for on-line viewing. Monograph available for purchase at your favorite retailer   
More information available at  http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9780521884419

Markov Chains
and

Stochastic Stability

S. P. Meyn and  R. L. Tweedie

August 2008 Pre-publication version for on-line viewing.   Monograph to appear Februrary 2009 

π
(f

)
<

∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, · ) − π‖f → 0

su
p

C
E
x [S

τ
C
(f

)]
<

∞

ODE Method (using different meaning than in the 1970s)

Goal: find solution to f̄(θ∗) = 0 f̄(θ) = E[f(θ, ξn+1)]

ODE algorithm:
d

dt
ϑt = f̄(ϑt) design for stability

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation: θn+1 = θn + αn+1f(θn,ξn+1)

f(θn, ξn+1): the reinforcement signal in Sutton’s early work [18]

Firm theory of RL based on SA initiated in Tsitsiklis, 1994 [21]

1 / 41

https://meyn.ece.ufl.edu/2021/08/01/control-systems-and-reinforcement-learning
http://www.meyn.ece.ufl.edu/archive/spm_files/CTCN/CTCN.html
http://www.meyn.ece.ufl.edu/archive/spm_files/book.html


Resources & Background

Resources
Control Techniques

FOR

Complex Networks

Sean Meyn

Pre-publication version for on-line viewing. Monograph available for purchase at your favorite retailer   
More information available at  http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9780521884419

Markov Chains
and

Stochastic Stability

S. P. Meyn and  R. L. Tweedie

August 2008 Pre-publication version for on-line viewing.   Monograph to appear Februrary 2009 

π
(f

)
<

∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, · ) − π‖f → 0

su
p

C
E
x [S

τ
C
(f

)]
<

∞

ODE Method (using different meaning than in the 1970s)

CS&RL, Chapters 4 and 8

The ODE Method for Asymptotic Statistics in Stochastic
Approximation and Reinforcement Learning [90, 92]
And of course Borkar’s manifesto [64]

New material in this lecture:
[9] The projected Bellman equation in reinforcement learning. IEEE Transactions on
Automatic Control, 2024.
[10] Stability of Q-learning through design and optimism. arXiv 2307.02632, 2023.
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Related literature: in addition to tabular [20, 19] and binning [22]

[11] D. De Farias and B. Van Roy. On the existence of fixed points for approximate value
iteration and temporal-difference learning, 2000.

Existence of θ∗ for “ε-optimistic SARSA”

[12] Z. Chen, J.-P. Clarke, and S. T. Maguluri. Target network and truncation overcome
the deadly triad in Q-learning, 2023.

Bounds on iterates for a projected temporal difference

[14] F. S. Melo, S. P. Meyn, and M. I. Ribeiro. An analysis of reinforcement learning with
function approximation, 2008.

Semi-circular conditions for convergence

[13] D. Lee and N. He. A unified switching system perspective and convergence analysis
of Q-learning algorithms, 2020.

A fresh take on [14]

New material in this lecture:
[9] The projected Bellman equation in reinforcement learning. IEEE Transactions on
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Related literature: See Zap for convergence without linear function approx. [38]
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Resources & Background

Too many resources to list

Sadly, I am leaving out all of the fun zero-variance theory with Caio Lauand

Introducing Dr. Lauand in May, 2025

Very partial list of publications: (left out the two neurips pubs)
• Quasi-stochastic approximation: Design principles with applications to extremum seeking control, 2023, [79]
• The curse of memory in stochastic approximation, 2023, [93]
• Markovian foundations for quasi stochastic approximation, 2024, [80]
• Revisiting step-size assumptions in stochastic approximation, 2024, [92]
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Q Learning



Watkins MDP Theory

Stochastic Optimal Control (Review)

MDP Model

X is a stationary controlled Markov chain, with input U

For all states x and sets A,

P{Xn+1 ∈ A | Xn = x, Un = u, and prior history} = Pu(x,A)

c : X× U → R is a cost function

γ < 1 a discount factor

Q function:

Q∗(x, u) = min
U

∞∑
n=0

γnE[c(Xn, Un) | X(0) = x, U(0) = u]

Bellman equation:

