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Preface

This volume contains the papers and extended abstracts presented at the 17th Inter-
national Symposium on Algorithmic Game Theory (SAGT 2024), held during
September 3–6, 2024, at Centrum Wiskunde & Informatica (CWI), Amsterdam, The
Netherlands. The purpose of SAGT is to bring together researchers from computer
science, economics, mathematics, operations research, psychology, physics, and biol-
ogy to present and discuss original research at the intersection of algorithms and game
theory.

This year, we received a record number of 84 submissions, which were rigorously
peer-reviewed by the program committee (PC). Each paper was reviewed in an open
peer-review process by at least three PC members, and evaluated on the basis of
originality, soundness, significance, and exposition. The PC eventually decided to
accept 32 papers to be presented at the conference, for an acceptance ratio of 38%.

The works accepted for publication in this volume cover most of the major aspects
of algorithmic game theory, including auction theory, mechanism design, markets and
matching, computational aspects of games, resource allocation problems, and com-
putational social choice. To accommodate the publishing traditions of different fields,
authors of accepted papers could ask that only a one-page abstract of the paper
appeared in the proceedings. Among the 32 accepted papers, the authors of three papers
chose this option.

Due to the financial support by Springer, we were able to provide two Best Paper
Awards, one for the best student paper and one for a the best regular paper. The PC
decided to give the Best Student Paper Award to the paper “Playing Repeated Games
with Sublinear Randomness” by Farid Arthaud. The Best Paper Award was given to
the paper “Swim Till You Sink: Computing the Limit of a Game” by Rashida Hakim,
Jason Milionis, Christos Papadimitriou, and Georgios Piliouras.

The program also included three invited talks by distinguished researchers in
algorithmic game theory, namely Paul Duetting (Google Research, Switzerland),
Katrina Ligett (Hebrew University of Jerusalem, Israel), and Vasilis Gkatzelis (Drexel
University, USA). In addition, SAGT 2024 featured two tutorials, which were given by
Jan Maly (WU Wien, Austria) and Rebecca Reiffenhäuser (University of Amsterdam,
Netherlands).

We would like to thank all the authors for their interest in submitting their work to
SAGT 2024, as well as the 35 PC members and the external reviewers for their great
work in evaluating the submissions. We also want to thank the local organizers Ulle
Endriss, Sophie Klumper, Artem Tsikiridis, and Susanne van Dam, as well as several
people from ITF and COM at CWI, for their help with the organization of the
conference.

We also want to thank our sponsors G-Research, IOG, CWI, Google, ILLC,
Springer, Networks, NWO, and VVSOR for their generous financial support. Finally,



we would like to thank Springer for their work on the proceedings, as well as the
EasyChair conference management system for facilitating the peer-review process.

July 2024 Guido Schäfer
Carmine Ventre
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Ambiguous Contracts

Paul Dütting

Google Research, Zurich, Switzerland
duetting@google.com

Contract theory captures situations where two parties—a principal and an agent—can
benefit from mutual cooperation. The prototypical situation is one in which the prin-
cipal seeks to delegate the execution of a job to an agent. The agent can take different
costly actions, and his choice of action entails a stochastic outcome (with attached
reward) for the principal. The principal cannot directly observe the agent’s choice of
action but can influence the agent’s decision through a contract that specifies outcome-
contingent payments. Given a contract, the agent aims to maximize his expected
payment minus cost. The goal of the principal is to maximize her expected utility given
by expected reward minus payment, under the action chosen by the agent.

One feature of real-life contracts that is not captured (or explained) by this classic
model is that practical contracts are often ambiguous. For example, the promotion
guidelines of a university may require a candidate to demonstrate “research produc-
tivity and excellence.” Similarly, a professional services contract may require that a
provider exert “due diligence.” This ambiguity may be due to an inability of the two
parties to provide more precise specification. In contrast, we explore the deliberate
infusion of ambiguity as a tool to enhance the principal’s contracting power over the
agent.

Towards this goal we propose an extension of the classic (hidden action) principal-
agent model. In this model, an ambiguous contract consists of a set of classic contracts,
which the agent evaluates by considering the minimum utility a given action yields
against any contract in the support of the ambiguous contract. At the same time, we
require that the principal’s utility—under the action chosen by the agent—is the same
for all contracts in the support of the ambiguous contract. We show that this expands
the set of actions that the principal can implement, and that the principal’s gain from
using an ambiguous contract can be arbitrarily large. We further characterize the
structure of optimal ambiguous contracts, showing that ambiguity drives optimal
contracts towards simplicity. We also provide a characterization of ambiguity-proof
classes of contracts, where the principal cannot gain by infusing ambiguity. Finally, we
show that when the agent can engage in mixed actions, the advantages of ambiguous
contracts disappear.

Based on joint work with Michal Feldman, Daniel Peretz, and Larry Samuelson
(EC 2023 and arXiv).



Learning-Augmented Mechanism Design

Vasilis Gkatzelis

Drexel University, Philadelphia, PA, 19104, USA
gkatz@drexel.edu

https://www.cs.drexel.edu/

Abstract. For more than half a century, the dominant approach for the math-
ematical analysis of algorithms in computer science has been worst-case anal-
ysis. While worst-case analysis provides a useful signal regarding the robustness
of an algorithm, it can be overly pessimistic, and it often leads to uninformative
bounds or impossibility results that may not reflect real-world obstacles.
Meanwhile, advances in machine learning have led to very practical algorithms,
most of which do not provide any non-trivial worst-case performance guaran-
tees. Motivated by the tension between worst-case analysis and machine
learning, a surge of recent work focuses on the design algorithms that are guided
by machine-learned predictions, aiming to perform better in practice, while
maintaining their robustness. Specifically, the goal of this literature on
“learning-augmented algorithms” is to design algorithms that simultaneously
provide two types of guarantees: “robustness” (which corresponds to the
classic worst-case guarantees, even if the predictions that the algorithm is pro-
vided with are arbitrarily bad) and “consistency” (i.e., stronger performance
guarantees when the predictions are accurate). This “learning-augmented
framework” has been used successfully in a variety of settings, e.g., toward a
refined analysis of competitive ratios in online algorithms and running times in
traditional algorithms.
A recent line of work on “learning-augmented mechanism design” has

deployed this learning augmented framework in settings involving strategic
agents. In such settings, the designer often faces additional obstacles which
further limit their ability to reach desired outcomes. For example, some of the
input that the designer needs may be private information held by the partici-
pating agents, and the agents could strategically misreport this information,
aiming to maximize their own utility. In other settings, the agents may even have
direct control over some aspects of the outcome. The long literature on mech-
anism design has proposed a variety of solutions for these types of problems,
aiming to align the incentives of the agents with those of the designer, but the
worst-case guarantees of these solutions are often underwhelming from a
practical perspective. This talk will introduce the “learning-augmented mecha-
nism design” model and provide an overview of some of the results in this line
of work.

https://orcid.org/0000-0001-7203-438X


Actually, data is a rival good

Katrina Ligett

The Hebrew University of Jerusalem
katrina@cs.huji.ac.il

Abstract. There is a tendency in many fields, including computer science,
economics, and industry, to model data as a non-rival good, meaning that one
entity using a particular piece of data doesn’t impinge on its use by others. Food
is a classic rival good (if I eat the apple, you cannot); digital music is a classic
non-rival good (my listening to the song has no effect on your listening expe-
rience). Data might, at first blush, seem more like digital music than like an
apple. In this talk, I will give arguments from three fields—economics, privacy,
and statistics—for why modeling data as non-rival is problematic, and will argue
that we need a new paradigm.
The core of the economic argument is that generative AI has transformed the

market for data, making competition (and rivalrousness) for and around data
newly central. The privacy and statistical validity arguments rely on mathe-
matical frameworks that help us understand how repeated uses of a dataset
accumulate and interact. All of these arguments suggest new models and
metaphors for data, and directions for further work.

Acknowledgments. This talk will touch on work that was supported in part by a gift to
the McCourt School of Public Policy and Georgetown University, Simons Foundation
Collaboration 733792, Israel Science Foundation (ISF) grants 1044/16 and 2861/20, a
grant from the Israeli Ministry of Education, and the Dieter Schwarz Foundation’s
TUM-HUJI Joint AI Research Hub.

Disclosure of Interests. The speaker works part-time for Google. This work was not
done at Google nor subject to pre-publication review. All views presented are the
speaker’s own.
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Structural and Algorithmic Results
for Stable Cycles and Partitions

in the Roommates Problem

Frederik Glitzner(B) and David Manlove

School of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK
f.glitzner.1@research.gla.ac.uk, david.manlove@glasgow.ac.uk

Abstract. In the Stable Roommates problem, we seek a stable match-
ing of the agents into pairs, in which no two agents have an incentive
to deviate from their assignment. It is well known that a stable match-
ing is unlikely to exist, but a stable partition always does and provides
a succinct certificate for the unsolvability of an instance. Furthermore,
apart from being a useful structural tool to study the problem, every
stable partition corresponds to a stable half-matching, which has appli-
cations, for example, in sports scheduling and time-sharing applications.
We establish new structural results for stable partitions and show how to
enumerate all stable partitions and the cycles included in such structures
efficiently. We also adapt known fairness and optimality criteria from
stable matchings to stable partitions and give complexity and approx-
imability results for the problems of computing such “fair” and “optimal”
stable partitions.

Keywords: Stable Roommates Problem · Stable Partition ·
Enumeration · Optimal Stable Partitions

1 Introduction

1.1 Background

The Stable Roommates problem (sr) is a classical combinatorial problem
with applications to computational social choice. Consider a group of friends
that want to play one hour of tennis, where everyone has preferences over who
to play with. Can we match them into pairs such that no two friends prefer
to play with each other rather than their assigned partners? If the problem
instance I admits such a stable matching M which does not admit a blocking
pair of agents which would rather be matched to each other than their partners
in M , then we call I solvable. Otherwise, we call I unsolvable. Even an instance
with as few as 4 agents may be unsolvable as Gale and Shapley [9] showed.

There are many practical applications of the sr model. As the name suggests,
it can model campus housing allocation where two students either share a room
or a flat. Furthermore, sr can model pairwise kidney exchange markets, with
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Schäfer and C. Ventre (Eds.): SAGT 2024, LNCS 15156, pp. 3–20, 2024.
https://doi.org/10.1007/978-3-031-71033-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71033-9_1&domain=pdf
http://orcid.org/0009-0002-2815-6368
http://orcid.org/0000-0001-6754-7308
https://doi.org/10.1007/978-3-031-71033-9_1


4 F. Glitzner and D. Manlove

centralised matching schemes existing, for example, in the US1 and UK2. sr can
also model peer-to-peer networks and pair formation in chess tournaments.

In sr, a problem instance I and a matching M can be represented in the
form of preference lists and a set of pairs or as a complete graph and a set of
edges; these representations are equivalent. The sr problem is a non-bipartite
extension of the classical Stable Marriage problem and is well-studied in its
own right [14,19]. Irving [15] presented an algorithm to find a stable matching
or decide that none exists in linear time. Furthermore, sr now has a wide range
of algorithms and structural results relating to special kinds of stable matchings,
including algorithms for finding stable matchings that satisfy further optimality
constraints on the structure of the matching [4,6,23]. For example, the profile
is often used in fairness measures of a matching, which is a vector (p1 . . . pn)
where pi captures the number of agents that are matched to their ith choice,
and n is the number of agents. However, naturally, these optimality properties
cannot be realised if the instance is unsolvable. Mertens [20] presented empirical
evidence suggesting that, as n grows large, stable matchings are unlikely to be
a good solution concept in practice as they are unlikely to exist. In the past,
many alternative solution concepts have been proposed, such as stable parti-
tions [24], maximum stable matchings [25], almost-stable matchings [1], popular
matchings [11], and more, some of which leave agents unassigned or are NP-hard
to compute.

One of the fundamental sr-related questions posed by Gusfield and Irving
[14] asked about the existence of a succinct certificate for the unsolvability of
an instance. The question was answered positively by Tan [24], who generalised
the notion of a stable matching to a new structure called a stable partition that
always exists. Over 20 years after their initial publication, Manlove [19] described
the work on stable partitions in the 1990s as a key landmark in the progress
made on the sr problem after 1989. Although a stable partition gives a succinct
certificate for the unsolvability of an sr instance, this notion was adopted as
a solution concept in itself. Remaining in the tennis analogy, a stable partition
can be interpreted as an assignment of the friends into half-hour sessions, or a
weekly-alternating schedule. The stability definition leads to a solution in which
every friend plays either for exactly one hour with some other friend or two
half-hour sessions with two different friends, at most one agent does not play
at all, and no two friends who would like to play more time with each other.
Note that any stable partition can be transformed into a reduced stable partition
(i.e., stable partitions with no cycles of even length longer than 2) in linear
time, which corresponds to a stable matching in the case of solvable instances,
while some agents are guaranteed to be in half-time partnerships in the case of
unsolvable instances.

Some have highlighted the advantages of considering truly fractional stable
matchings, whereas stable matchings are inherently integral, and stable parti-
tions can be interpreted as stable half-integral matchings [3]. While stable frac-

1 http://www.paireddonation.org.
2 http://www.organdonation.nhs.uk.

http://www.paireddonation.org
http://www.organdonation.nhs.uk


Stable Cycles and Partitions in the Roommates Problem 5

tional matchings might be advantageous in applications such as time-sharing, it
is unlikely to be a suitable solution concept for other applications such as sports
tournament scheduling.

1.2 Our Contributions

We prove new structural results for stable partitions, allowing us to construct
algorithms to enumerate stable partitions and to compute or approximate various
types of optimal stable partitions.

Specifically, we prove a bijective correspondence between the set of reduced
stable partitions and the set of stable matchings of a solvable sub-instance. With
this, we show how the set of all reduced stable partitions can be enumerated
efficiently. We build on this by considering all stable partitions, not necessarily
reduced. We show that any non-reduced stable partition can be constructed from
two reduced stable partitions. However, a deeper structural investigation yields
that any predecessor-successor pair can be part of at most one cycle of length
longer than 2. Therefore, the union of all stable partitions of any instance with n
agents contains at most O(n2) cycles, and we show how these can be enumerated
in O(n4) time. With this, we improve the enumeration algorithm for all stable
partitions, denoted P (I), and present an algorithm that runs in O(|P (I)|n3+n4)
time. Finally, we adapt six natural fairness measures and optimality criteria from
stable matchings to stable partitions. We find that a stable partition that min-
imises the maximum predecessor rank (called minimum-regret stable partition)
always exists and is the only tractable problem variant of these. Furthermore,
although two of the NP-hard optimisation problem variants are polynomial-time
approximable within a factor of 2, one of them is not approximable within any
constant factor.

All of these results are consistent with those previously known about stable
matchings, strengthening the tight correspondence between stable matchings and
stable partitions. Overall, our results shed more light on the complexity-theoretic
and structural properties of stable partitions.

1.3 Related Work

Irving [16] and Gusfield [12] published an extensive collection of early structural
results, leading to a book discussing the structure and algorithms of the sm
and sr problems [14]. They proved, for example, that the stable matchings of
a given instance form a semi-lattice structure and that, of a given sr instance
I with n agents, all stable pairs (union of all pairs part of some stable match-
ing) and all stable matchings, denoted S(I), can be found in O(n3 log n) and
O(|S(I)|n2+n3 log n) time, respectively. Later, Feder [7] improved this to O(n3)
and O(|S(I)|n + n2), respectively.

With regards to the complexity of profile-optimal stable matching problems,
minimum-regret is one of few efficiently solvable ones, with a linear-time algo-
rithm presented by Gusfield and Irving [14]. On the other hand, Feder [6] proved
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that finding an egalitarian (minimum sum of ranks of agents assigned) sta-
ble matching for sr is NP-hard. Later, Feder [7], and Gusfield and Pitt [13]
gave 2-approximation algorithms for the problem. Cooper [4] showed that for
an instance with regret r, the problems of finding rank-maximal (lexicographi-
cally maximal profile), generous (lexicographically minimal inverse profile), first-
choice maximal (maximum number of first choices achieved), and regret-minimal
(minimum number of agents assigned to r) stable matchings, if they exist, are
all NP-hard. Simola and Manlove [23] extended these results to short preference
lists and presented some approximability results.

In his original paper, Tan [24] provided a linear-time algorithm to compute
a stable partition and showed that every sr instance admits at least one stable
partition. Alternative proofs for the existence of stable half-matchings in more
general settings using Scarf’s Lemma exist [2]. Tan and Hsueh [26] considered
the online version of the problem of finding a stable partition, in which a new
agent arrives and the preference lists are updated, and constructed an exact
algorithm that runs in linear time (for each newly arriving agent).

Pittel [21,22] derived a range of probabilistic results about the algorithm
by Tan and stable partitions in general. He showed, for example, that at most
O(

√
(n log n)) members are likely to be involved in the cycles of odd length three

or more, that the expected number of stable partitions is O(n
1
2 ), which reduces

to O(n
1
4 ) for reduced stable partitions. Stable partitions are also used to show

various other results with regards to the sr problem. For example, in connection
with their study of so-called “almost-stable” matchings, Abraham et al. [1] make
use of stable partitions as a structural tool.

Over time, many variations of sr have been studied, such as srt (where
ties are allowed in the preferences) [17], sri (where incomplete preferences are
permitted) [23], or both, denoted srti [17]. Fleiner [8] also showed how, under
some assumptions, the strict linearly-ordered preference lists can be replaced
with choice functions, while keeping the problem polynomial-time solvable. Irv-
ing and Scott [18] introduced a many-to-many extension of sr called Stable
Fixtures and presented a linear-time algorithm to find a stable matching or
report that none exists. Dean and Munshi [5] investigated the even more general
Stable Allocation problem and used transformations between non-bipartite
and bipartite instances to derive efficient algorithms.

1.4 Structure of the Paper

In Sect. 2, we present a mixture of existing and new formal definitions and known
results relevant to this paper. In Sect. 3, we characterise and exploit the struc-
ture of reduced stable partitions, longer cycles, and all stable partitions. Finally,
in Sect. 4, we adapt common profile-based optimality criteria from stable match-
ings to stable partitions and investigate the complexity and approximability of
these problems. We finish with a discussion of the results and some related open
problems in Sect. 5. All omitted proofs and some other details and examples can
be found in the full version of this paper [10].
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2 Formal Definitions and Preliminary Results

We begin this section by defining sr instances formally as follows.

Definition 1 (sr Instance). Let I = (A,�) be an sr instance where A =
{a1, a2, . . . , an}, also denoted A(I), is a set of n ∈ 2N agents and every agent
ai ∈ A has a strict preference ranking or preference relation �i over all other
agents aj ∈ A\{ai}. For stable partitions, we will assume that � is extended
such that every agent ranks themselves last to allow self-assigned agents.

Note that in this work, we assume an even number of agents. However, it
has been shown [14] that most concepts and results transfer over to the case
where the number of agents is odd and we accept an unmatched (but non-
blocking) agent. Furthermore, there will be cases where we transform an sr
instance with complete preferences (i.e. a ranking � in which all agents rank
all other agents but themselves) into an instance with incomplete preferences
(technically denoted by sri), but all existing techniques that we use still apply
in the sri case. A solution to an sr instance is now defined.

Definition 2 (Stable Matchings). Let I = (A,�) be an sr instance. M is a
matching of I if it is an assignment of some agents in A into pairs such that no
agent is contained in more than one pair of M . A blocking pair of a matching
M is a pair of two agents ai, aj ∈ A such that either aj is unassigned in M
or ai �j M(aj), and either ai is unassigned or aj �i M(ai), where M(ai) is
the partner of ai in M . If M does not admit any blocking pair, then it is called
stable. A stable matching is complete if it contains all |A| agents.

Any stable matching of an instance with complete preferences and an even
number of agents will be complete, as any two unmatched agents would rather
be matched to each other than to be unmatched.

Definition 3 (Solvability and Sub-Instances). Let I = (A,�) be an sr
instance. I is solvable if it admits at least one stable matching, otherwise it is
unsolvable. I ′ = (A′,�′) is a sub-instance or a restriction of I if A′ ⊆ A and
ai �′

k aj for all agents ai, aj , ak ∈ A′ where ai �k aj.

As previously mentioned, stable partitions Π are permutations on the subset
of agents. Therefore, they can be written in cyclic notation where every agent is
part of exactly one cycle. A formal definition follows.

Definition 4 (Stable Partition). Let I = (A,�) be an sr instance. Then a
partition Π is stable if it is a permutation of A and

1. ∀ai ∈ A we have Π(ai) �i Π−1(ai), and
2. �.ai, aj ∈ A, ai �= aj , such that aj �i Π−1(ai) and ai �j Π−1(aj),

where Π(ai) �i Π−1(ai) means that either ai’s successor in Π is equal to its pre-
decessor, or the successor has a better rank than the predecessor in the preference
list of ai.
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Each stable partition Π corresponds to a stable half-matching in the sense
that each successor-predecessor pair in Π is assigned a half-integral match. In
our study of stable partitions, it is important to differentiate between different
kinds of cycles.

Definition 5 (Cycles). Let I be an sr instance and let C = (ai1 ai2 . . . aik)
be an ordered collection of one or more agents in I. Then C is a cycle and we
can apply cycle C to some agent aij ∈ C to get its successor in C, denoted by
C(aij ). Similarly, we can apply the inverse C−1 = (ai1 aik . . . ai2) to aij to get
its predecessor in C, denoted by C−1(aij ). The same holds for sets of cycles.

We will implicitly assume that two disjoint cycles or sets of cycles C1, C2

can be added under concatenation C1 ++ C2, simply be denoted by C1C2 when
obvious. C1 can also be removed from a collection of cycles C, denoted by C\C1.

Definition 6 (Stable Cycles). Let I be an sr instance and let C be a cycle.
If there exists some stable partition Π of I such that C ∈ Π, then C is a stable
cycle of I. A stable cycle of odd length is called an odd cycle, of length 2 a
transposition, and of even length longer than 2 an even cycle of I. Clearly, for
every stable partition Π of I, Π = T EOI , where T denotes the transpositions, E
the even cycles, and OI the odd cycles of Π. Let A(C) denote the set of agents
contained in a single cycle or a collection of cycles C. Unless specified otherwise,
let n1 = |A(T E)| and n2 = |A(OI)|.

Definition 7 (Reduced Stable Partition). A cycle is called reduced if its
length is either 2 or odd and non-reduced if not. Similarly, a stable partition Π
is reduced if it consists only of reduced cycles, and non-reduced if not.

We will also need a definition for sub-sequences of cycles.

Definition 8 (Partial Cycles). Let C = (ai1 ai2 . . . aik . . . ) be a cycle where
only some agents ai1 . . . aik and their position in the cycle are known. Then
we call C a partial cycle and if there exist agents aik+1 . . . air such that cycle
(ai1 ai2 . . . aik aik+1 . . . air ) is stable, then C is a partial stable cycle and the
sequence of agents aik+1 . . . air is a completion of C.

Now we can introduce the notion of blocking agents and pairs for stable
partitions. Note that the definition is very close to that of blocking pairs of stable
matchings, and it should be clear from the context which definition applies.

Definition 9 (Blocking Pairs and Agents). Let I = (A,�) be an sr
instance and let Π be a partition of A. Then an agent ai ∈ A blocks Π (is
a blocking agent) if Π−1(ai) �i Π(ai). Two agents ai, aj block (form a block-
ing pair) of Π if aj �i Π−1(ai) and ai �j Π−1(aj). In the second case, we can
also say that (wlog) ai blocks Π with aj.

Note that a stable matching M = {{ai1 , ai2}, . . . , {ai2k−1 , ai2k}} consisting of
k pairs can be used interchangeably with its induced collection of transpositions
(ai1 ai2) . . . (ai2k−1 ai2k), which is a stable partition of I. The following has been
shown and will also be assumed throughout this work.
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Theorem 1 ([24,25]). The following properties hold for any sr instance I.

– I admits at least one stable partition and any non-reduced stable partition
can be transformed into a reduced one by breaking down its longer even length
cycles into collections of transpositions.

– Any two stable partitions of I contain the same odd cycles.
– I admits a complete stable matching if and only if no stable partition of I

contains an odd cycle.

3 Structure of Stable Cycles, Transpositions,
and Partitions

First, we will formalise and characterise the structure of reduced stable partitions
in Sect. 3.1. Then, naturally, we will extend the study to all stable partitions.
This requires the study of stable cycles. After showing various results about the
structure of even cycles in Sect. 3.2, we focus on algorithmic questions related
to the enumeration of all reduced and non-reduced stable cycles in Sect. 3.3,
finishing this section with an enumeration algorithm for all stable partitions in
Sect. 3.4 which ties together most of our results.

3.1 Structure of Reduced Stable Partitions

Let I = (A,�) be an instance of sr and let Πi be any reduced stable partition of
I. We know that its odd cycles OI are invariant under all stable partitions of I,
while the transpositions might not be. Let IE = (A′,�′), where A′ = A\A(OI)
and �′ is the restriction of � to the agents in A′, be the instance I restricted to
agents in transpositions.

Lemma 1. Let Πi be any reduced stable partition of an sr instance I. Then Πi

is the union MiOI of its odd cycles OI and a perfect stable matching Mi of the
sub-instance IE of I constructed above as a cyclic permutation of transpositions.

On the other hand, we are not guaranteed a bijection between the set P (I)
of all reduced stable partitions of I and the set S(IE) of all stable matchings
of IE . To deal with this case, we can reduce IE further. Specifically, all pairs
of agents {ai, aj} ⊆ A′ need to be deleted (made mutually unacceptable) from
the preference relation �′ whenever there exists an agent ar ∈ A(OI) such that
ai �r O−1

I (ar) and ar �i aj . This is equivalent to truncating the preference list
of ai at the first agent as ∈ A′ such that as �i ar, for the best-ranked such
ar ∈ A(OI) of ai, and removing ai from the preference list of every agent in
A′ that is less preferred by ai. The deletion operations do not reduce the set of
agents, just the preference relation, so we let the resulting sub-instance of IE be
denoted by IT = (A′,�′′). We assume that preference comparison and partner
lookup can be done in constant time, such that the procedure takes at most
linear time overall.

Although these deletions might destroy some stable matchings admitted by
IE , we must ensure that IT still admits at least one.
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Lemma 2. Let Πi = MiOI be any reduced stable partition of an sr instance I
and let IT be its sub-instance as constructed above. Then Mi is a perfect stable
matching of IT .

We can now show the correspondence between the stable matchings of IT
and the reduced stable partitions of I.

Theorem 2. Mi is a perfect stable matching of IT if and only if MiOI is a
reduced stable partition of I, where IT is constructed as above and OI are the
invariant odd cycles of I.

Corollary 1. The number of reduced stable partitions that an sr instance I
with n ∈ 2N agents admits is equal to the number of stable matchings that its
sub-instance IT with n − |A(OI)| agents admits.

With these results, we now have a procedure to enumerate all reduced stable
permutations by enumerating S(IT ) using the algorithm by Feder [6].

Theorem 3. We can enumerate all reduced stable partitions of an sr instance
I = (A,�) in O(|S(IT )|n + n2) time, where IT is the sub-instance of I as
constructed above, S(IT ) is the set of all stable matchings of IT , and n = |A|.

3.2 Structure of Longer Even Cycles

Reduced stable partitions are canonical in the sense that they cannot be broken
down into smaller cycles. However, while Tan [25] shows that any stable cycle
of even length greater than two can be decomposed into a stable collection of
transpositions, it may be of theoretical interest to look at how longer cycles
can be constructed from a collection of transpositions. Naively, we could try
any combination of transpositions to construct longer even cycles. However, this
would quickly lead to a combinatorial explosion due to the potential number of
transpositions involved. Instead, we look at the different ways to decompose an
even cycle into transpositions.

Lemma 3. Any even cycle C = (ai1 ai2 . . . ai2k) of some stable partition Π
where k ≥ 2 can be broken into two distinct collections of transpositions C1 =
(ai1 ai2)(ai3 ai4) . . . (ai2k−1 ai2k) and C2 = (ai1 ai2k)(ai2 ai3) . . . (ai2k−2 ai2k−1)
such that both partitions Π1 = (Π\C)++ C1 and Π2 = (Π\C)++ C2 are stable.

However, there might be more ways to rearrange the agents of an even cycle
into a stable collection of disjoint transpositions.

Theorem 4. Any non-reduced stable partition Π can be constructed from two
reduced stable partitions Πa, Πb.

This gives a naive way to construct all stable partitions from the set of
reduced stable partitions.
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Corollary 2. We can construct all stable partitions, P (I), of an sr instance I
from its set of reduced stable partitions, RP (I), in O(|RP (I)|2n2) time without
repetitions.

As |RP (I)| may be exponential in n and some combinations of reduced sta-
ble partitions might not to lead to a non-reduced stable partition, we focus the
study on stable cycles themselves and how they could be useful in enumerating
all stable partitions directly. First, to refine the search for longer even cycles,
we can show restrictions on the combinatorics of agents. We want to show that
it suffices to know a predecessor-successor pair of agents in a partial even cycle
C = (ai1 ai2 . . . ) to find a completion if one exists, and that we can find
such a completion in polynomial time. For this, we show that the correspon-
dence between C and C\{ai2}, where the latter is a potential odd cycle of some
related instance. Specifically, the procedure takes as input the instance and a
predecessor-successor pair ai1 , ai2 of the partial (not necessarily stable) cycle in
question and creates an instance IS related to I without agent ai2 in which the
preference lists of all agents preferred by ai2 over ai1 in I are modified in IS such
that ai1 takes the spot of ai2 and its previous entry is deleted, and these agents,
if not preferred by ai1 over ai2 , are promoted in the preference list of ai1 in IS
to before the rank position of ai2 in ai1 ’s preference list in I while maintaining
the relative preference order given by ai2 in I.

Lemma 4. Let I be an sr instance, let (ai1 ai2 . . . ) be a partial cycle of I,
and let IS be the instance constructed from I as above. If (ai1 ai2 . . . ) has a
completion to an even stable cycle, then ai1 belongs to an odd stable cycle in IS.

Due to odd cycles being invariant, we can use the statement above to reason
about the structural restrictions of longer even cycles implied by a predecessor-
successor pair.

Lemma 5. If C = (ai1 ai2 ai3 . . . ai2k) and C ′ = (ai1 ai2 a′
i3

. . . a′
i2l
) are both

even cycles of I, then k = l and aij = a′
ij

for 3 ≤ j ≤ 2k.

Now note that this also implies that no instance can admit, for example, the
following stable partitions: Π = (a1 a2 a3 a4 a5 a6), Π ′ = (a1 a2 a3 a4)(a5 a6).

Lemma 6. If some stable partition Π of sr instance I contains an even cycle
C = (ai1 . . . aik), then C cannot be contained in a longer even cycle C ′ =
(ai1 . . . aik aj1 . . . ajl) of some other stable partition Π ′ of I.

The results also greatly restrict the number of even cycles that an instance
can admit.

Lemma 7. Any sr instance with n agents admits at most O(n2
1 + n2) = O(n2)

cycles of length not equal to two.

Finally, Lemma 5 also establishes the following powerful result.
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Theorem 5. Let (ai1 ai2 . . . ) be a partial cycle in some sr instance I. In
linear time, we can determine whether this partial cycle has a completion
C = (ai1 ai2 ai3 . . . ai2k) to an even cycle of some stable partition of I, or
report that no such completion exists. If a completion C to a stable even cycle
does exist, then C must be unique.

Proof. We can construct IS from I using the procedure described above and find
some stable partition Π ′ of IS , all in linear time. Now, if ai1 does not belong to
an odd stable cycle C ′ of Π ′, then by Lemma 4, (ai1 ai2 . . . ) has no completion
to a stable even cycle of I.

Otherwise, suppose that C ′ = (ai1 ai3 . . . ai2k) is an odd stable cycle of Π ′.
Then the cycle C = (ai1 ai2 ai3 . . . ai2k) is an even stable cycle of I unless
{ai1 , ai3} block in (Π ′\C ′) ++ C.

Thus, we can either output C, which is unique by Lemma 5, or it must be
the case that “no” is the correct answer, as by the same Lemma, if (ai1 ai2 . . . )
has a completion to an even stable cycle in I, then C = (ai1 ai2 ai3 . . . ai2k) is
the only candidate. 
�

We have shown above that if C is a partial even stable cycle of the con-
sidered instance I, then we must have a corresponding invariant odd cycle C ′

of some related instance of I, and that therefore, C has a unique completion.
Furthermore, Theorem 5 establishes that we only need to consider a potential
successor-predecessor pair to see whether that pair is indeed part of some longer
unique stable even cycle, and we can do so in linear time. Furthermore, given an
instance I and a (non-partial) candidate cycle C, we can also efficiently verify
whether it is in some stable partition as it is, by Theorem 5, sufficient to con-
sider any successor-precessor pair in it. If so, we can also explicitly construct a
stable partition Π containing C using the method described in the proof, where
Π = (Π ′\C ′) ++ C.

Corollary 3. Given an sr instance I and a candidate (not necessarily stable)
cycle C of even length, we can verify whether C is stable and, if so, construct a
stable partition Π containing C, all in linear time.

3.3 All Stable Cycles

With stable matchings, we can consider the problem of finding all stable pairs,
denoted SP (I), which is defined as the union of all pairs contained in some stable
matching of an sr instance I. Similarly, one can ask about the fixed pairs, which
are all pairs contained in all stable matchings of I. Analogously, we introduce the
corresponding questions for stable partitions: given an sr instance I, what are
all the stable cycles, denoted SC(I), admitted by some stable partition of the
instance? Similarly, what are the fixed stable cycles, denoted FC(I), admitted
by all its stable partitions?

The enumeration of reduced stable partitions might naturally run in time
exponential in the number of agents, similar to the enumeration of all stable
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matchings of a solvable instance. In contrast, when only looking at stable pairs
rather than matchings, Feder [7] presented an O(n3) algorithm to find them
in a sr instance with n agents. Therefore, it is natural to ask whether we can
construct a similar efficient algorithm for finding all stable cycles of a stable
partition. Given an sr instance I, we are looking to find stable cycles SC(I) =
{C ∈ Π | Π ∈ P (I)} where P (I) are all stable partitions admitted by I. Now
note that the odd cycles OI are invariant and can be computed efficiently, so
we require to find the union of all stable cycles of even length. Observe that
OI ⊆ FC(I) ⊆ RSC(I) ⊆ SC(I), where RSC(I) are the reduced stable cycles
(i.e. stable transpositions and odd cycles) of I. This is because for any stable
cycle C of even length longer than 2, we can break it into two collections of
stable transpositions by Lemma 3, such that C cannot be fixed. We can find all
reduced fixed cycles directly in O(n2) time by constructing the odd cycles OI ,
which are fixed, and the sub-instance IT . Then, we can derive the fixed pairs
(i.e. fixed stable transpositions) as described by Gusfield and Irving [14].

Theorem 6. Given an sr instance I with n agents, we can find all its fixed
cycles in linear time.

Theorem 2 states that any reduced stable partition Πi is the union of some
stable matching Mi of the sub-instance IT of I, and OI . Therefore, in order to
find all stable transpositions, we can apply the known all stable pairs algorithm
to IT .

Lemma 8. Given an sr instance I with n agents, we can find all reduced stable
cycles, RSC(I), i.e. odd cycles and stable transpositions, in O(n2 + n3

1) time.

This lets us extend Lemma 7 to include transpositions.

Theorem 7. Any sr instance with n agents admits at most O(n2
1+n2) = O(n2)

stable cycles.

Now to compute all stable cycles, not necessarily reduced or fixed, we can
use our previous work on reconstructing stable cycles of even length longer than
2 to show the following.

Theorem 8. Given an sr instance I with n agents, we can find all its stable
cycles, SC(I), in O(n2

1(n
2 + n1)) = O(n4) time.

Proof. Due to Lemma 8, we can find all reduced stable cycles, i.e. all stable
transpositions and odd cycles, in O(n2 + n3

1) time.
Now with regards to the stable cycles of even length longer than 2, we can

consider all pairs of agents that could be part of a longer even stable cycle. There
are

(
n
2

)
= O(n2) such subsets in general, but we can limit ourselves to the stable

transpositions we found in the previous step due to Theorem 4, in which we
showed that any even cycle can be broken into at least two collections of stable
transpositions, therefore no agent pair that is not a stable transposition will lead
to an even stable cycle.
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For each pair {ai, aj}, we need to consider each of the orderings (ai aj . . . )
and (aj ai . . . ). Clearly, there are O(n2

1) such pairs. Then, for each ordering, we
can try to find its unique completion in O(n2) time due to Theorem 5 and finally
verify that it is a stable cycle, also in O(n2) time due to Corollary 3. Altogether,
we consider O(n2

1) candidates and need O(n2) time for each, therefore requiring
O(n2

1n
2) time. As any consecutively ordered pair of agents will only be part of

at most one stable cycle of length longer than 2 by Theorem 5, we can eliminate
all such pairs from the candidate set once detected. This will ensure that the
even cycles are enumerated exactly once.