Q∗(x, u) = c(x, u) + γE
[
min
u′

Q∗(X1, u
′) | X0 = x, U0 = u

]
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Watkins Q-Learning

Q-Learning and Galerkin Relaxation

Dynamic programming

Find function Q∗ that solves (Fn means history)

E
[
c(Xn, Un) + γQ∗(Xn+1)−Q∗(Xn, Un) | Fn

]
= 0

H(x) = min
u
H(x, u)

Goal of Q-Learning

Given {Qθ : θ ∈ Rd}, find θ∗ that solves f̄(θ∗) = 0,

f̄(θ)
def
= E

[{
c(Xn, Un) + γQθ(Xn+1)−Qθ(Xn, Un)

}
ζn
]

The family {Qθ} and eligibility vectors {ζn} are part of algorithm design.

Projected Bellman Equation: f̄ (θ∗) = 0
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Watkins Q-Learning

Q(0)-Learning Goal f̄(θ∗) = 0

f̄(θ) = E
[{
c(Xn, Un) + γQθ(Xn+1)−Qθ(Xn, Un)

}
ζn
]

Prototypical choice ζn = ∇θQ
θ(Xn, Un)

∣∣
θ=θn

=⇒ prototypical Q-learning algorithm

Q(0) Learning Algorithm

Estimates obtained using SA

θn+1 = θn + αn+1fn+1 fn+1 =
{
cn + γQθ

n+1
−Qθ

n

}
ζn

∣∣∣
θ=θn

Qθ
n+1

= Qθ(Xn+1,ϕ
θ(Xn+1))

ϕθ(x) = argmin
u

Qθ(x, u) [Qθ-greedy policy]

Input {Un} chosen for exploration.

Oblivious if independent of θn (in which case usually i.i.d.)
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Watkins Linear function approximation

Q(0)-Learning Goal f̄(θ∗) = 0

Q(0)-learning with linear function approximation

Estimates obtained using SA

θn+1 = θn + αn+1fn+1 fn+1 =
{
cn + γQθ

n+1
−Qθ

n

}∣∣∣
θ=θn

ζn

Qθ
n+1

= Qθ(Xn+1),ϕ
θ(Xn+1))

Qθ(x, u) = θTψ(x, u)

Qθ(x) = θTψ(x,ϕθ(x))

ζn = ∇θQ
θ(Xn, Un)

∣∣
θ=θn

= ψ(Xn, Un)

f̄(θ) = A(θ)θ − b̄ p.w. constant if U is oblivious

A(θ) = E
[
ζn
[
γψ(Xn+1,ϕ

θ(Xn+1))− ψ(Xn, Un)
]T ]

b̄
def
= E

[
ζnc(Xn, Un)

]

7 / 41



Watkins Linear function approximation

Q(0)-Learning Goal f̄(θ∗) = 0

Q(0)-learning with linear function approximation

Estimates obtained using SA

θn+1 = θn + αn+1fn+1 fn+1 =
{
cn + γQθ

n+1
−Qθ

n

}∣∣∣
θ=θn

ζn

Qθ
n+1

= Qθ(Xn+1),ϕ
θ(Xn+1))

Qθ(x, u) = θTψ(x, u)

Qθ(x) = θTψ(x,ϕθ(x))

ζn = ∇θQ
θ(Xn, Un)

∣∣
θ=θn

= ψ(Xn, Un)

f̄(θ) = A(θ)θ − b̄ p.w. constant if U is oblivious

A(θ) = E
[
ζn
[
γψ(Xn+1,ϕ

θ(Xn+1))− ψ(Xn, Un)
]T ]

b̄
def
= E

[
ζnc(Xn, Un)

]
7 / 41



Watkins Linear function approximation

Watkins’ Q-learning

E
[{
c(Xn, Un) + γQθ∗(Xn+1)−Qθ∗(Xn, Un)

}
ζn
]
= 0

Watkin’s algorithm A special case of Q(0)-learning

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn ≡ ψ(Xn, Un)

ψi(x, u) = 1{x = xi, u = ui} (complete basis)

Convergence of Qθn to Q∗ holds under mild conditions

Asymptotic covariance is infinite for γ ≥ 1/2 [37]
σ2 = lim

n→∞
nE[∥θn − θ∗∥2] = ∞
Using the standard step-size rule αn = 1/n(x, u)
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Watkins Linear function approximation

Asymptotic Covariance of Watkins’ Q-Learning
This is what infinite variance looks like

1
4

65
3 2σ2 = lim

n→∞
nE[∥θn − θ∗∥2] = ∞ Wild oscillations?