Altogether, the steps take O(n2
1(n

2 + n1)), or O(n4) time. 
�

3.4 Enumerating Stable Partitions

Now that we know how to find all stable cycles of our sr instance I efficiently, we
show that this leads to an alternative approach to enumerating all stable parti-
tions, P (I), compared to the naive method from Corollary 2. In this procedure,
we will recursively build up all stable partitions, starting with the invariant odd
cycles and adding one additional cycle with each recursive call. Simultaneously,
at each recursive step, we fix an arbitrary agent not yet in any cycle of the partial
partition and branch on all its cycles (as given by SC(I)) that, together with
the current partial partition, lead to at least one stable partition. This way, the
recursive tree consists of paths leading from the origin (a partial stable partition
containing only the odd cycles) to all leaf nodes (all stable partitions).

The procedure EnumPI described in Algorithm 1 implements the logic
described in the previous paragraph to enumerate all stable partitions. The
parameter “cycles” contains a partial stable partition and grows with each recur-
sive call until it is a full stable partition. The parameter “agents” contains all
agents in I not yet in any cycle of “cycles” and is naturally decreasing in size
as “cycles” grows. Finally, the parameter SC contains all cycles of some stable
partition of I containing some agent in “agents”, not necessarily compatible with
“cycles” (in the sense that not every cycle in SC belongs to a stable partition
with “cycles”). Note that by this behaviour, if “agents” is empty, then “cycles” is
a stable partition and we print it. If not, then the algorithm proceeds to return
and remove an arbitrary agent ai from “agents”. Then, the algorithm checks
whether there is a unique cycle c containing ai such that “cycles” ++ c is part of
some stable partition of I using the omitted procedure FC which uses Theorem
6. If there is a unique such c, then we reduce the set of stable cycles SC to
SCred which does not contain any cycles with agents in c and recurse with the
increased partial stable partition “cycles” ++ c, the reduced set of stable cycles
to choose from SCred, and the reduced set of remaining agents “agents”\A(c). If
there is no unique choice c, then the procedure loops through all candidate cycles
c′ ∈ SC that contain ai, at least two of which must correspond to a partial stable
partition “cycles” ++ c′ by construction. Whether “cycles” ++ c′ does correspond
to a partial stable partition or only a collection of cycles that is not a subset
of any stable partition can be determined with the procedure verify which is
omitted but uses the result from Corollary 3 to check whether the collection of
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Algorithm 1 EnumPI(SC, cycles, agents), recursively enumerates all stable par-
titions P (I)
Input: SC: all cycles of some stable partition of I containing some agent in “agents”

and no agent in A(cycles); cycles: a collection of cycles which is a subset of
some stable partition of I and includes all odd cycles of I; agents: all agents in
A(I)\A(cycles)

1: if agents = ∅ then
2: print(cycles)
3: return
4: end if
5: ai ← agents.pop()
6: fixed ← FC(I, cycles, ai) � finds the fixed cycle compatible with “cycles” that ai in

or returns null
7: if fixed �= null then
8: SCred ← {(aj1 . . . ajk) ∈ SC | ∀ 1 ≤ s ≤ k, ajs not in fixed}
9: EnumPI(SCred, cycles ++ fixed, agents\A(fixed))

10: else
11: for cycle in SC containing ai do
12: if verify(cycles ++ cycle) then � checks whether the cycle combination is

part of some stable partition
13: SCred ← {(aj1 . . . ajk ) ∈ SC | ∀ 1 ≤ s ≤ k, ajs not in cycle}
14: EnumPI(SCred, cycles ++ cycle, agents\A(cycle))
15: end if
16: end for
17: end if

cycles completes to a stable partition. If so, we, again, create the appropriate
SCred and recurse as above.

Overall, this gives a method to enumerate P (I) by first finding all O(n2
1+n2)

stable cycles, SC(I), in O(n2
1(n

2+n1)) time as previously shown and then calling
the procedure EnumPI described in Algorithm 1 with stable cycles SC(I)\OI as
parameter SC, the invariant odd cycles OI as parameter “cycles”, and agents
A(I)\A(OI) as parameter “agents”.

Theorem 9. Let I be an instance of sr with n agents. Then Algorithm 1 enu-
merates all stable partitions P (I) of I without repetition in O(|P (I)|n3 + n4)
time, or more specifically, O((|P (I)| + n1)n1n

2 + n3
1) time.

4 Complexity of Profile-Optimal Stable Partitions

We have shown how to efficiently enumerate all reduced stable partitions admit-
ted by an sr instance I. However, as the size of the set S(IT ) of all stable match-
ings of the sub-instance IT of I can, in general, be exponential in the number
of agents n, this might not be a good solution to finding a reduced stable parti-
tion with some special property. Therefore, we might be interested in computing
some “fair” or “optimal” stable partitions directly. As previously noted, there
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are different measures of fairness and optimality for stable matchings considered
in the literature. The main measure is the profile p(M) of a matching M , a
vector (p1 . . . pn−1), where pi counts the number of agents assigned to their ith
choice in M . We define a similar measure for stable partitions, accounting for
all half-assignments in the associated half-matching.

Definition 10. Let I be an sr instance with n agents and Π a stable partition
of I. An agent ai has rank i for an agent aj if it appears at position i−1 in aj’s
preference list. We define the successor profile, denoted ps(Π) = (ps1 . . . psn), to
capture the number of agents psi whose successor in Π has rank i. Analogously,
let pp(Π) denote the predecessor profile of Π. Finally, let p(Π) = (p1 . . . pn)
denote the combined profile of Π, where pi = psi + ppi . Similarly, for a stable
cycle C, let ps(C), pp(C), and p(C) denote the profiles containing the number
and positions of predecessors, successors, or both achieved in C. The regret of
Π, denoted r(Π), is the rank of the worst-ranked agent assigned in Π, which is
the index of the last positive entry in p(Π). Similarly, for C some cycle of agents,
let r(C) be the rank of the worst-ranked agent assigned in C. The cost of Π,
denoted c(Π), is the sum of ranks achieved in Π, averaged over the predecessor
and successor assignments. Specifically, we define c(Π) = 1

2

∑
1≤i<n pi(Π) ∗ i.

As the odd cycles of sr instances are invariant, there is no point in seeking
odd cycles with special properties for a given instance. However, we can consider
the set of stable partitions of a given instance and seek, for example, a reduced
stable partition with minimum regret. In this case, it is not enough to simply
leverage the result from Theorem 2, as we are deleting entries in the preference
lists during the construction of IT , which makes the resulting profile entries in
the larger instance inconsistent. For this, we use a padding method by replacing
deleted agents in the preference lists by dummy agents which are guaranteed to
be matched to each other by construction. Therefore, a solvable instance similar
to IT is created in which the ranks are maintained and known algorithms can
be applied.

First, using the padding method, we can show that the problem of finding a
minimum-regret stable partition is tractable.

Lemma 9. Let I be an sr instance, let Π = M0OI be a reduced stable partition
of I, where M0 is a collection of transpositions and OI are the odd cycles in Π,
and IP be the transformed instance using the padding method. If M0 is a stable
matching of IP with minimum regret, then Π is a reduced stable partition with
minimum regret.

Note that the converse does not necessarily hold, because a reduced stable
partition Π = M0OI as above could have r(M0) < r(Π) = r(OI).

We can furthermore show that there is no gap in minimum regret between
the set of reduced stable partitions and the set of stable partitions.

Lemma 10. Let Π be a minimum-regret reduced stable partition of some sr
instance I and let r(Π) be its regret. Then for any stable partition Π ′ of I, we
have r(Π) ≤ r(Π ′).
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Theorem 10. A stable partition with minimum regret always exists and can be
computed in linear time.

Consistent with stable matchings, minimum regret remains an exception con-
cerning the tractability of profile-based optimal stable partitions.

With our definitions of profile, regret, and cost for stable partitions, we can
define analogous optimality measures for stable partitions (and thus stable half-
matchings). For some, we need an order on profiles as defined below.

Definition 11. Let p = (p1 . . . pn), p′ = (p′
1 . . . p′

n) be two profile vectors. Then
p = p′ if pi = p′

i for all 1 ≤ i ≤ n. If p �= p′, let k be the first position in which
they differ. We define p � p′ if pk > p′

k. Furthermore, we define p � p′ if either
p � p′ or p = p′. Finally, we will call prev = (pn . . . p1) the reverse profile of p.

We now also consider the following decision problems.

Definition 12. Given an sr instance I with n agents and regret r, an integer
k, and a vector σ ∈ {0, 1, . . . , n}n, let

– FC-Dec-SR-SP denote the problem of deciding whether I admits a stable
partition Π where p1(Π) ≥ k,

– Rank-Dec-SR-SP denote the problem of deciding whether I admits a stable
partition Π where p(Π) � σ,

– RM-Dec-SR-SP denote the problem of deciding whether I admits a mini-
mum regret stable partition with at most k rth choices,

– Gen-Dec-SR-SP denote the problem of deciding whether I admits a stable
partition Π where σ � prev(Π), and

– Egal-Dec-SR-SP denote the problem of deciding whether I admits a stable
partition with cost at most k.

We can show for all of these problems that no non-reduced stable partition
is “better” with regards to our optimality criteria than the best reduced stable
partition, which allows us to only consider reduced stable partitions. Knowing
the NP-completeness of the associated problems above for stable matchings, we
can show that all of these problems are NP-complete for stable partitions, even
if the instance is solvable. One might ask whether the same result holds for
unsolvable instances, which have some different structural properties. Using a
reduction from solvable instances, we can show that this is indeed the case.

Theorem 11. The problems FC-Dec-SR-SP, Rank-Dec-SR-SP, RM-Dec-
SR-SP, Gen-Dec-SR-SP, and Egal-Dec-SR-SP are all NP-complete, even
if the instance is solvable and even if it is unsolvable.

Furthermore, the following approximation bounds apply reduced from the
approximation bounds for stable matchings due to Simola and Manlove [23].

Theorem 12. The problem of finding a stable partition Π of some sr instance I
with a maximal number of first choices does not admit a polynomial-time approx-
imation algorithm with any constant-factor performance guarantee, even if I is
solvable and even if I is unsolvable, unless P = NP.
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However, for two other problems, the approximation method for Optimal
sr [14] due to Teo and Sethuraman [27] applies.

Theorem 13. The problems of finding a stable partition Π of some sr instance
I with minimal cost or minimal number of r(I) choices admits polynomial-time
approximation algorithms with a multiplicative performance guarantee of 2.

These results are consistent with the approximability results of stable match-
ings, which fits the theme of compatibility and close correspondence through-
out this research. Note that the NP-hardness arguments assume a solvable
(sub-)instance that is computationally difficult in the considered context. How-
ever, the smaller the sub-instance, the easier to compute an optimal solution, as
there is no choice involved in the odd cycles. In the extreme case, all agents are
part of odd cycles, which means that there exists a unique stable partition for
the instance which is automatically optimal regardless of the objective.

5 Discussion and Open Problems

In this paper, we have shown various new insights into the structure of stable
partitions. Specifically, that there is a close correspondence between reduced sta-
ble partitions of unsolvable instances and stable matchings of certain solvable
sub-instances, how even cycles can be constructed from transpositions and par-
tial cycles, with the highlight being a result proving that a predecessor-successor
pair is sufficient to find the unique stable cycle of even length longer than 2 (if
one exists). Using these insights, we also provided the first algorithms to effi-
ciently enumerate all reduced and non-reduced stable cycles and partitions of
a given problem instance, which could be useful for a variety of cases. Further-
more, we showed how the stable matching notions of profile- and cost-optimality
carry over to stable partitions and which of the problems are efficiently com-
putable. This bridges the gap between stable matchings, which do not always
exist, and fractional matchings, which always exist but may not be useful in
certain practical applications. For a comparative overview of the complexity and
approximability results previously known and newly established, see Table 1.

Overall, we have shown a close correspondence between stable matchings and
stable partitions in every way, but many open questions remain. One direction for
future work is to improve on the complexity results presented here, for example
by investigating whether a technique similar to the 2-sat reduction by Feder [7]
or the transformations between non-bipartite to bipartite instances presented
by Dean and Munshi [5] can speed up the enumeration of SC(I) and P (I).
Currently, it is not clear how to approximate rank-maximal- and generous-profile
problems, neither for matchings nor for partitions. On the structural side, it
would be interesting to study whether stable half-matchings form a semi-lattice
similar to stable matchings. It would also be interesting to confirm that the
results presented here hold in the cases of incomplete preference lists and an
odd number of agents. There might also be a closer relationship than currently
discovered between the structure of stable partitions and approximate or exact
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Table 1. Complexity results. Results from existing literature or not applicable are
highlighted in grey, whilst new results are highlighted in white. n is the number of
agents in the instance, n1 of which are not in invariant odd cycles.

Stable Matching Stable Partition
Always Exists No Yes

Find Any (if exists) O(n2) [15] O(n2) [24]
Find SP (I)/SC(I) O(n3) [7] O(n2

1(n
2 + n1)) (Theorem 8)

Find FP (I)/FC(I) O(n2) [14] O(n2) (Theorem 6)
Find S(I)/RP (I) O(|S(I)|n + n2) [7] O(|S(IT )|n + n2) (Theorem 3)

Find P (I) O(|P (I)|n3 + n4) (Theorem 9)
Min Regret O(n2) [14] O(n2) (Theorem 10)
Rank-Max NP-h [4] NP-h (Theorem 11)
Generous NP-h [4] NP-h (Theorem 11)

Egalitarian NP-h [6], but NP-h (Theorem 11), but
2-approx. [7] 2-approx. (Theorem13)

Regret-Min NP-h [4], but NP-h (Theorem 11), but
2-approx. [23] 2-approx. (Theorem13)

First-Choice Max NP-h [4], and NP-h (Theorem 11), and
Inapprox. within c ∈ R [23] Inapprox. within c ∈ R (Theorem 12)

solutions to the almost-stable matching problem. Finally, it could be investigated
how stable partitions can be generalised to the many-to-many setting, such as
the Stable Fixtures problem [18].
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Abstract. We study the classical, randomized Ranking algorithm,
which is known to be (1 − 1

e
)-competitive in expectation for the Online

Bipartite Matching Problem. We give a tail inequality bound (Theo-
rem 1), namely that Ranking is (1 − 1

e
− α)-competitive with probabil-

ity at least 1 − e−2α2n where n is the size of the maximum matching in
the instance. Building on this, we show similar concentration results for
several generalizations of the Online Bipartite Matching Problem, includ-
ing the Fully Online Matching Problem and the Online Vertex-Weighted
Bipartite Matching Problem.

Keywords: Online Algorithms · Concentration of Measure · Online
Matching · Randomized Algorithms

1 Introduction

In the Online Bipartite Matching Problem, we have an undirected, bipartite
graph G = (S,B,E) with a set S of goods and a set B of buyers. The buyers
arrive online in adversarial order and every time a buyer i arrives, all of its
neighbors N(i) are revealed. We must then decide immediately and irrevocably
which as of yet unmatched neighbor of i should get matched to i. The goal is
to maximize the number of edges in the final matching M relative to the size of
the maximum matching in G (in the worst case over all choices of G and arrival
orders of the buyers), i.e. the so-called competitive ratio.

A matching M is considered maximal if there is no edge in E which can be
added to M while preserving the matching property. Due to the well-known fact
that every maximal matching contains at least half of the edges of any maximum
matching, it is easy to see that any algorithm which matches arriving buyers
whenever possible must be 1

2 -competitive. Moreover, because of the adversarial
arrival of buyers and choice of the underlying graph, this is best possible for
deterministic algorithms. In their seminal work, Karp et al. [13] defined the
randomized Ranking algorithm (see Algorithm 1) and showed that it is (1 −
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1
e )-competitive in expectation. They also showed that this is the best possible
competitive ratio for any randomized algorithm.

Algorithm 1: Ranking

1 Sample a uniformly random permutation π on S.
2 for each buyer i who arrives do
3 Match i to the first unmatched buyer in N(i) wrt. to π.

Over the years, online matching problems have received a large amount of
interest due to the vast number of applications created by the internet and mobile
computing. Online advertising alone poses the AdWords Problem [9,17,19] that
lies at the heart of a multi-billion dollar market. Another interesting application,
the Fully Online Matching Problem [10,11], came about due to the rise of ride-
sharing and/or ride-hailing apps such as Uber and Lyft where riders and drivers
come online and need to be matched almost instantaneously while minimizing
some function of latency and distance traveled to the rider. For a more complete
overview of online matching and its place in matching-based market design, we
refer to [6].

For many online matching problems, there are extensions of Ranking which
achieve competitive ratios of 1 − 1

e or at the very least strictly greater than 1
2 .

Often, these are best-known for their respective problems. However, to the best
of our knowledge, all results on Ranking-like online matching algorithms in
the literature only establish the competitive ratio in expectation without guar-
anteeing any form of concentration beyond the trivial bounds that follow from
Markov’s inequality. Under the restriction that the graph is d-regular, Cohen
and Wajc [3] proposed the Marking algorithm for Online Bipartite Matching
and showed that it has a competitive ratio of 1 − O(

√
log d/

√
d) in expectation

and 1 − O(log n/
√

d) with high probability. They remark that this is the first
high probability guarantee > 1/2 for Online Bipartite Matching, though only in
this restricted setting. Accordingly, our result is the first such bound without
additional assumptions on the problem instances.

The analysis of concentration bounds for randomized algorithms goes back to
the 1970s with classic results such as the second moment bound for Quicksort
[18]. See [5] for an extensive overview of the field. However, it has remained the
case that in the analysis of algorithms, results are usually quantified in terms of
expected solution quality only.

In some sense this is due to the well-known fact that, as a consequence of
standard Chernoff bounds, any randomized algorithm which is good in expec-
tation can be boosted to be good with probability 1 − 1

n by simply repeating it
O(log n) many times. But it is precisely in the case of online algorithms where
this argument fails due to the fact that online algorithms, by definition, can not
be repeated. Despite this, the literature on high probability bounds for online
algorithms is relatively sparse (for some exceptions, see e.g. [14,15]). Given the
impact that Ranking has had over the last 30 years, it is quite remarkable that
such a fundamental aspect of it had been left unanswered.
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1.1 Our Results and Techniques

Our results concern Ranking type algorithms in three different settings: the
classic Online Bipartite Matching Problem (see Sect. 2), the Fully Online Match-
ing Problem inspired by ride-sharing (see Sect. 3) and the Online Vertex-
Weighted Bipartite Matching Problem inspired by the internet advertising mar-
kets (see Sect. 4).

In Sect. 2 we will show the following result, complementing the classic(
1 − 1

e

)
-competitiveness result of Ranking for the Online Bipartite Matching

Problem [13].

Theorem 1. Let G = (S,B,E) be an instance of the Online Bipartite Matching
Problem which admits a matching of size n. Then for any α > 0 and any arrival
order,

P

[
|M | <

(
1 − 1

e
− α

)
n

]
< e−2α2n

where M is the random variable denoting the matching generated by Ranking.

The key technical ingredient for this result is a bounded differences property
of the random variable |M | (see Lemma 2). We prove this via structural proper-
ties of matchings (see Lemma 3) similar to ones which have been used in previous
analyses of Ranking [2,8]. Together with McDiarmid’s inequality shown below
(a consequence of Azuma’s inequality) this gives rise to a particularly natural
proof of Theorem 1.

Lemma 1 (McDiarmid’s Inequality[16]). Let c1, . . . , cn ∈ R+ and consider
some function f : [0, 1]n → R satisfying

|f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn) − f(x1, . . . , xn)| ≤ ci

for all x ∈ [0, 1]n, i ∈ [n] and x′
i ∈ [0, 1]. Moreover let Δn be the uniform

distribution on [0, 1]n. Then for all t > 0, we have

Px∼Δn [f(x) < Ey∼Δn [f(y)] − t] < e
− 2t2

∑n
i=1 c2

i .

We want to contrast this technique briefly with two related results. The
analysis of Marking by Cohen and Wajc [3] uses the d-regularity of the graph
in an essential way. They are able to show directly that the probabilities that
the offline vertices are unmatched are negatively correlated and apply a Chernoff
bound. In fact, they even show that the probability that any given offline vertex
is matched goes to 1 as d → ∞ which is certainly not the case for Ranking.

The technique by Komm et al. [14] can be used to show concentration bounds
for several problems which are loosely related to online matching such as the
Online k-Server Problem. Their key idea is to use a repeating strategy where any
existing randomized algorithm is used and simply restarted periodically when
certain conditions are met. This improves the in expectation guarantee of the
original algorithm to a high probability guarantee similar to typical re-running
technique for non-online algorithms. However, this only works if one can indeed
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cheaply restart the algorithm without harming the analysis which is the case in
the Online k-Server Problem but not in the Online Bipartite Matching Problem.

In Sect. 3 we will define the Fully Online Matching Problem and the natural
extension of Ranking for this setting. We remark that we allow for non-bipartite
graphs here and we will give a similar concentration bound as in Theorem 1.

Theorem 2. Let G be an instance of the Fully Online Matching Problem which
admits a matching of size n. Then for any α > 0,

P [|M | < (ρ − α) n] < e−α2n

where M is the random variable denoting the matching generated by Ranking
and ρ is the competitive ratio of Ranking.

We remark that by [10], we know ρ > 0.521 and for the special case where
G is bipartite, we have ρ = W (1) ≈ 0.567.

Lastly, in Sect. 4 we will consider the Online Vertex-Weighted Bipartite
Matching Problem. In this setting, a generalization of Ranking was shown
to be (1 − 1

e )-competitive by Aggarwal et al. [1]. We will modify this algorithm
to show the following.

Theorem 3. For any α > 0, there exists a variant of Ranking such that for
any instance G = (S,B,E) with weights w : S → R+ of the Online Vertex-
Weighted Bipartite Matching, any arrival order of B and any matching M∗,

P

[
w(M) <

(
1 − 1

e
− α

)
w(M∗)

]
< e

− 1
50α4 w(M∗)2

||w||22

where M denotes the matching generated by Ranking and

w(M) :=
∑

{i,j}∈M

wj .

Lastly, we argue that this bound also applies to the Online Single-Valued
Bipartite Matching Problem which is a variant of the vertex-weighted problem
in which goods can be matched multiple times.

2 Online Bipartite Matching

In order to analyze Ranking, it is common to replace the sampling of the
permutation π in Algorithm 1 by sampling an independent, uniform xj ∈ [0, 1]
for every j ∈ S called the rank of j. Then, sorting S by the values of xj yields
a uniformly random permutation. Formally, this is Algorithm 2.

Algorithm 2: Ranking

1 for j ∈ S do
2 Sample a uniformly random xj ∈ [0, 1].

3 for each buyer i who arrives do
4 Match i to an unmatched j ∈ N(i) with minimum xj .
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In the following, consider a fixed graph G = (S,B,E) with a fixed arrival
order. Assume that |S| = n and that G has a matching of size n. We define a
function f : [0, 1]S → R by letting f(y) be the size of the matching M generated
by Algorithm 2 if xj = yj for all j ∈ S. Our goal will then be to show the
following Lemma which is a different perspective on a structural property that
appears under various forms in the online matching literature (e.g. Lemma 2 in
[2]).

Lemma 2 (Bounded Differences). Let x ∈ [0, 1]S, j� ∈ S and θ ∈ [0, 1] be
arbitrary. Define x′

j to be θ if j = j� and xj otherwise. Then |f(x) − f(x′)| ≤ 1.

Note that Lemma 2 implies Theorem 1 via McDiarmid’s inequality
(Lemma 1). Specifically, by applying McDiarmid to the function f with c ≡ 1
we get

P

[
|M | <

(
1 − 1

e
− α

)
n

]
≤ Px∼ΔS [f(x) < Ey∼ΔS [f(y)] − αn]

≤ e−α2n

where we used that (1− 1
e )n ≤ Ey∼ΔS [f(y)] since Ranking is (1− 1

e )-competitive.
It remains to prove Lemma 2.

Lemma 3. Let j ∈ S, then we can define the graph G−j which contains all
vertices of G except for j. For some fixed values of x ∈ [0, 1]S, we let M be the
matching produced by Ranking in G and let M−j be the matching produced by
Ranking in G−j. Then |M−j | ≤ |M | ≤ |M−j | + 1.

Proof. For any buyers i, i′ ∈ B, let N (i)(i′) be the set of neighbors of i′ in G
which are unmatched by the time that i arrives in the run of Ranking with
the fixed values of x. Likewise, let N

(i)
−j(i

′) be the set of unmatched neighbors of
i′ in the run of Ranking on G−j when i arrives. We claim that for all i ∈ B

there exists some j′ ∈ S such that for all i′ ∈ B we have N (i)(i′) = N
(i)
−j(i

′) or

N (i)(i′) = N
(i)
−j(i

′) ∪ {j′}.
Let us show this claim via induction on i ∈ B in order of arrival. Note that

when the first buyer arrives, this holds for j′ = j because we have removed
only j′ from the graph and nobody has been matched yet. Now assume that the
statement holds when i arrives, we need to see that it still holds after i has been
matched. Clearly, if i gets matched to the same vertex in G and in G−j , then
the inductive step follows trivially.

So now assume that i gets matched to different vertices in G and in G−j . By
the inductive hypothesis this can only happen if i gets matched to j′ in G and
it gets matched to some other j′′ (potentially j′′ = ⊥, i.e. it is not matched at
all) in G−j . But then N (i+1)(i′) = N

(i+1)
−j (i′) or N (i+1)(i′) = N

(i+1)
−j (i′) ∪ {j′′}

for all i′ ∈ B. Thus the claim holds by induction.
Finally, let us see that the claim implies the lemma. First note that since i

always has more unmatched neighbors in G than in G−j , we have |M | ≥ |M−j |.
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But on the other hand, if at some time in the algorithm i is matched to j′ in
G and not matched at all in G−j , then we have that N (i+1)(i′) = N

(i+1)
−j (i′)

for all i′ ∈ B. Thus the two runs will be identical from that point onward and
|M | = |M−j | + 1. �

Finally, we can show that this implies the bounded differences property of f
that we claimed in Lemma 2.

Proof of Lemma 2. By Lemma 3 we know that removing a good from the graph
can decrease the size of the matching computed by Ranking by at most one
assuming that the values of the xj are fixed. But of course if we are removing
j� ∈ S, the matching M−j� computed by Ranking in G−j� does not depend on
the value of xj� or x′

j� . So we have

|M−j� | ≤ f(x) ≤ |M−j� | + 1

and
|M−j� | ≤ f(x′) ≤ |M−j� | + 1

which implies |f(x) − f(x′)| ≤ 1 as claimed. �
As we have already seen, this is enough to prove Theorem 1 in the case where

|S| = n. To prove the general case we can use a simple reduction. In particular,
assuming that there is a matching M of size n but |S| > n, let SM be the goods
covered by M and let GM = (SM , B,E). We have seen in Lemma 3 that for any
fixed x ∈ [0, 1]S , Ranking will produce a matching in G that is not smaller than
the matching it produces in GM when run with x restricted to SM . Therefore,
Theorem 1 on GM implies Theorem 1 on G which establishes the general case.

3 Fully Online Matching

In the Fully Online Matching Problem we have a not necessarily bipartite graph
G the vertices of which arrive and depart online in adversarial order. When a ver-
tex arrives, it reveals all of its edges to vertices that have already arrived. By the
time it departs we are guaranteed to have been revealed its entire neighborhood.

This problem was introduced by Huang et al. [10] and is motivated by ride-
sharing. Each vertex represents a rider who, upon arrival, is willing to wait only
for a certain amount of time. Two riders can only be matched if the time that
they spend on the platform overlaps, even in the offline solution. This additional
condition allows Huang et al. to show that the generalization of Ranking shown
in Algorithm 3 is 0.521-competitive in general and 0.567-competitive on bipartite
graphs.

Note that for bipartite graphs, another algorithm called Balanced Rank-
ing is known to be 0.569-competitive [12], showing that Ranking is not optimal
for the Fully Online Matching Problem. However, it is not clear whether one can
carry out a similar analysis for Balanced Ranking as well.



Online Matching with High Probability 27

Algorithm 3: Fully Online Ranking

1 for vertex i who arrives do
2 Sample a uniformly random xi ∈ [0, 1].

3 for vertex i who departs do
4 Match i to an unmatched j ∈ N(i) with minimum xj .

In order to show a concentration bound, we can apply similar techniques as
in Sect. 2. Let G = (V,E) be a graph which admits a perfect matching of size n.
Then let f : [0, 1]V → R represent once again the size of the matching generated
by Algorithm 3 when given the xi values. The corresponding bounded differences
condition then becomes:

Lemma 4 (Bounded Differences). Let x ∈ [0, 1]V , i� ∈ V and θ ∈ [0, 1] be
arbitrary. Define x′

i to be θ if i = i� and xi otherwise. Then |f(x) − f(x′)| ≤ 1.

This implies Theorem 2 as before though note that this time we will lose a
factor of 2 since we now have 2n variables. We remark that this follows directly
from Lemma 2.3 in [10] but for completeness we will give a short proof sketch.

Lemma 5. Using the notation from Lemma 3, we have |M−j | ≤ |M | ≤ |M−j |+
1 for any j ∈ V and fixed values of x ∈ [0, 1]V .

Proof. As in the proof of Lemma 3, let N (i)(i′) (or N
(i)
−j(i

′)) be the set of neigh-
bors of i′ in G (or G−j) which is unmatched by the time that i departs in
the run of Fully Online Ranking with the fixed values of x. We claim that
for all i ∈ V , there exists some j′ ∈ V such that for all i′ ∈ V , we have
N (i)(i′) = N

(i)
−j(i

′) or N (i)(i′) = N
(i)
−j(i

′) ∪ {j′}.
This claim follows via an almost identical induction as in Lemma 3. Then,

since i always has more unmatched neighbors in G than in G−j , we have |M | ≥
|M−j |. And if at some time in the algorithm, i is matched to j′ in G and not
matched at all in G−j , then we have that N (i+1)(i′) = N

(i+1)
−j (i′) for all i′ ∈ V .

Thus the two runs will the identical from that point onward and |M | = |M−j |+1.
�

Since Lemma 5 implies Lemma 4, this yields Theorem 2 for graphs which
contain a perfect matching. But as in Sect. 2, we may drop this condition by
reducing a graph G with a matching M to the subgraph induced by the vertices
covered by M . Adding the vertices back in only increases the performance of
Fully Online Ranking by Lemma 5.

4 Online Vertex-Weighted Bipartite Matching

In this section we will consider a weighted extension of the Online Bipartite
Matching Problem which has been inspired by online advertising markets. In
the Online Vertex-Weighted Bipartite Matching Problem, we have a bipartite
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graph G = (S,B,E) with vertex weights w : S → R+ on the offline vertices.
Here S represents the advertisers and B represents website impressions or search
queries which should get matched to ads from the advertisers. The vertices B
arrive online in adversarial order and should get matched to a neighbor j such
that the total weight of the matched vertices in S is maximized. This problem
can be seen as a special case of the AdWords Problem which instead imposes
edge-weights and budgets on the offline vertices.

Perhaps somewhat surprisingly it took 20 years for Ranking to be extended
for the unweighted to the vertex-weighted setting by Aggarwal et al. [1]. This is
because in the presence of weights, it is no longer enough to pick a uniformly
random permutation over the offline vertices. Instead, one has to skew the per-
mutation so that heavier vertices are more likely to appear first. This is done
elegantly in Algorithm 4 by ordering the vertices not by their xj but rather by
the careful chosen quantity wj(1 − exj−1).

Algorithm 4: Vertex-Weighted Ranking

1 for j ∈ S do
2 Sample a uniformly random xj ∈ [0, 1].

3 for each buyer i who arrives do
4 Match i to an unmatched j ∈ N(i) with maximum wj

(
1 − exj−1

)
.

However, Algorithm 4 does not lend itself to a straight-forward analysis via
the method of bounded differences. This is because a vertex with small weight,
which should have little impact on the total weight of the matching, can some-
times be chosen over a vertex with much larger weight. See the example shown
in Fig. 1.

Fig. 1. Shown is a simple instance in which the value of xj can have a large impact on
the final matching despite the fact that wj is small. If xj′ � 1 − 10−10, i will choose j
in line 4 for sufficiently small values of xj .

In particular, the problem lies with the fact that wj(1 − exj−1) can get arbi-
trarily close to 0 if xj gets close to 1. We will overcome this problem by changing
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the function slightly. For any ε > 0 we consider ε-Ranking as shown in Algo-
rithm 5.

Algorithm 5: ε-Ranking

1 for j ∈ S do
2 Sample a uniformly random xj ∈ [0, 1].

3 for each buyer i who arrives do
4 Match i to an unmatched j ∈ N(i) with maximum wj

(
1 − exj−1−ε

)
.

In the following fix some instance G = (S,B,E) with vertex-weights w and
some ε > 0. Then we let f : [0, 1]S → R represent the total weight of the matching
generated by Algorithm 5 with fixed samples xj . We will show that ε-Ranking
is still (1 − 1

e − ε)-competitive while also allowing us to give a concentration
bound.

To give a concise proof of the (1 − 1
e − ε)-competitiveness we will use the

economic analysis by Eden et al. [7] which is itself based on the primal-dual
viewpoint due to Devanur et al. [4]. This analysis associates random variables rj

with all j ∈ S and ui with i ∈ B. The idea is that the value wje
xj−1−ε represents

the price of j and whenever a match between i and j is made, this is a sale.
We will then set rj (the revenue) to be wje

xj−1−ε and ui (the utility) to be
wje

xj−1−ε. If a vertex is never matched, its revenue/utility will be zero.

Lemma 6. Using the notation from Lemma 3, we have that for all j ∈ S and
fixed samples x,

w(M−j) − 2
ε
wj ≤ w(M) ≤ w(M−j) + wj .

Additionally, for any i ∈ B, its utility ui in the run on G will be no less than in
the run on G−j.

Proof. For any buyers i, i′ ∈ B, let N (i)(i′) be the set of neighbors of i′ in G
which are unmatched by the time that i arrives in the run of Algorithm 5 with
the fixed values of x. Likewise, let N

(i)
−j(i

′) be the set of unmatched neighbors of
i′ in the run of ε-Ranking on G−j when i arrives. We claim that for all i ∈ B
there exists some j′ ∈ S such that

wj′(1 − exj′−1−ε) ≤ wj(1 − exj−1−ε)

and for all i′ ∈ B, we have N (i)(i′) = N
(i)
−j(i

′) or N (i)(i′) = N
(i)
−j(i

′) ∪ {j′}.
This claim is almost the same as in the proof of Lemma 3 and may likewise be

shown via induction. Note that the extra condition on wj′ holds at the beginning
where j′ = j and whenever i matches to j′, it frees up a vertex j′′ with

wj′′(1 − exj′′ −1−ε) ≤ wj′(1 − exj′−1−ε)

due to the fact that j′ was picked over j′′ in line 4. If i was not even matched in
G−j , we can simply set j′ = j for the induction.



30 M. Mihail and T. Tröbst

Now note that since N
(i)
−j(i) ⊆ N (i)(i) for all i ∈ B, we always maximize over

a larger set in line 4. Thus the utility of i will be no smaller in the run on G
compared to the run on G−j .

On the other hand, let T ⊆ S be the set of goods matched in the run on
G and let T−j ⊆ S\{j} be the set of goods matched in the run on G−j . Then
we observe that T\T−j ⊆ {j} because for all j′ �= j, if j′ gets matched to i in
M , then either j′ ∈ N

(i)
−j(i) implying that i will match to j′ in M−j , or j′ was

already matched to some other vertex. In both cases, if j′ ∈ T then j′ ∈ T−j .
This implies that w(M) ≤ w(M−j) + wj .

We also have that |T−j\T | ≤ 1. Simply imagine a buyer i� that arrives after
all other buyers and has edges to all goods. Then by the claim, there exists some
j′ ∈ S such that

(S\{j})\T−j = N
(i�)
−j (i�) ⊆ N (i�)(i�) ∪ {j′} = S\(T ∪ {j′})

and so T−j ⊆ T ∪ {j′}. This implies that w(M) ≥ w(M−j) − wj′ .
Finally, we also know by the claim that wj′(1 − exj′ −1−ε) ≤ wj(1 − exj−1−ε)

which implies

wj′ ≤ 1
1 − e−ε

wj ≤ 1
(
1 − 1

e

)
ε
wj ≤ 2

ε
wj .

Thus we have shown w(M−j) − 2
ε wj ≤ w(M) ≤ w(M−j) + wj as required. �

Lemma 7 (Bounded Differences). Let x ∈ [0, 1]S, j� ∈ S and θ ∈ [0, 1] be
arbitrary. Define x′

j to be θ if j = j� and xj otherwise. Then |f(x) − f(x′)| ≤(
1 + 2

ε

)
wj� .