Not at all, the sample paths appear frozen
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3 2σ2 = lim

n→∞
nE[∥θn − θ∗∥2] = ∞ Wild oscillations?

Not at all, the sample paths appear frozen

Sample paths using a higher gain, or relative Q-learning [74, 76]
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Figure 1: Comparison of Q-learning and Relative Q-learning algorithms for the stochastic shortest
path problem of [4]. The relative Q-learning algorithm is unaffected by large discounting.
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Watkins Linear function approximation

Asymptotic Covariance of Watkins’ Q-Learning
Can we do better?
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Figure 1: Comparison of Q-learning and Relative Q-learning algorithms for the stochastic shortest
path problem of [4]. The relative Q-learning algorithm is unaffected by large discounting.

Relative Q-learning: estimate relative Q-function,

E
[
c(Xn, Un) + γH∗(Xn+1)−H∗(Xn, Un)− γ⟨ν, H∗⟩ | Fn

]
= 0

giving H∗ = Q∗ + const. [74, 76]
And don’t use step-size αn = g/n (see SA tutorial)

First consider second order methods
or Skip to newest theory
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An intelligent mouse might offer other clues

First consider second order methods
or Skip to newest theory
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Zap Need for second order methods

Motivation

The ODE method begins with design of the ODE: d
dtϑ = f̄(ϑ)

Challenges we have faced with Q-learning:

How can we design dynamics for
1 Stability
2 f̄(θ∗) = 0 solves a relevant problem

How can we better manage problems introduced by 1/(1− γ)?
Relative Q-Learning is one approach

Assuming we have solved , forget and
approximate Newton-Raphson flow:

d

dt
f̄(ϑt) = −f̄(ϑt) giving f̄(ϑt) = f̄(ϑ0)e

−t
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Zap Feedback linearization

Zap Algorithm Designed to emulate Newton-Raphson flow
d
dt
ϑt = −[A(ϑt)]

−1f̄(ϑt), A(θ) = ∂θ f̄ (θ)

Zap-SA

θn+1 = θn + αn+1Gn+1f(θn,ξn+1) Gn+1 = −[Ân+1]
−1

Ân+1 = Ân + βn+1(An+1 − Ân) An+1 = ∂θf(θn,ξn+1)

Ân+1 ≈ A(θn) requires high-gain:
βn
αn

→ ∞, n→ ∞

Numerics that follow: αn = 1/n, βn = (1/n)ρ, ρ ∈ (0.5, 1)

Zap Q-Learning: f(θn,ξn+1) =
{
c(Xn, Un) + γQθ∗(Xn+1)−Qθ∗(Xn, Un)

}
ζn

ζn = ∇θQ
θ(Xn, Un)

∣∣
θ=θn

An+1 = ζn
[
γψ(Xn+1,ϕ

θ(Xn+1))− ψ(Xn, Un)
]T

ϕθ(x) = argmin
u

Qθ(x, u)
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Zap Challenges and remarkable conclusions

Challenges

Q-learning: {Qθ(x, u) : θ ∈ Rd , u ∈ U , x ∈ X}
Find θ∗ such that f̄(θ∗) = 0, with

f̄(θ) = E
[{
c(Xn, Un) + γQθ(Xn+1)−Qθ(Xn, Un)

}
ζn
]

What makes theory difficult:

1 Does f̄ have a root?

2 Does the inverse of A exist?

3 SA theory is weak for a discontinuous ODE

=⇒ resolved for Zap by exploiting special structure,
even for NN function approximation [38, 8]

Conclusions for Zap: Stability and optimal asymptotic covariance Σ∗

13 / 41



Zap Challenges and remarkable conclusions

Challenges

Q-learning: {Qθ(x, u) : θ ∈ Rd , u ∈ U , x ∈ X}
Find θ∗ such that f̄(θ∗) = 0, with

f̄(θ) = E
[{
c(Xn, Un) + γQθ(Xn+1)−Qθ(Xn, Un)