Proof. As in the proof of Lemma 2, we can simply remove j� and apply Lemma 6.
Then

w(M−j�) − 2
ε
wj� ≤ f(x) ≤ w(M−j�) + wj� ,

w(M−j�) − 2
ε
wj� ≤ f(x′) ≤ w(M−j�) + wj�

which implies the result. �
Lemma 8. For any {i, j} ∈ E, we have E[rj + ui] ≥ (1 − 1

e − ε)wj.

Proof. Fix all samples x except for xj . Then we can define u∗ to be the utility of
i when ε-Ranking is ran on G−j . By Lemma 6, we know that ui ≥ u∗, regardless
of the value of xj .

On the other hand, if xj is small enough that wj(1 − exj−1−ε) > u∗, then
j will definitely get matched because if j is not yet matched by the time that
i arrives, then clearly j will be chosen in line 4 of the algorithm and so it gets
matched to i. Now if u∗ is very small, this may be the case for all values of xj

and in that case

E[rj | x−j ] ≥
∫ 1

0

wje
t−1−ε dt =

(
1 − 1

e

)
e−εwj ≥

(
1 − 1

e
− ε

)
wj .
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Otherwise there will be some value z ∈ [0, 1] such that wj(1 − ez−1−ε) = u∗ and
then we can compute

E[rj | x−j ] ≥
∫ z

0

wje
t−1−ε dt =

(
1 − 1

e

)
wj − u∗.

But clearly, in both cases we have

E[rj + ui | x−j ] ≥ E[rj | x−j ] + u∗ ≥
(

1 − 1
e

− ε

)
wj

and so in particular E[rj + ui] ≥ (1 − 1
e − ε)wj as claimed. �

Lemma 9. ε-Ranking is (1 − 1
e − ε)-competitive.

Proof. Let M∗ be a maximum weight matching and let M be the matching
output by ε-Ranking. Notice that every time we match an edge in the algorithm,
we increase

∑
j∈S rj +

∑
i∈B ui by exactly the weight of the edge. Thus by

Lemma 8,

E[w(M)] = E

⎡

⎣
∑

j∈S

rj +
∑

i∈B

ui

⎤

⎦ ≥
∑

{i,j}∈M∗
E[rj + ui]

≥
∑

{i,j}∈M∗

(
1 − 1

e
− ε

)
wj =

(
1 − 1

e
− ε

)
w(M∗)

and therefore ε-Ranking is (1 − 1
e − ε)-competitive. �

Finally, we have the tools necessary to show Theorem 3 by combining
Lemma 7 with Lemma 9.

Proof of Theorem 3. Given some α > 0, we consider the algorithm α
2 -Ranking

which we know to be (1 − 1
e − α

2 )-competitive by Lemma 9. We apply Lemma 1
(McDiarmid’s inequality) with Lemma 7 (bounded differences). This gives us

P

[
w(M) <

(
1 − 1

e
− α

)
w(M∗)

]
< e

−2α2
2

w(M∗)2

(1+4/α)2||w||22

≤ e
− α4

50
w(M∗)2

||w||22

where we use that α < 1 since otherwise the bound holds trivially. �
The results of this section may also be extended to a generalization of the

Online Vertex-Weighted Bipartite Matching Problem which is called the Online
Single-Valued Bipartite Matching Problem. The setup is almost identical in that
we still have a bipartite graph G = (S,B,E) with vertex weights w : S → R+
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on the offline vertices. However, now each offline vertex j also has a capacity
cj ∈ N that represents how often it is allowed to be matched.

Clearly, Theorem 3 can be extended to this setting by simply creating cj many
copies of each offline vertex j. This can be done implicitly and in a capacity-
oblivious way by simply sampling a new xj every time j is matched during the
Ranking (or ε-Ranking) algorithm.

Recently, Vazirani [19] showed that this “resampling” is in fact not necessary,
i.e. that the same value of xj can be used for every copy of j while still achieving
(1 − 1

e )-competitiveness of Ranking; see Algorithm 6.

Algorithm 6: Single-Valued Ranking

1 for j ∈ S do
2 Sample a uniformly random xj ∈ [0, 1].

3 for each buyer i who arrives do
4 Match i to a j ∈ N(i) which has been matched less than cj times,

with maximum wj

(
1 − exj−1

)
.

The main benefit of Algorithm 6 is that it uses fewer random bits than
running Ranking on the reduced instance with cj many copies of each offline
vertex j. However, it will accordingly be less tightly concentrated which leads to
a version of Theorem 3 in which the bound depends not on ||w||22 but rather on∑

j(cjwj)2.

5 Discussion

We have shown that Ranking and its many variants achieve their competitive
ratios with high probability rather than just in expectation. This leaves several
interesting open problems. The first is to show a concentration bound for the
original weighted version of Ranking rather than ε-Ranking. As mentioned,
the bounded differences approach fails due to the large influence that vertices
with small weight can have on the matching. However, this should happen rarely
and so a more fine-grained analysis may be able to overcome this challenge.

A second interesting prospect is to consider the AdWords problem. Vazirani
[19] showed that a variant of Ranking can be used for AdWords with small
bids under the assumption of the so-called no-surpassing property which tends
to hold in practice though the bound is once again given in terms of expectation.
An advantage of this approach over the classic MSVV algorithm [17] is that
Ranking does not need to know about the budgets. It may be possible to show
a concentration bound for this algorithm as well. However, this is made more
challenging by the fact that the setting is edge-weighted.

Acknowledgements. We would like to thank Vijay Vazirani for helpful comments
and feedback.
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Abstract. We consider a matching problem, which is meaningful in
team competitions, as well as in information theory, recommender sys-
tems, and assignment problems. In the competitions which we study,
each competitor in a team order plays a match with the corresponding
opposing player. The team that wins more matches wins. We consider
a problem where the input is the graph of probabilities that a team 1
player can win against the team 2 player, and the output is the optimal
ordering of team 1 players given the fixed ordering of team 2. Our central
result is a polynomial-time approximation scheme (PTAS) to compute a
matching whose winning probability is at most ε less than the winning
probability of the optimal matching. We also provide tractability results
for several special cases of the problem, as well as an analytical bound
on how far the winning probability of a maximum weight matching of
the underlying graph is from the best achievable winning probability.

1 Introduction

Bipartite matching underpins several impactful problems in allocation and mar-
ket design problems including kidney allocation, adword auctions, on demand
taxi allocation, refugee assignment, or school choice (see, e.g., [11]). We consider
a fundamental matching problem with an underlying weighted bipartite graph
where each edge weight has weight between 0 and 1. Instead of focusing on the
classical objective of maximizing the total weight of the matching, we focus on
a different objective with a probabilistic interpretation: We want to compute a
matching that maximizes the probability of reaching a target size. This problem
can model several scenarios, including that of the so called team order problem.

One of the most relevant applications of our setting is the rivalry between
teams of contestants. Consider team competitions in which both teams put for-
ward an ordering of their players. The contestants then play matches against the
corresponding contestants from the opposing team. The team that wins more
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Schäfer and C. Ventre (Eds.): SAGT 2024, LNCS 15156, pp. 35–52, 2024.
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matches wins the overall competition. Such competitions are not only held in
various inter-club tennis competitions, the same format is also used in inter-
national table tennis and badminton competitions, such as the Corbillon Cup,
Swaythling Cup, Thomas Cup, and the Olympic Games. We focus on the prob-
lem in which one team’s order is fixed (as is the case in many situations where the
home team commits to an ordering) and the other team wants to compute the
optimal ordering. As the ordering of one team is fixed, the problem of computing
the other team’s ordering is essentially a competitor matching problem.

The problem of finding a way to maximize the number of achieved goals by
setting an appropriate line-up is not limited to sport competitions. Indeed, it
admits several other motivations in competitive contexts such as politics (field-
ing political candidates in different constituencies against candidates of a rival
party). Our problem also provides a perspective into finding durable matchings.
Suppose that we are given the probability of success of various partnerships. For
example a partnership could represent a job placement or allocation of refugee
family to a council (see, e.g., [2,7]). A typical objective could be maximizing the
expected number of partnerships. However, another meaningful objective that is
centred around a particular target could be to maximize the probability of hav-
ing a target number of successful partnerships, which maps to the objective that
we study. Another potential application of our research relates to information
networks (see, e.g., [21]). Suppose that we are given such a network, represented
by a flow network. There, each edge has a reliability probability of a message
reaching the other side, and we want to find a flow maximizing probability of
delivering a target number of messages. Finally, our research is motivated by its
applications in recommendation systems (see, e.g., [25]). Suppose that a ranked
list of recommendations needs to be displayed with each item having a probabil-
ity of being clicked depending on its position in the ranking list. One may want
to maximize the probability of having a target number of items being clicked,
which can be captured by our problem. We explore the following questions.

How hard is the team order problem? Under what conditions is it easy to
solve? What are reasonable approximation approaches for the problem?

We note that the problem that we study in this paper is closely related to
the maximum-weight matching problem. There, we are given a bipartite graph,
where each edge is assigned a weight, and the objective is to find a matching with
the maximum sum of weights. In fact, our results reflect that finding the solution
to that problem provides a good approximation of the optimal solution. However,
the problem we study is substantially more complex. Indeed, for an instance of
the team order problem to be positive, we require that the weights in a selected
matching are large enough for some subset of edges, instead of maximizing their
global sum. Furthermore, given the strategic games interpretation of our setting,
our results concern the computation of the optimal response to the opponent
choice, which is an important step towards the study of equilibria in this setting.

Contributions. We first show that the winning probability of a given matching
(line-up) can be computed in polynomial time (Proposition 1). Subsequently,
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we show that in certain settings computing an optimal line-up is tractable. In
particular, when the input winning probability of each partnership takes its
value from a size-three set {α, β, 0} we show that the optimal matching can
be computed in polynomial time (Theorem 1). While we conjecture that the
team order problem is hard in the general case, we show that it is tractable for
practical purposes. Our central result is a polynomial-time approximation scheme
(PTAS)1 to compute a matching whose winning probability is at most ε less than
the winning probability of the optimal matching (Theorem 3). Although the
winning probability is not a linear objective, we show that the general problem
of computing an optimal matching can be solved via integer linear programming.
Also, we provide an analytical bound on how far the winning probability of a
maximum weight matching is from the best achievable winning probability.

2 Related Work

Our results are relevant to a number of research direction in multi-agent systems.

Matching Theory. Matching problems have been widely studied in combinato-
rial optimization. The standard objectives typically focus on maximizing the
weight of the matching (see, e.g., [9,24]). In our context, maximizing the weight
of the underlying weighted bipartite graph gives us a matching maximizing the
expected number of matches won. Our objective is different as we want to max-
imize the probability of winning a target number of matches. The paper most
relevant to our work is by Tang et al. [28], which concerns the same setting but
considered different problems. It takes an economic design approach and presents
necessary and sufficient conditions, ensuring that truthful reporting and maxi-
mal effort in matches are equilibrium strategies. We note that the probabilistic
approach in matching has been previously studied. E.g., Aziz et al. [6] studied
the stable matching problem with uncertain preferences.

Manipulation of Competitions. Within the wider topic of manipulations in com-
petitions, there have been several papers on identifying conditions or manip-
ulations under which a certain team or player can win. A notable example is
manipulating the draw of a balanced knockout tournament to maximize the prob-
ability of a certain player winning, i.e., the tournament fixing problem [5,30,31].
Similarly, there has also been algorithmic research on round-robin formats to
understand which teams have a chance to win the overall tournament [4,17].

Colonel Blotto Game. Furthermore, the team line-up setting bears resemblance
to Colonel Blotto Games which are two-player zero-sum games in which two
armies fight in n battle fields with each battle being won by the army that had
more troops in the battle (see, e.g., [26,27]). The armies are interested in maxi-
mizing a weighted sum of utilities from the battlefields where they gain victories.
1 A PTAS is a scheme which, for every instance of a problem and ε > 0, provides an

approximate solution based on ε.
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Although the team-line-up setting is similar in that each battle corresponds to
a match, in Colonel Blotto games, the armies have more flexibility in shuffling
their troops around. Secondly, in Colonel Blotto games the outcome of a battle
depends on the number of troops of each army whereas in the team line up
setting, the outcome of a match depends on the identities of the respective play-
ers. Independent of our work, Gaonkar et al. [15] considered a version of Blotto
games in which every resource is unique and non-interchangeable which makes it
close to our setting. They motivate the problem as derby games in which teams
assign each resource to a particular round and wins a payoff corresponding to
that round if they win the round. We note, however, that our work differs sig-
nificantly from their results. In particular, they examine Nash equilibria, which
are not the focus of our study. Furthermore, they do not take the information
on winning probabilities into account and do not focus on algorithmic issues.

Sequential Games. Games between teams of players in which the ordering of
contestants matters gained a substantial interest in recent literature. Fu et al.
[14] studied the scenario in which teams compete in a number of games between
pairs of players. Within this setting they investigated how the sequencing of those
matches impacts the result. We note that, in contrast to our study, the games
they considered are also based on private rewards for the individual players.
Furthermore, Konishi et al. [18] studied the problem of whether the equilibrium
winning probability in such games depends on whether matches are held simul-
taneously, or sequentially. Also, Fu and Lu [13] explored the topic of how teams
can strategically assign contestants to time-slots of a sequential competition. Let
us further note that in contrast to our work the discussed papers on sequential
games do not focus on computational complexity.

Nominee Selection. Our setting is also related to the literature on strategic selec-
tion of group members participating in a competition. In social choice theory,
this problem relates to the process of selecting representative for the elections
(see, e.g., [3,12]). Regarding sport competitions, our problem relates to choosing
a coalition member to participate in a tournament (see, e.g., [22,23]).

3 The Team Order Problem

We consider the following problem setting.

– Two teams T1 and T2 are to play a team competition.
– Each team Ti has n contestants t1i , . . . , t

n
i .

– We have information about the winning probability p(tai , tbj) of any contestant
tai against any other contestant tbj . The instance is said to be degenerate if all
the winning probabilities are 0 or 1.

In the competition each team is required to report a line-up, i.e., an order-
ing i1, . . . , in of its contestants, which is a permutation of 1, . . . , n. Then each
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contestant tik
i plays a match with the corresponding contestant tjk

j . The team
that wins at least �n

2 � + 1 matches wins the competition. All of our results hold
equally well if the target �n

2 � + 1 is replaced by some generic target L that is
higher or lower than �n

2 � + 1.
We will consider computational problems related to strategic aspects of decid-

ing on a line-up of players of a team. Our primary consideration is the following
problem of computing the best response to a given line-up of the opposing team.

Team Order

Input: A target probability q ∈ [0, 1] and a finite set Team Order
instance, and a (deterministic) line-up of team T2.

Question: Does there exists a line-up for team T1 under which the
probability of T1 winning against T2 is at least q?

Without loss of generality, we can assume that the line-up of T2 is fixed to
t12, . . . , t

n
2 when dealing with the Team Order problem. From a graph theoretic

perspective, it can be captured by a weighted and complete bipartite graph G =
(T1∪T2, E, p). The weight of an edge (tai , tbj) is winning probability p(tai , tbj) of any
contestant tai against any other contestant tbj . We will call G the corresponding
graph. The line-ups of the two teams correspond to a perfect matching in G,
which pairs up every player in T1 with a unique player in T2. Assuming that
matches are independent, we are interested in computing a perfect matching M
whose edge weights maximize the winning probability:

∑

S⊆{1,..,n}
|S|≥� n

2 �+1

n∏

i∈S

p(ti1, t
M(i)
2 )

n∏

i/∈S

(
1 − p(ti1, t

M(i)
2 )

)
,

where M(i) denotes the index of the player in T2 who is matched with ti1, and
each S is an outcome of the competition represented as the set of players in T1

who win against their opponents. For simplicity, we will also write the probabil-
ities as pi,j = p(ti1, t

j
2).

In fact, even when the line-ups of both teams are given, it is not immediately
clear that the winning probability of M can be computed efficiently, since there
are exponentially (in n) many possible outcomes of the competition. One way
that leads to a polynomial-time algorithm to compute this probability is via
dynamic programming, which results in the proposition below.

Proposition 1. Given the line-ups of T1 and T2, the winning probability of each
team can be computed in time O(n2).

We present an example below to illustrate the problem.

Example 1. Take an instance with the input winning probabilities as in Table 1.
Also, Team T1 has 3! different line-ups O1, . . . , O6 as illustrated in Fig. 1.
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Table 1. Each entry (i, j) is the probability p(ti
1, t

j
2).

t12 t22 t32

t11 0.9∗ 1 1

t21 0.5 0.9∗ 1

t31 0 0.5 0.9∗

Fig. 1. Graph theoretic view of Example 1. There are 3! different line-ups for T1 and
each line-up is a perfect matching and has its own winning probabilities illustrated on
the edges.

Suppose that T2 uses the line-up (t12, t
2
2, t

3
2). If T1 responds with (t31, t

1
1, t

2
1)

(underlined entries), the probability that they beat T2 is 1, as they will win
two matches with certainty. On the other hand, if T1 responds with (t11, t

2
1, t

3
1)

(starred entries), their winning probability becomes

0.9 × 0.9 × 0.9︸ ︷︷ ︸
prob. of winning all the matches

+ 0.9 × 0.9 × (1 − 0.9) × 3︸ ︷︷ ︸
prob. of winning exactly two matches

= 0.972.

Indeed, in the above example, the line-up (t11, t
2
1, t

3
1) corresponds to the per-

fect matching with the maximum total weight in this instance. This demon-
strates that weight maximizing matchings may not be optimal solutions to Team

Order. The next example shows that such matchings fail to even provide any
approximation guarantee to Team Order.

Example 2. Suppose that n = 7 and the input winning probabilities are given
in Table 2. The maximum weight matching gives the guarantee of winning three
matching with certainty but losing all the others, and hence probability 0 of
winning the competition. On the other hand, the matching that gives probability
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Table 2. Each entry (i, j) is the probability p(ti
1, t

j
2).

t12 t22 t32 t42 t52 t62 t72

t11 0 0 0 0.5 1 1 1

t21 0 0 0 0 0.5 1 1

t31 0 0 0 0 0 0.5 1

t41 0 0 0 0 0 0 0.5

t51 0 0 0 0 0 0 0

t61 0 0 0 0 0 0 0

t71 0 0 0 0 0 0 0

0.5 of winning four matches wins the competition with a non-zero probability.
The example also shows that the maximum weight matching cannot approximate
the highest winning probability within any multiplicative factor.

In the above example, the better solution has more balanced winning prob-
abilities over the matches. In view of this, one may conjecture that a leximin-
maximizing matching is optimal for the Team Order problem.2 However, the
next example disproves this conjecture: a leximin-maximizing matching may not
be optimal, even when it is also maximum weight matchings.

Table 3. Each entry (i, j) is the probability p(ti
1, t

j
2).

t12 t22 t32

t11 0.9 0.5 1

t21 0.5 0.1 1

t31 0 0 1

Example 3. Suppose that n = 3 and one match is guaranteed to be won as shown
in Table 3. The edge weights of the maximum weight matchings are (1) 0.5, 0.5, 1,
or (2) 0.1, 0.9, 1, and the first one is a leximin-maximizing matching. However, the
winning probabilities of these two matchings are 1 − 0.25 = 0.75 and 1 − 0.09 =
0.89, respectively.

4 Tractable Variants

In this section we show that Team Order is tractable if there are only two
values of probabilities which are greater than 0 in an instance. Moreover, we
2 A vector x is leximin-greater than a vector y if x and y are in non-decreasing order

and x is lexicographically greater than y.
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ALGORITHM 1: Iterative Algorithm

Input: a Team Order instance G = (T1 ∪ T2, E, p) where pi,j ∈ {α, β, 0}, α > β > 0.
Output: an optimal solution to Team Order.

Remove all zero-weight edges of G;
opt ← 0;
for s = �n

2
� + 1, . . . n do

Ms ← maximum weight matching of size s; // polynomial-time solvable

if Ms �= ∅ then
ps ← winning probability of line-up Ms; // see Proposition 1

if ps > opt then
opt ← ps;
M∗ ← Ms;

end

end

end
return M∗.

demonstrate that checking if a team can win with a non-zero probability can be
done in polynomial time. Finally, we show that finding the line-up maximizing
winning all the matches is tractable. Our reasoning in this section is closely
related to the Maximum Weight Matching problem. We note that it can be
solved in O(n3) time via the Hungarian algorithm [19].

Maximum Weight Matching

Input: A bipartite graph G, weight w(e) ∈ R+ for each edge e on
G.

Question: Compute a perfect matching M of G that maximizes
w(M) :=

∑
e∈M w(e).

4.1 When Input Probabilities Have Three Values (Including 0)

Let us consider the case in which the input probabilities are from a set {α, β, 0}
and, without loss of generality, assume that α > β > 0. We note that the problem
appears closely connected to a Colored Bipartite Matching problem with
two types of colors: given a bipartite graph with red and blue edges, does there
exists a matching with (exactly) a certain number of red edges? Although the
complexity of this red-blue matching problem is open [32], we show that the opti-
mal line-up problem can be solved in polynomial-time via Algorithm 1. We also
remark that with this probability set {α, β, 0} the problem still remains different
from Maximum Weight Matching, as we demonstrated via Example 1.

Theorem 1. Suppose that G = (T1 ∪T2, E, p) is a Team Order instance with
pi,j ∈ {α, β, 0} for all i, j ∈ {1, . . . , n}. Then an optimal line-up can be computed
in polynomial time.
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Proof. Suppose that M∗ denotes an optimal line-up. Let X denote a random
variable counting the number of games won by T1 corresponding to M∗. Then
X follows a Poisson Binomial (PB) distribution:

X ∼ PB(α, . . . , α︸ ︷︷ ︸
x

, β, . . . , β︸ ︷︷ ︸
y

, 0, . . . , 0︸ ︷︷ ︸
z

) =

PB(α, . . . , α︸ ︷︷ ︸
x

, β, . . . , β︸ ︷︷ ︸
y

),

where x, y and z are non-negative integers. Let us remove all 0-weight edges
from G and call the resulting graph G′. Then, M∗ is a matching of size x + y
in G′. Also, any maximum weight matching of size x + y, say M , has at least x
α-weight edges. Notice that if M has at least x+1 α-weight edges, then Poisson
binomial random variable Y corresponding to M stochastically dominates X
contradicting the fact that M∗ is an optimal line-up. The argument also suggests
that searching through all matchings of various sizes will hit the optimal line-up.
Note that finding a maximum weight matching of a given size is polynomially
solvable. For example, the Hungarian algorithm computes a maximum weight
matching of a bipartite graph for each target size [20].

Similar approaches based on Maximum Weight Matching also lead to
efficient algorithms for two variants of Team Order. First, if the goal is to
decide whether T1 can beat T2 with non-zero probability, the problem can be
solved in polynomial time. Specifically, for an instance represented as a graph
G, we can consider the corresponding graph G′ in which edges with weight 0 are
removed. Then, T1 can beat T2 with non-zero probability if and only if G′ has a
matching of size �n

2 � + 1. We state this result below.

Corollary 1. Given the line-up of T2, it can be decided in polynomial time
whether there exists a line-up of T1 that beats T2 with a non-zero probability.

Second, if the goal is to maximize the probability of winning all the matches,
the problem reduces to computing a weight maximizing matching, where the
weights are the logarithm of the non-zero winning probabilities.

Proposition 2. Given the line-up of T2, the line-up of T1 that maximizes the
probability of winning all the matches can be computed in polynomial time.

5 Approximation Algorithm for Team Order

As we have seen, in several cases finding a solution to Team Order is tractable.
However, even though it resembles Maximum Weight Matching, its exact
solutions are far more nuanced, which suggests its hardness. In this section, we
address the practical solvability of our problem by providing a PTAS for Team

Order. Assuming the input probabilities are bounded away from 0 and 1 by
any arbitrary constant ε > 0, the PTAS computes a solution to Team Order

whose winning probability is at most ε less than that of the optimal solution.
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5.1 High-Level Ideas

For any perfect matching M = {e1, . . . , en} of G = (T1 ∪ T2, E, p), let XM be a
random variable counting the number of matches won by T1. One may observe
that XM follows a Poisson binomial distribution PB(pe1 , . . . , pen

). Furthermore,
Team Order can be written as the following optimization problem.

min
M

Pr
[
XM ≤ �n

2
�
]

subject to: M is a perfect matching of G = (T1 ∪ T2, E, p)

The main idea of our algorithm is as follows. First, we note that the number
of matchings M with Var [XM ] < ε−2 is bounded from above by a polynomial
in n, when ε is a constant. Hence, we can search over all such matchings to
find out the optimal one among them. For the other matchings M with a high

variance Var [XM ] ≥ ε−2, we use Φ

(
� n

2 �−E[XM ]√
Var[XM ]

)
to approximate the objective

function, where Φ(x) = ( 1√
2π

)
∫ x

−∞ e
−y2

2 dy. Since XM is a Poisson binomial
random variable, it holds that if Var [XM ] ≥ ε−2, then

∣∣∣∣∣Pr
[
XM ≤ �n

2
�
]

− Φ

(
�n
2 � − E [XM ]
√

Var [XM ]

)∣∣∣∣∣ ≤ ε.

Using the fact that Φ(x) is an increasing and continuous function in x, we get
the following optimization problem as an approximation to the original one.

min
M

�n
2 � − E [XM ]
√

Var [XM ]

subject to: M is a perfect matching of G = (T1 ∪ T2, E, p)

The objective function is still non-linear though, but it can be characterized by
the mean and variance of XM . Using the fact that for every matching M we
have 0 ≤ Var [XM ] ≤ n

4 and E [XM ] ≤ n, we can discretize the two dimensional
space {(x, y) : 0 ≤ x ≤ n

4 and 0 ≤ y ≤ n} and design a search mechanism to
eventually hit a matching that is close enough to the optimal matching. The
search mechanism is based on an approximation algorithm solving a matching
problem that involves both budget and rewards, which we will discuss next.

5.2 Preliminary Results

We introduce necessary preliminary results for designing the PTAS. It has
two main ingredients. We apply a normal distribution estimation for a Pois-
son binomial distribution, and an approximation algorithm for the following
Budgeted/Reward Matching problem. We assume that every pe /∈ {0, 1} is
bounded away from 0 and 1. Define δ = mine∈E,pe /∈{0,1} min{pe, 1 − pe}. Then,
we get that 1

δ = Θ(1).
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Approximation of Poisson Binomial Distribution. We use a normal distribution
estimation for a Poisson binomial distribution to approximate Pr

[
XM ≤ �n

2 �],
which is based on the following result.

Theorem 2 ([29, Theorem 3.5]). Suppose that X ∼ PB(p1, . . . , pn) is a Pois-
son binomial random variable. Then, for every 1 ≤ k ≤ n,

∣∣∣∣∣Pr [X ≤ k] − Φ

(
k − E [X]√
Var [X]

)∣∣∣∣∣ ≤ 1√
Var [X]

,

where Φ(x) = ( 1√
2π

)
∫ x

−∞ e
−y2

2 dy.

An immediate application of Theorem 2 results in to the following corollary.

Corollary 2. Suppose that XM ∼ PB(pe1 , . . . , pen
) is a Poisson binomial ran-

dom variable corresponding to a matching M = {e1, . . . , en} with Var [XM ] ≥
ε−2, for some ε > 0. Then,

∣∣∣∣∣Pr
[
XM ≤ �n

2
�
]

− Φ

(
�n
2 � − E [XM ]
√
Var [XM ]

)∣∣∣∣∣ ≤ ε,

where Φ(x) = ( 1√
2π

)
∫ x

−∞ e
−y2

2 dy.

Budgeted Matching. We will use approximation algorithms for the following
Budgeted Matching problem as subroutines in our algorithm.

Budgeted Matching

Input: A bipartite graph G, weight w(e) and cost c(e) for each
edge e, and a budget B.

Question: Compute a perfect matching M of G that maximizes
w(M) :=

∑
e∈M w(e), subject to c(M) :=

∑
e∈M c(e) ≤

B.

Specifically, we are interested in the following weight and cost functions. For
every e ∈ E, we let w(e) = pe and c(e) = pe · (1− pe). Hence, for every matching
M , we have

w(M) = E [XM ] , and c(M) = Var [XM ] .

We will henceforth stick to the above weight and cost functions, unless oth-
erwise clarified. We use Ib(G,w, c,B) to denote an instance of Budgeted

Matching. For convenience, we can also define a “rewarded” variant of Bud-

geted Matching, where we want the total cost to pass a threshold R, i.e.,
c(M) =

∑
e∈M c(e) ≥ R, and we denote it by Ir(G,w, c,B). Since 0 ≤ c(e) < 1,

we observe that Ir(G,w, c,B) is equivalent to Ib(G,w, c′, n − R), where c′(e) =
1 − c(e) for every e ∈ E. Berger et al. [8] designed a PTAS for the Budgeted

Matching problem. Using the same idea this PTAS is based on, we get the
following.
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Lemma 1. Suppose that G = (T1 ∪ T2, E, p) is a Team Order instance,
w(e) = pe and c(e) = pe · (1 − pe) for each e ∈ E. Then, there is a polynomial-
time algorithm to compute a feasible solution M to Ib(G,w, c,B) (respectively,
Ir(G,w, c,R)) such that w(M) ≥ opt − 2, where opt is the weight of optimal
solution of Ib(G,w, c,B) (respectively, Ir(G,w, c,R)).

Small/Large Variance Matchings. We partition the set of edges into edges with
fractional and binary weights; let F = {e ∈ E : pe /∈ {0, 1}} and F = {e ∈
E : pe ∈ {0, 1}}. Fix an arbitrary constant ε ∈ (0, 1] and define M+(ε) ={
N ⊂ F : N is a minimum size matching with c(N) > ε−2

}
, and

M−(ε) =
{
N ⊂ F : N is a matching with c(N) ≤ ε−2

}
.

Clearly, for every perfect matching M on G, if c(M) > ε−2, then there exists
N ∈ M+(ε) such that M ∩ N = N . Similarly, if c(M) ≤ ε−2, there exists
N ∈ M−(ε) such that M ∩ N = N .

For every matching N ⊂ E and every subset of edges E′ ⊆ E, let E′
N =

{e ∈ E′ : e ∩ N = ∅}, i.e., E′
N is the set of all edges in E′ that do not share

all endpoints with N . We now define two families of bipartite graphs as follows.
First, G+(ε) = {H = (T1 ∪ T2, N ∪ EN , p) : N ∈ M+(ε)}. Intuitively, we fix
the matching N and leave the unmatched part of the graph G free. Then, we
define G−(ε) = {H = (T1 ∪ T2, N ∪ FN , p) : N ∈ M−

ε }. This differs from G+(ε),
as we only consider 0/1-edges in the unmatched part of G. Note that for every
perfect matching M of G, if c(M) > ε−2, there is H ∈ G+(ε) such that M ⊂ H.
Similarly, if c(M) ≤ ε−2, then there is H ∈ G−(ε) such that M ⊂ H. Next, we
show that the size of these families of graphs is polynomially bounded.

Lemma 2. It holds that |G+(ε)| ≤ n4δ−1ε−2
and |G−(ε)| ≤ n4δ−1ε−2

.

5.3 The Algorithm

Now we discuss our approximation algorithm, Algorithm 2. Theorem 3 shows
that the algorithm produces an ε-approximate solution to Team Order in
polynomial time. The proof relies on Lemma 1 and Lemma 2.

Theorem 3. Algorithm 2 computes an ε-approximate solution to Team Order

and runs in time nO(δ−1ε−2), where δ = minpe /∈{0,1} mine∈E{pe, 1 − pe}.

6 Winning Probability of a Maximum Weight Matching

In this section we investigate the winning probability of a maximum weight
matching. Our result provides a lower bound for the winning probability of any
maximum weight matching compared with that of the optimal line-up. In par-
ticular, the result shows that a sufficiently large/small maximum weight match-
ing performs almost as well as the optimal line-up. In what follows, we view
G = (T1 ∪ T2, E, p) as a weighted bipartite graph where for every e ∈ E, pe is
the weight of e. For every matching M , we use w(M) to denote its weight. In
addition, we assume that the size of G is sufficiently large.
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ALGORITHM 2: ε-Approximation Algorithm

Input: a Team Order instance G = (T1 ∪ T2, E, p).
Output: an ε-approximate solution to Team Order.

ε ← ε
4
;

for H ∈ G−(ε) do
M∗ ← a maximum weight perfect matching of H;
if M∗ exists and has a higher winning probability than M

(1)
ε (or M

(1)
ε = null)

then

M
(1)
ε ← M∗;

end

end

xi ← ε−2 + i
n

for each i = 0, . . . , n2

4
;

for H ∈ G+(ε) do

for i = 1, . . . , n2

4
do

M∗
i ← a solution to Ib(H, w, c, xi) such that w(M∗

i ) > opt − 2; // Lemma 1

if M∗
i exists and w(Mi) < �n

2
� then

M∗
i ← a solution to Ir(H, w, c, xi−1) such that w(M∗

i ) > opt − 2;
// Lemma 1

end

if M∗
i exists and

� n
2 �−w(M

(2)
ε )√

c(M
(2)
ε )

>
� n

2 �−w(M∗
i )√

c(M∗
i )

(or M
(2)
ε = null) then

M
(2)
ε ← M∗

i ;
end

end

end

return M
(1)
ε or M

(2)
ε whichever has the higher winning probability.

Theorem 4. Let M∗ be a maximum weight matching and let O be an optimal
line-up. Then,

(1) If w(M∗) = n
2±f(n)

√
n, where f(n) ∈ [1,

√
n
2 ] is any non-decreasing function

in n, then Pr [T1wins under O] ≤ Pr [T1wins under M∗] + e−2f2(n).
(2) If w(M∗) ∈ [n

2 − √
n log n, n

2 +
√

n log n], then

Pr [T1wins under O]

≤Pr [T1wins under M∗] +
(4 + o(1))

n + 1

∑

e∈M∗
(pe − 1

2
)2.

In the proof of Theorem 4 we rely on the following results.

Theorem 5 ([10]). Suppose that n is a given positive integer and let X ∼
PB(p1, . . . , pn) be a Poisson binomial random variable. Then, we have that

Pr [X ≥ E [X] + δ] ≤ e
−2δ2

n , and Pr [X ≤ E [X] − δ] ≤ e
−2δ2

n .
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Theorem 6 ([29, Theorem 2.1]). Let X ∼ PB(p1, . . . , pn) and let p̄ =
∑n

i=1
pi

n .
Define Y ∼ Bin(n, p̄). Then, (1) for every 0 ≤ k ≤ np̄ − 1, Pr [X ≤ k] ≤
Pr [Y ≤ k], and (2) for every np̄ ≤ k ≤ n, Pr [X ≤ k] ≥ Pr [Y ≤ k].

Theorem 7 ([1, Theorem 1]). Suppose that X ∼ PB(p1, . . . , pn), and p̄ =∑n
i=1 pi/n. Also, let Y ∼ Bin(n, p̄) is a binomial probability distribution. Then,

max
A⊆{0,...,n}

|Pr [X ∈ A] − Pr [Y ∈ A]| ≤ 1 − p̄n − (1 − p̄)n

(n + 1)p̄(1 − p̄)

n∑

i=1

(pi − p̄)2.

We prove the first and the second parts of the theorem separately next.

Part 1. When w(M∗) = n
2

± f(n)
√
n

Proof. Let M = {e1, . . . , en} be an arbitrary matching and XM be a ran-
dom variable that counts the number of games won by T1 under line-up
M . Then XM follows Poisson binomial distribution PB(pe1 , . . . , pen

). , where
M = {e1, . . . , en}. Thus, E [XM ] = w(M). Let us first assume that w(M∗) =
n
2 − f(n)

√
n. Then, for every matching M , including the optimal line-up O, we

have w(M) ≤ w(M∗). Moreover, we have f(n)
√

n = n
2 − w(M∗) ≤ n

2 − w(M),
and

Pr [T1 wins under M ] = Pr
[
XM ≥ �n

2
� + 1

]

≤ Pr
[
XM ≥ w(M) + (

n

2
− w(M))

]

= Pr
[
XM ≥ E [XM ] + f(n)

√
n
] ≤ e−2(f(n)

√
n)

2
n

= e−2f(n)2 ,

using a concentration bound for Poisson binomial random variables (e.g., see
Theorem 5). Following that upper bound, if w(M∗) = n

2 − f(n)
√

n, then

Pr [T1 wins under O] ≤ e−2f(n)2 ≤ Pr [T1 wins under M∗] + e−2f(n)2 . (1)

Next, we consider the case where w(M∗) = n
2 +f(n)

√
n. Define random variable

YM∗ that counts the number of games lost under M∗. Then YM∗ follows Poisson
binomial distribution PB(1 − pe1 , . . . , 1 − pen

), where we let M∗ = {e1, . . . , en}.
One can check that E [YM∗ ] = n − w(M∗) = n

2 − f(n)
√

n.