}
ζn
]

What makes theory difficult:

1 Does f̄ have a root?

2 Does the inverse of A exist?

3 SA theory is weak for a discontinuous ODE

=⇒ resolved for Zap by exploiting special structure,
even for NN function approximation [38, 8]

Conclusions for Zap: Stability and optimal asymptotic covariance Σ∗

13 / 41



Zap Challenges and remarkable conclusions

Challenges

Q-learning: {Qθ(x, u) : θ ∈ Rd , u ∈ U , x ∈ X}
Find θ∗ such that f̄(θ∗) = 0, with

f̄(θ) = E
[{
c(Xn, Un) + γQθ(Xn+1)−Qθ(Xn, Un)

}
ζn
]

What makes theory difficult:

1 Does f̄ have a root?

2 Does the inverse of A exist?

3 SA theory is weak for a discontinuous ODE

=⇒ resolved for Zap by exploiting special structure,
even for NN function approximation [38, 8]

Conclusions for Zap: Stability and optimal asymptotic covariance Σ∗

13 / 41



Zap Zap Along Walk to the Cafe

Zap Q-Learning
Optimize Walk to Cafe

1
4

65
3 2

Convergence with Zap gain βn = n−0.85

Infinite covariance with αn = 1/n or 1/n(x, u).
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Watkins, g = 1500
αn = g/n

Zap, βn = αn

Convergence of Zap-Q Learning

Discount factor: γ = 0.99
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Zap Zap Along Walk to the Cafe

Zap Q-Learning
Optimize Walk to Cafe

1
4

65
3 2Convergence with Zap gain βn = n−0.85

-20 -10 0 10 -20 -10 0 10 -8 -6 -4 -2 0 2 4 6 8 103-8 -6 -4 -2 0 2 4 6 8

n = 104 n = 106

Theoritical pdf Experimental pdf Empirical: 1000 trialsWn =
√
nθ̃n

Entry #18:  n = 104 n = 106Entry #10:  

CLT gives good prediction of finite-n performance

Discount factor: γ = 0.99
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Zap Zap Q-Learning with Neural Networks

Zap with Neural Networks

0 = f̄(θ∗) = E
[{
c(Xn, Un) + γQθ∗(Xn+1)−Qθ∗(Xn, Un)

}
ζn
]

ζn = ∇θQ
θ(Xn, Un)

∣∣
θ=θn

computed using back-progagation
A few things to note:

As far as we know, the empirical success of plain vanilla DQN is
extraordinary (however, nobody reports failure)

VI. Stunning reliability with  parameterized by various neural networksQθ

Reliability and stunning transient performance
—from coupling with the Newton-Raphson flow.
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θ=θn

computed using back-progagation
A few things to note:

As far as we know, the empirical success of plain vanilla DQN is
extraordinary (however, nobody reports failure)

Zap Q-learning is the only approach for which convergence has been
established (under mild conditions)

We can expect stunning transient performance, based on coupling
with the Newton-Raphson flow.

VI. Stunning reliability with  parameterized by various neural networksQθ

Reliability and stunning transient performance
—from coupling with the Newton-Raphson flow.
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Projected Bellman Equation Beyond oblivious training

Theory and Practice

ϕθ(x) = argmin
u

Qθ(x, u)

Most of the elegant theory for tabular Q-learning: training is oblivious

In practice we follow the intelligent mouse

Approaches to exploration, Uk ∼ ϕ̆k( · | Xk):

ε-greedy, Uk = ϕθ(Xk) probability 1− ε small ε > 0

Discontinuous vector field
Lipschitz fails (and more)

Tamed Gibbs, ϕ̆θ
0(u | x) = 1

Zθ
κ(x)

exp
(
−κθQθ(x, u)

)
κθ

{
= 1

∥θ∥κ0 ∥θ∥ ≥ 1

≥ 1
2κ0 else

SA recursion satisfies all the assumptions New in 2023
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Projected Bellman Equation Stability with optimism

Theory for Tamed Gibbs ϕ̆k(u | x) def
= P{Uk = u | Fk ;Xk = x}

For ease of analysis: ϕ̆k(u | x) = (1− ε)ϕ̆θk
0 (u | x) + ενW(u)

Assumptions: Qθ(x, u) = θTψ(x, u), and

For oblivious policy (ε = 1):

1 There is a unique invariant pmf πW for (X,U).

2 The covariance is full rank,

RW = EπW

[
ψ(Xn, Un)ψ(Xn, Un)

T
]
, Un = Wn ∼ νW

First step in analysis is to show that and hold for any ε > 0:

There is a unique invariant pmf πθ for (X,U).