Pr [T1 loses under M∗] = Pr
[
YM∗ ≥ �n

2
� + 1

]

≤ Pr
[
YM∗ ≥ E [YM∗ ] + (

n

2
− E [YM∗ ])

]
≤ e−2f(n)2 ,

where we have applied the same concentration bound as the previous case. Hence,

Pr [T1 wins under M∗] = 1 − Pr [T1 loses under M∗] ≥ 1 − e−2f(n)2 .

Thus,

Pr [T1 wins under O] ≤ 1 ≤ Pr [T1 wins under M∗] + e−2f(n)2 (2)

Hence, combining (1) and (2) gives the first part of Theorem 4.
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Part 2. When w(M∗) ∈ [n
2

− √
n logn, n

2
+

√
n logn]

Proof. Let us first consider the case where w(M∗) ∈ [n
2 − √

n log n, n
2 − 1).

Define random variables XO and XM∗ that count the number games won by
T1 under O and M∗, respectively. Moreover, define binomial random variables
ZO ∼ Bin(n, w(O)

n ) and ZM∗ ∼ Bin(n, w(M∗)
n ). Notice that w(O) ≤ w(M∗) and

hence ZM∗ stochastically dominates ZO (i.e., Pr
[
ZO ≤ n

2

] ≥ Pr
[
ZM∗ ≤ n

2

]
).

Since w(M∗) < n
2 , we apply the stochastic dominance between the Poisson and

binomial random variables (e.g., see Theorem 6 (2) ) and we have that

Pr [T1 loses under O] = Pr
[
XO ≤ n

2

]
≥ Pr

[
ZO ≤ n

2

]
≥ Pr

[
ZM∗ ≤ n

2

]
,

On the other hand, the optimal line-up O minimizes the losing probability of T1

and hence, by above inequality we have that

Pr [T1 loses under M∗]

= Pr
[
XM∗ ≤ n

2

]
≥ Pr [T1 loses under O] ≥ Pr

[
ZM∗ ≤ n

2

]
.

Applying the above inequality and Theorem 7 results in

Pr [T1 wins under O] − Pr [T1 wins under M∗]
= (1 − Pr [T1 wins under M∗]) − (1 − Pr [T1 wins under O])
= Pr [T1 loses under M∗] − Pr [T1 loses under O]

≤ Pr
[
XM∗ ≤ n

2

]
− Pr

[
ZM∗ ≤ n

2

]

≤ 1 − (p̄)n − (1 − p̄)n

(n + 1)(1 − p̄)p̄

∑

e∈M∗
(pe − p̄)2,

where p̄ = w(M∗)
n . Since we have np̄ ∈ (n

2 − √
n log n, n

2 ), and n is an asymptoti-
cally large, we have p̄ ≈ 1

2 and thus

1 − (p̄)n − (1 − p̄)n

(n + 1)(1 − p̄)p̄

∑

e∈M∗
(pe − p̄)2 ≤ (4 + o(1))

n + 1

∑

e∈M∗
(pe − 1

2
)2.

Therefore, if w(M∗) ∈ [n
2 − √

n log n, n
2 − 1), then

Pr [T1 wins under O] ≤ Pr [T1 wins under M∗] +
(4 + o(1))

n + 1

∑

e∈M∗
(pe − 1

2
)2.

To derive the same upper bound for the case where w(M∗) ∈ [n
2 , n

2+
√

n log n],
we define random variables that count the number of games lost by T1 and the
same technique for the above case follows.
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7 Conclusion

We proposed the Team Order problem, which naturally captures several strate-
gic scenarios in information systems and team competitions. We have shown that
in the case in which the input probabilities are limited to three values (including
0) it is tractable and have shown that it is possible to efficiently compute a line-
up which is close to the optimal in terms of the probability of winning, which is
useful when the information about the players’ relative strength is limited (e.g.,
if it is only known when a player is “strong” or “weak” against an opponent).
One of our central results is a PTAS for the Team Order problem. We note
that while we focused on the probability of winning against more than a half of
opposing players, our results hold for any such threshold.

We conclude by highlighting some important directions for future work. First,
the complexity of solving Team Order exactly is open. We believe that this
is a challenging question that also has implications on the related problem of
Colored Bipartite Matching. It is known that it is NP-complete when d is a
variable [16]. However, the complexity of this problem is open if d is a constant
larger than 2, or if d = 2 but the graph is incomplete (which corresponds to
{α, β, 0}) [32]. This motivates further study between the connections of the two
discussed problems. It is also not known whether Team Order admits a fully
polynomial-time approximation scheme (FPTAS). Resolving this question would
be a strong improvement over our results.

While our result show the complexity of computing a best response to the
opponents line-up, it is natural to study the extension in which multiple teams
strategize. Regarding sport events, it would also be interesting to see if the results
change under other natural assumptions, such as all of the players having an
objective level of skill. For example, if a player i has better skill than a player
j, then i might always have a better probability of winning against any player
k than j’s probability of beating k.
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Abstract. We study fair allocation of indivisible chores to agents under
budget constraints, where each chore has an objective size and disu-
tility. This model captures scenarios where a set of chores need to be
divided among agents with limited time, and each chore has a specific
time needed for completion. We propose a budget-constrained model for
allocating indivisible chores, and systematically explore the differences
between goods and chores in this setting. We establish the existence of
an EFX allocation. We then show that EF2 allocations are polynomial-
time computable in general; for many restricted settings, we strengthen
this result to EF1.

Keywords: Fair Allocation · Chores · Budget Constraints

1 Introduction

Alice, Bob, and their teenage children Claire and Dan wish to fairly divide a set
of household chores. Each chore requires a certain amount of time to complete;
for simplicity, assume that this amount, as well as the disutility of the chore,
does not depend on who performs the chore (this is approximately true for many
chores). Alice works long shifts, so she only has 5 h a week to dedicate to chores.
Bob has a more conventional schedule, so he can spend 10 h on chores. Claire
and Dan have many extracurricular activities, so they can contribute 7 and 4 h,
respectively. How can they divide the chores in a way that is fair and respects
time constraints?

In a similar vein, consider a company that needs to allocate several time-
consuming tasks to a group of employees, in addition to their regular workload.
As employees may have different existing workloads, the amounts of extra work
they would be able to take on differ as well.

In both of our examples, it is not immediately clear what it means to be
fair, given agents’ different time budgets. Thus, we need to adapt the notions of
fairness that have been developed in the fair division literature to our setting,
and then determine under what conditions fair allocations exist and whether
they can be computed in polynomial time. While the budgeted setting has been
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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considered for goods (see Sect. 1.2 for a discussion of related work), extending
ideas from prior work to chores poses new challenges.

1.1 Our Contributions

We introduce a framework for allocating chores with objective (i.e., agent-
independent) sizes and disutilities under budget constraints. In Sect. 2, we set
up our formal model, put forward notions of fairness that are appropriate for
this setting, and discuss the challenges that arise when adapting the budget-
constrained model from goods to chores.

In Sect. 3, we show the existence of an EFX allocation for indivisible chores.
Perhaps surprisingly, an adaptation of the EFX algorithm for goods with objec-
tive sizes and utilities in the budgeted setting also works for our scenario; we
note that this is not universally true for general restricted instances where EFX
is known to exist for goods. This is particularly interesting because EFX for
chores is incomparable to EFX for goods, in the sense that the special cases
where EFX allocations are known to exist are quite different in these two set-
tings. Moreover, techniques for proving EFX in the goods setting are also known
to be very different beyond two agents or identical valuations (unlike for EF1).

In Sect. 4, we provide a polynomial-time algorithm for computing EF2 allo-
cations. Section 5 then looks at five special cases—when chores are identically-
valued, identically-sized, identically-dense, agents have identical budgets, and
the case of two agents—for which we can compute EF1 allocations efficiently.
Most of the results in the above two sections rely on a greedy “densest-item-first”
algorithm. In the goods case, the greedy algorithm that achieves similar guar-
antees is (surprisingly) also a densest-item first greedy algorithm, even though,
intuitively, high density is desirable for goods and undesirable for chores. This
suggests that the symmetry between chores and goods sometimes presents itself
in unexpected ways.

1.2 Related Work

The mathematical framework for fair division has been put forward by Stein-
haus [23] over 70 years ago, and this field has seen an explosion of interest in
recent years (see, e.g., a survey by Amanatidis et al. [2]). Historically, most works
in the field focused on the allocation of goods, i.e., items that are valued non-
negatively by all agents. While some of the results for fair allocation of goods
extend easily to chores, there are many real-world applications for which this
is not the case. This observation led to a recent line of work that considers the
allocation of chores, i.e., items which agents value negatively; see, e.g., [3,8,14] as
well as the recent survey by Aziz et al. [4]. Indeed, allocating chores is generally
known to be more difficult than allocating goods, with more open problems in
chores than goods, and many techniques that work for goods, but do not directly
translate to chores; a notable example here is maximization of Nash social wel-
fare. Also, a number of authors have considered the problem of allocating goods
to agents under budget constraints [6,15,16,24], as well as rent division with
budget constraints [1,22]. However, to the best of our knowledge, we are the
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first to explore the intersection of these two lines of work, i.e., chore allocation
under budget constraints.

Additional motivation for our analysis is provided by the recent work of
Igarashi and Yokoyama [19], who have developed an application that helps cou-
ples to fairly divide household chores. While their tool captures many aspects of
the task, it does not allow the household members to specify budget constraints,
and this reduces the usability of the tool. We believe that incorporating such
constraints will help many households to come up with a better way of sharing
the workload.

We will now discuss prior work on the allocation of goods under budget
constraints in more detail. Gan et al. [15,24] assumed identical valuations and
size functions, and studied approximation ratios (with respect to EF1) for the
maximum Nash welfare rule in budget-constrained scenarios. In particular, they
proposed an approximation algorithm for achieving 1/2-EF1, along with special
cases where they could guarantee EF1. Barman et al. [6] considered the same
model and proposed an algorithm that satisfies EF2 in general, and EF1 in
special cases.

Garbea et al. [16] were the first to consider the budget-constrained model
with subjective valuation functions (but still identical size functions). However,
their results are limited to two- and three-agent cases. They design algorithms
that guarantee EFX, while achieving approximation of Nash welfare for these
special cases.

Barman et al. [5] studied a more general model of fairly allocating goods
under generalized assignment constraints, extending the traditional budget-
constrained model to one where the sizes and values of the goods can be sub-
jective. They showed the existence (via a pseudopolynomial time algorithm) of
EFX allocations for indivisible goods case.

2 Preliminaries

For each positive integer z, let [z] := {1, . . . , z}. Let N = [n] be a set of n agents
and C = {c1, . . . , cm} be a set of m chores. Each chore c ∈ C has an objective
size s(c) ∈ R>0 and disutility d(c) ∈ R≥0; we write ρ(c) = d(c)

s(c) to denote the
density of the chore c. Each agent has a budget Bi ∈ R>0; let B = (B1, . . . , Bn)
be the vector of agents’ budgets. For our algorithmic results, we assume that all
sizes, disutilities and budgets are rational numbers given in binary.

Unlike in the unconstrained fair allocation model, in our setting it may be
impossible to divide all the chores among the agents in N : e.g., the sum of sizes
may exceed the sum of the agents’ budgets. As we cannot simply discard the
chores, this necessitates the introduction of a housekeeper, whose role is simi-
lar to that of charity in the budget-constrained model for allocating goods. It
is assumed that the housekeeper is paid to complete the chores; this payment
is exogenous to the model, and an external consideration. Our fairness notions
are formulated in such a way that as few chores as possible are allocated to the
housekeeper; this is similar to how the allocation to charity is treated in a goods
context.
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A bundle of chores is a subset of C. We assume that sizes and disutilities of
chores are additive, so that for each bundle S ⊆ C its size s(S) and disutility
d(S) are given by, respectively, s(S) =

∑
c∈S s(c) and d(S) =

∑
c∈S d(c). This

assumption is standard across all works dealing with budget constraints, and is
also common for fair division problems in general.

An allocation A = (A1, . . . , An+1) is a partition of C into n+1 disjoint bun-
dles of chores, where Ai is assigned to agent i, and An+1 is the set of unallocated
chores; we will refer to An+1 as the bundle allocated to the housekeeper. We say
that an allocation A is feasible if s(Ai) ≤ Bi for all i ∈ [n].

Next, we define several notions of fairness for our setting. Our definitions
mirror the respective definitions for allocating goods under budget constraints.

Definition 1 (Envy-freeness). An allocation A = (A1, . . . , An, An+1) is said
to be envy-free (EF) if for all i ∈ [n + 1], j ∈ [n] and for every subset S ⊆ Ai

with s(S) ≤ Bj it holds that d(S) ≤ d(Aj).

Intuitively, an allocation is envy-free if for every agent i ∈ [n] as well as for the
housekeeper it holds that if they consider a subset S of their bundle that could
be allocated to an agent j ∈ [n] (in the sense of having a size that does not
exceed Bj), they find S to be at most as unpleasant/objectionable as the actual
bundle of j.

Even in the absence of budget constraints, it may be impossible to allocate
indivisible items (chores or goods) in an envy-free manner. Clearly, this nega-
tive result also applies to the setting with budget constraints. This observation
motivates us to adapt several relaxations of EF to our setting. We first consider
a popular, relatively strong relaxation of EF, which has been widely studied in
the unconstrained setting.

Definition 2 (Envy-freeness up to any chore). An allocation A = (A1, . . . ,
An, An+1) is said to be envy-free up to any chore (EFX) if for all i ∈ [n + 1],
j ∈ [n], for every subset S ⊆ Ai with s(S) ≤ Bj, and for each c ∈ S it holds that
d(S\{c}) ≤ d(Aj).

Next, we consider another class of relaxations of EF.

Definition 3 (Envy-freeness up to k chores). Given a positive integer k, an
allocation A = (A1, . . . , An, An+1) is said to be envy-free up to k chores (EFk)
if for every i ∈ [n + 1], j ∈ [n], and for every subset S ⊆ Ai with s(S) ≤ Bj

there exists a subset S′ ⊆ S with |S′| = k such that d(S\S′) ≤ d(Aj).

The most commonly studied property is EF1 (i.e., EFk with k = 1). However,
following the analysis of Barman et al. [5] in the budget-constrained goods set-
ting, we will also consider EF2 (i.e., EFk with k = 2).

Note that in our definitions of (approximate) envy-freeness i takes values
in [n + 1] rather than [n], i.e., we want the housekeeper to be (approximately)
non-envious towards the agents. This ensures that sufficiently many chores are
allocated to agents: e.g., an allocation where all chores are allocated to the
housekeeper is not envy-free unless no agent can execute any of the chores.
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Modeling Assumptions: A Discussion. Our formal model considers only
objective (i.e., identical) size and disutility functions. Of course, in practice dif-
ferent agents may assign different disutilities to the same chore: while Alice
dislikes dusting more than doing dishes, Bob has the opposite preferences. It
may also be the case that the size of the chore varies from one agent to another:
while Alice can peel potatoes for dinner in 5min, Bob will spend 8min on the
same task. However, we chose to leave modeling non–identical disutilities and
sizes in the budgeted setting to future work. The reasons for this decision are as
follows.

First, as noted by Barman et al. [6], considering budget constraints even
under identical valuation functions already constitutes a technically-rich model,
due to the additional size (and budget) dimension.

Second, the more general formulation, where agents have subjective size func-
tions (even under identical valuation functions), does not admit a polynomial-
time approximation scheme for the value-maximization objective [13].

Third, we have argued that it is necessary to introduce the housekeeper agent,
and there is no principled way to define the disutility function for the house-
keeper if the agents’ disutility functions are non-identical. However, to define
(relaxations of) envy-freeness, we would have to reason about the housekeeper’s
disutility.

We note that most of the existing works studying the allocation of indivisible
goods under budget constraints [6,15,24] assume that each good has an objective
size, and that agents have an objective valuation function. Models with identical
valuations have also been widely studied in the setting of goods without budget
constraints [7,20,21]. An important exception is a recent paper by Barman et
al. [5], who extend the concepts for the allocation of goods to generalized assign-
ment constraints (as opposed to budget constraints), where sizes are allowed
to be agent-specific. They showed the existence (but not polynomial-time com-
putability) of EFX allocations for indivisible goods. However, extending their
definitions and results to the setting of chores with non-identical sizes is not
straightforward.

3 Existence of EFX Allocations for Indivisible Chores

To begin, we consider the existence of EFX allocations for indivisible chores
under budget constraints.

The existence of EFX allocations for more than three agents in the indivisible
goods allocation setting is a longstanding open problem in fair division. The
setting of chores has been shown to be even more difficult (refer to the surveys
of Aziz et al. [4] and Amanatidis et al. [2]). Recently, Barman et al. [5] proved
the existence of EFX allocations for indivisible goods under budget constraints,
for the case of identical disutility functions. Their algorithm is a close adaptation
of the algorithm for finding EFX allocations in restricted settings [12]. In this
section, we extend this positive result to the case of chores.
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We first introduce the concept of a manageable set, which is similar in spirit to
the concept of a minimal envied subset ; the latter is used to prove the existence
of EFX allocations for indivisible goods in various restricted settings [5,12,17].

Definition 4 (Manageable set). A set of chores T ⊆ C is said to be a
manageable set for an allocation A = (A1, . . . , An, An+1) if

(i) there exists an i ∈ [n] such that s(T ) ≤ Bi and d(T ) > d(Ai), and
(ii) no strict subset of T satisfies (i), i.e., for each strict subset T ′

� T and each
k ∈ [n], either s(T ′) > Bk or s(T ′) ≤ Bk and d(T ′) ≤ d(Ak).

Then, consider the following algorithm, which repeatedly finds a manageable
set within the housekeeper’s bundle and allocates it to one of the agents in N
in a feasible way. The algorithm terminates when the housekeeper’s bundle no
longer contains a manageable set.

Algorithm 1: Computes an EFX allocation
1 Input disutility function d, size function s, budgets B;
2 Initialize the allocation A = (A1, . . . , An, An+1) = (∅, . . . , ∅, C);
3 while there exists a subset S ⊆ An+1 such that s(S) ≤ Bi and d(S) > d(Ai) for

some i ∈ [n] do
4 Select a manageable set T ⊆ An+1 and a k ∈ [n] with s(T ) ≤ Bk,

d(T ) > d(Ak);
5 Update bundles Ak ← T and An+1 ← C\(∪i∈[n]Ai);

6 return allocation A;

We will now show that Algorithm 1 returns an EFX allocation, thereby
establishing that an EFX allocation is guaranteed to exist.