The covariance is full rank,

RΘ(θ) = Eπθ

[
ψ(Xn, Un)ψ(Xn, Un)

T
]
, Un ∼ ϕ̆n( · | Xn)

18 / 41
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Projected Bellman Equation Stability with optimism

Theory f̄(θ)
def
= E

[{
c(Xn, Un) + γQθ(Xn+1)−Qθ(Xn, Un)

}
ζn

]

Stability with sufficient optimism.
There is εγ > 0 (lower bound given in paper) for which the following hold:

For each 0 < ε < εγ , there is κε,γ such that

The mean flow d
dtϑ = f̄(ϑ) is ultimately bounded.

There is at least one solution to the projected Bellman equation

f̄(θ∗) = 0
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For each 0 < ε < εγ , there is κε,γ such that

The mean flow d
dtϑ = f̄(ϑ) is ultimately bounded.

There is at least one solution to the projected Bellman equation

f̄(θ∗) = 0

Proof follows Van Roy’s analysis of TD-learning,

d

dt
∥ϑt∥ ≤ −δ∥ϑt∥ , if ∥ϑt∥ ≥ 1/δ
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Existence of θ∗ follows from the stability proof:

Denote T (θ) = θ + ε0f̄(θ) for θ ∈ Rd, with ε0 > 0 sufficiently small.

∥T (θ)∥ ≤ 1/δ , if ∥θ∥ ≤ 1/δ for some δ > 0

Brouwer’s fixed-point theorem tells us T (θ∗) = θ∗ has at least one solution.

See also de Farias & Van Roy [11]
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Projected Bellman Equation Stability with optimism
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For each 0 < ε < εγ , there is κε,γ such that

The mean flow d
dtϑ = f̄(ϑ) is ultimately bounded.

There is at least one solution to the projected Bellman equation

f̄(θ∗) = 0

Under some additional assumptions θ∗ is locally asymptotically stable
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Projected Bellman Equation Failure without optimism

Baird’s Example ϕ̆k(u | x) = (1− ε)ϕ̆
θk
0 (u | x) + ενW(u)

1 2 3 4 5 6

7

hθ(x) = θTψ(x) =
θ8 + 2θk x = k ≤ 6

2θ8 + θ7 x = 7

The need for ε > 0 sufficiently small:

Recent application to change detection, using Zap: A∗ = ∂θ f̄ (θ
∗) is not Hurwitz [82].
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From CS&RL Results for TD(λ)-learning, ε = 1

Recent application to change detection, using Zap: A∗ = ∂θ f̄ (θ
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Projected Bellman Equation Failure without optimism

Thoughts on Implementation

• Use of relative Q-learning or advantage Q-learning can improve numerical
stability: estimate H∗(x, u) = Q∗(x, u)− ξ(x) for appropriate function ξ.

• Theory extends to ε-optimistic SARSA:

θn+1 = θn + αn+1

{
c(Xn, Un) + γQθn(Xn+1, Un+1)−Qθn(Xn, Un)

}
ζn

with {Un} defined by your favorite variant of the ε-greedy policy.

• However, remember that to-date we only have the existence of θ∗ and
ultimate boundedness of {θn}, provided ε > 0.

Convergence remains an open topic for research
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Conclusions & Future Directions



Conclusions & Future Directions

Reinforcement Learning is cursed by dimension, variance, and
nonlinear (algorithm) dynamics (far more than a triad)

Second order methods can ensure stability—use them when you can

Future work:

Beyond the projected Bellman error for Q-learning [67, 68, 69, 70]

Zap with optimism

Acceleration techniques (momentum and matrix momentum)
See Zap-Zero in CS&RL (and big improvements in [10])
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