Theorem 1. Algorithm 1 returns an EFX allocation.

Proof. First, we note that if the condition of the while loop is satisfied, then
An+1 contains a manageable set. Indeed, consider a minimum-size set S that
satisfies the condition in the while loop for some i ∈ [n]. We have s(S) ≤ Bi,
d(S) > d(Ai), so S satisfies condition (i) in the definition of a manageable set.
Moreover, by our choice of S no proper subset of S satisfies (i), which means
that S satisfies condition (ii) as well. Thus, Algorithm 1 can indeed select a
manageable set in line 4.

Next, we observe that Algorithm 1 necessarily terminates. Indeed, if at itera-
tion t we change the bundle of an agent k ∈ [n] to T in line 5, then k’s disutility
increases (since before that step we had d(T ) > d(Ak)) while the disutility of
other agents in [n] remains the same. Thus, the sum of disutilities of agents in
[n] goes up with each iteration.

Further, once Algorithm 1 terminates, the condition of the while loop is no
longer satisfied, which means that the housekeeper is not envious towards agents
in [n]. It remains to argue that the EFX condition is satisfied for all other agents.
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Let A(t) = (A(t)
1 , . . . , A

(t)
n+1) denote the allocation maintained by the algo-

rithm just before the t-th iteration of the while loop (Line 3). We have
A(1) = (∅, . . . , ∅, C) and A

(t)
n+1 = C\(∪n

i=1A
(t)
i ) for all t > 0. We will write

A(t)
n to denote the vector formed by the first n entries of the vector A(t) (i.e.,

excluding the bundle of the housekeeper).
To show that the allocation An is EFX, we use induction. For the base case,

note that in the first iteration, EFX trivially holds, as A(1)
n = (∅, . . . , ∅). This

allocation is also feasible. Now, consider an iteration t > 1. For the inductive
step, assume that the allocation A(t)

n is feasible and satisfies EFX. In the t-th
iteration, the algorithm changes the bundle of exactly one agent k ∈ [n], by
replacing it with T . The bundle T satisfies s(T ) ≤ Bk, so this update results in
a feasible allocation.

Since the bundles of all agents in [n]\{k} remain unchanged, the EFX con-
dition is satisfied for each pair of agents not involving k. Thus, it remains to
consider envy by/towards agent k after k has been allocated the bundle T .

We first consider the envy experienced by agent k. Fix a subset S ⊆ T and
an agent k′ ∈ [n]\{k} such that s(S) ≤ Bk′ . For each c ∈ S the set S\{c} is a
proper subset of T . Since T is a manageable set and s(S\{c}) ≤ s(S) ≤ Bk′ ,
condition (ii) of Definition 4 implies that d(S\{c}) ≤ d(Ak′), i.e., the envy by
agent k towards k′ can be eliminated by the removal of any single chore.

Now, consider the envy of agent k′ ∈ [n]\{k} towards agent k. By the
induction hypothesis, before agent k was allocated the bundle T , the envy
by k′ towards k could be eliminated by removing a single chore. Moreover, T
has a higher disutility than the previous bundle of k. Thus, for every subset
S ⊆ A

(t)
k′ = A

(t+1)
k′ with s(S) ≤ Bk and every c ∈ S we have

d(S\{c}) ≤ d(A(t)
k ) < d(A(t+1)

k ).

This implies that the envy by an agent k′ ∈ [n]\{k} towards agent k can be
eliminated by the removal of any single chore. �

Theorem 1 establishes the existence of an EFX allocation for indivisible chores
under budget constraints. While this result is constructive, the running time of
Algorithm 1 is pseudopolynomial (to see this, note that checking the condition in
Line 3 of the algorithm and finding a manageable set reduces to solving polyno-
mially many instances of Knapsack) rather than polynomial. The existence of a
polynomial-time algorithm for computing an EFX allocation for chores remains
an open problem (as with the setting of goods).

4 Computing EF2 Allocations for Indivisible Chores

Given that we do not know how to find EFX allocations in polynomial time,
a natural follow-up direction is then to look for allocations that satisfy weaker
relaxations of EF, but can be computed by algorithms that run in polynomial
time. The most popular relaxation of EF after EFX would be EF1. However,
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even in the setting of allocating goods under budget constraints, the existence of
a polynomial-time algorithm for computing EF1 allocations is still a challenging
open question [5,15,24]. Consequently, we shift our focus to a property that can
be accomplished in polynomial time in the goods case, namely, EF2. Our next
result shows that we can replicate this result for chores.

Specifically, it turns out that EF2 allocations can be found by the Denses-
tFirst algorithm (Algorithm 2), which at each iteration picks an agent with
minimum disutility and allocates to her the maximally-dense chore. Interest-
ingly, in the goods case a ‘densest-item first’ greedy algorithm also produces an
EF2 allocation [7]. This is surprising, because in the goods setting high-density
items are particularly attractive, while in the chores setting high-density items
are unattractive. Thus, while one may expect goods and chores to be symmetric,
identifying the ‘correct’ mapping from goods to chores is a non-trivial task.

Algorithm 2: DensestFirst
1 Input disutility function d, size function s, budgets B;
2 Initialize the allocation A = (A1, . . . , An, An+1) = (∅, . . . , ∅, C) and the set of

live agents L = [n];
3 while L �= ∅ and An+1 �= ∅ do
4 Let i := min argmini∈L d(Ai);
5 if for all c ∈ An+1 it holds that s(Ai∗ ∪ {c}) > Bi∗ then
6 Remove i∗ from the set of live agents, i.e., L ← L\{i∗} ;

7 else
8 Choose a maximally-dense chore c∗ ∈ argmaxc∈C:s(Ai∗ ∪{c})≤Bi∗ ρ(c),

breaking ties in favor of smaller chores;
9 Update bundles Ai∗ ← Ai∗ ∪ {c∗} and An+1 ← An+1\{c∗};

10 return allocation A;

We first prove that the algorithm runs in polynomial-time.

Theorem 2. Algorithm 2 runs in time O((n + m)2).

Proof. At each iteration of the while loop (Line 3), either an agent is removed
from the set of live agents L ⊆ N , or one chore is removed from An+1. Thus,
there can be at most m+n iterations. The operation of finding the set of agents
in L with minimum disutility (Line 4) takes O(n) time. Deciding if i∗ can be
allocated an additional chore (Line 5) and finding a maximally dense chore that
is feasible for i∗ (Line 8) takes O(m) time. Together, the algorithm runs in
O((n + m)2) time. �

Next, we proceed to the main result of this section. Due to space constraints,
the proof is deferred to the full version of the paper.

Theorem 3. Algorithm 2 returns an EF2 allocation.
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The above result, coupled with the fact that the complexity of finding EF1
allocations in the budget-constrained goods model is still an open question, leads
us to the next natural question: under what circumstances (i.e., special cases)
can we compute EF1 allocations in polynomial time? We investigate this in the
next section.

5 Computing EF1 Allocations in Special Cases
for Indivisible Chores

We consider five special cases where an EF1 allocation can be computed in poly-
nomial time. More specifically, we show that when chores are identically-valued
(equivalently, when agents have binary disutility functions), identically-sized,
identically-dense, or when agents have identical budgets, the DensestFirst
algorithm (Algorithm 2), which guarantees an EF2 allocation in our general
model, will, in fact, return an EF1 allocation. For each of these variants, we will
only prove correctness, as the polynomial running time has already been estab-
lished in Theorem 2. We then propose a separate polynomial-time algorithm
that returns an EF1 allocation for two agents.

5.1 Binary Disutility Functions or Identically-Valued Chores

The first special case that we will look at is when agents have binary disutility
functions (i.e., each chore is valued at either 0 or 1 by all agents). Together with
the identical valuation assumption, the case of binary disutilities reduces to that
of identically-valued chores. This is because we can assume chores valued at 0 is
left unallocated (i.e., left in the housekeeper’s bundle). In this setting, it suffices
to assume that, without loss of generality, each chore has a disutility of 1.

While identical chores are trivial in the traditional fair division model (by
simply allocating any �m/n� chores to each agent, and then picking an arbitrary
set of m − n · �m/n� of agents and allocating each of these agents one of the
remaining chores), the size dimension of the budget-constrained model leads to
EF1 becoming a non-trivial property to prove.

We will now show that executing Algorithm 2 on an instance with identically-
valued chores results in an EF1 (in this case, equivalently, EFX) allocation.

Theorem 4. When agents have binary disutilities or when chores are identically-
valued, Algorithm 2 returns an EF1 allocation.

Proof. Consider any two agents i, j ∈ [n] with Bi ≤ Bj and let ct
i and ct

j denote
the t-th chore added to agent i and j’s bundles, respectively. Also, let At

i and At
j

denote the bundles belonging to agents i and j, respectively after the t-th chore
was added to their bundles.

We first consider the envy of agent i towards agent j. By the fact that
Bi ≤ Bj and by construction of the algorithm, we have |Ai| ≤ |Aj | + 1. Thus,
d(Ai) ≤ d(Aj) or d(Ai\{c}) ≤ d(Aj) for some c ∈ Ai, which establishes the EF1
property by i towards j.
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Next, we consider the envy by agent j towards agent i. If |Aj | ≤ |Ai| + 1,
then d(Aj\{c}) = |Aj | − 1 ≤ |Ai| = d(Ai) for any c ∈ Aj and EF1 is trivially
obtained. Thus, we assume |Aj | > |Ai| + 1.

Let cα
i be the last chore that agent i received. Consider the following two

cases. Since |Aj | > |Ai| + 1, we have |Aj | > |Ai| = α + 1.

Case 1: i < j. Since |Aj | > α, we have that s(Aα
i ∪ {cα+1

j }) > Bi (otherwise
cα+1
j would have been allocated to agent i instead). Then, we get that

s(Aα+1
j ) = s(Aα

j ∪ {cα+1
j }) ≥ s(Aα

i ∪ {cα+1
j }) > Bi.

Consider any subset S ⊆ Aj with s(S) ≤ Bi. If |S| > |Aα
j |, then S contains

at least α+ 1 chores; however, since Aα+1
j contains the α+ 1 smallest chores

in Aj , this means that Bi < s(Aα+1
j ) ≤ s(S), a contradiction. Thus, we have

|S| ≤ |Aα
j |, giving us

d(S) = |S| ≤ |Aα
j | = |Aα

i | = |Ai| = d(Ai).

Case 2: j < i. Since |Aj | > α+1, we have that s(Aα
i ∪ {cα+2

j }) > Bi (otherwise
cα+2
j would have been allocated to agent i instead). Then, we get that

s(Aα+2
j ) = s(Aα+1

j ∪ {cα+2
j }) ≥ s(Aα

i ∪ {cα+2
j }) > Bi.

Together with the fact that Aα+2
j contains the α + 2 smallest chores in Aj ,

this means that for any subset S ⊆ Aj with s(S) ≤ Bi, |S| ≤ |Aα+1
j |, giving

us
d(S) = |S| ≤ |Aα+1

j | = |Aα
i | + 1 = |Ai| + 1 = d(Ai) + 1.

This is equivalent to d(S\{c}) ≤ d(Ai) for any chore c ∈ S.

Finally, we consider the envy by the housekeeper towards agents in [n].
Note that every chore c ∈ An+1 is such that s(c) ≥ s(c′) for all c′ ∈ ⋃n

i=1 Ai.
Also, for any i ∈ [n] and c ∈ An+1 we have s(Ai ∪ {c}) > Bi.

Suppose for a contradiction there exists a subset S ⊆ An+1 such that s(S) ≤
Bk and |S| − 1 > |Ak| for some k ∈ [n]. Since |S| > |Ak|+1, consider the subset
S′ ⊂ S such that |S′| = |Ak|. Then, s(S′) ≥ s(Ak). We have that

Bk ≥ s(S) ≥ s(S′ ∪ {c}) ≥ s(Ak ∪ {c}) > Bk

for some c ∈ S\S′, a contradiction. Thus, for any subset S ⊆ An+1 such that
s(S) ≤ Bk, we have that

d(S\{c}) = |S| − 1 ≤ |Ak| = d(Ak)

for any c ∈ S, as desired. �
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5.2 Identically-Sized Chores

In the previous subsection, we showed that when chores are identically-valued
but have possibly differing sizes, Algorithm 2 returns an EF1 allocation. Now,
we show that when chores are identically-sized but with possibly differing disu-
tilities, the algorithm is also able to compute an EF1 allocation. Note that in
this case, the algorithm allocates chores with highest disutility first.

Theorem 5. When chores are identically-sized, Algorithm 2 returns an EF1
allocation.

Proof. Consider any two agents i, j ∈ [n] with Bi ≤ Bj and let ct
i and ct

j denote
the t-th chore added to agent i and j’s bundle, respectively. Also let At

i and At
j

denote the bundles belonging to agent i and j, respectively, after the t-th chore
was added to their bundles. Let cα

i be the last chore that agent i received.
We first prove the EF1 property by agent i towards agent j. Since d(ct+1

i ) ≤
d(ct

j) for all t = 1, . . . , α − 1, by summing over t on both sides, we get

d(Ai\{c1i }) =
α−1∑

t=1

d(ct+1
i ) ≤

α−1∑

t=1

d(ct
j) ≤ d(Aj).

Thus, agent i does not envy j by more than one chore.
Next, we prove the EF1 property by agent j towards agent i. If |Aj | ≤ α+1 =

|Ai| + 1, by a similar argument as above, we have

d(Aj\{c1i }) =
|Aj |−1∑

t=1

d(ct+1
j ) ≤

α∑

t=1

d(ct
i) ≤ d(Ai).

Thus, consider the case when |Aj | > α + 1. Fix any subset S ⊆ Aj such that
s(S) ≤ Bi. Trivially d(S) ≤ d(Ai) when S = ∅, so assume S �= ∅. Moreover, we
have |S| ≤ α + 1 as otherwise i would have been allocated α + 1 chores instead.
Then, since d(ct+1

j ) ≤ d(ct
j) for all t = 1, . . . , α, by summing over t on both sides,

we get

d(Aα+1
j \{c1j}) =

α∑

t=1

d(ct+1
j ) ≤

α∑

t=1

d(ct
i) = d(Ai). (1)

Since Aα+1
j \{c1j} contains the α chores with highest disutility in Aj\{c1j},

d(S\{c}) ≤ d(Aα+1
j \{c1j})

where c ∈ S is the chore with highest disutility in S. Together with (1) above,
we obtain the EF1 property.

Finally, we prove the EF1 property by the housekeeper towards any agent
k ∈ [n]. Fix any S ⊆ An+1 with s(S) ≤ Bk. Note that every chore c ∈ An+1

satisfies

d(c) ≤ d(c′) for all c′ ∈
n⋃

i=1

Ai. (2)
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Also, for every c ∈ An+1 we have s(Ak ∪ {c}) > Bk (otherwise agent k would
have been allocated chore c). This means that s(S) − s(c) < s(Ak) for every
c ∈ An+1, implying that |S| ≤ |Ak| since all the chores have the same size. Thus,
it holds that

d(S) ≤
∑

c′∈Ak

d(c′) = d(Ak).

where the middle inequality follows from (2). �

Remark 1. We note that for binary disutilities or for identically-sized chores,
Algorithm 1 (which computes EFX allocations) runs in polynomial time: indeed,
we have argued that the check in Line 3 of that algorithm and computing a
feasible set can be reduced to solving Knapsack, and Knapsack is polynomial-
time solvable if item sizes or values are polynomially bounded (and if chores have
identical sizes, we can assume without loss of generality that each chore has size
1). Consequently, in case of binary disutilities or identical sizes, we can compute
an EFX allocation in polynomial time. Since every EFX allocation is also an
EF1 allocation, this observation can be seen as a strengthening of Theorems 4
and 5. Nevertheless, Theorems 4 and 5 remain useful, as they provide guarantees
on the performance of a specific natural algorithm, namely, DensestFirst.

5.3 Identically-Dense Chores

Next, we consider the case when the chores have identical densities, but with
potentially different sizes or disutilities. We will now show that Algorithm 2 is
again able to return an EF1 allocation (the tie-breaking in favor of smaller chores
in Line 8 is crucial here).

Theorem 6. When chores are identically-dense, Algorithm 2 returns an EF1
allocation.

Proof. Consider any two agents i, j ∈ [n] with Bi ≤ Bj and let At
i and At

j denote
the bundle belonging to agent i and j, respectively, after the t-th chore was added
to their bundle. Since chores are identically-dense, let ρ be the density of each
chore. The case when ρ = 0 is trivial so we assume that ρ > 0.

We first prove the EF1 property by agent i towards agent j. If d(Ai) ≤ d(Aj),
then we are trivially done. Hence, we assume that d(Ai) > d(Aj). Let there be
α chores in Ai, and hence cα

i is the last chore added to i’s bundle. Then, it must
be that d(Ai\{cα

1 }) ≤ d(Aj), otherwise cα
1 would not have been added to agent

i’s bundle.
Next, we prove the EF1 property by agent j towards agent i. If d(Aj) ≤ d(Ai),

then we are trivially done. Hence, we assume that d(Aj) > d(Ai). Suppose for
a contradiction that for some subset S ⊆ Aj such that s(S) ≤ Bi, d(S\{c}) >
d(Ai) for every c ∈ S. Since the density of all the chores is the same, this means
that s(S\{c}) > s(Ai) for every c ∈ S. Let c be the last chore allocated to Aj

among the chores in S (so c is the largest-sized chore in S). Since s(S\{c}) >
s(Ai),

s(Ai ∪ {c}) < s(S) ≤ Bi,
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and since d(S\{c}) > d(Ai), c should have been allocated to agent i instead of
agent j, a contradiction. Therefore, d(S\{c}) ≤ d(Ai), as desired.

Finally, we prove the EF1 property by the housekeeper towards any agent
k ∈ [n], which is similar to the previous case. Suppose for a contradiction that
for some subset S ⊆ An+1 such that s(S) ≤ Bk it holds that d(S\{c}) > d(Ai)
for every c ∈ S. Since the density of each chore is the same, this means that
s(S\{c}) > s(Ak) for every c ∈ S, implying that we have

s(Ak ∪ {c}) < s(S) ≤ Bk,

for every c ∈ S. Thus, at least one chore c ∈ S should have been allocated to
some agent k′ ∈ [n] (by how the algorithm operates), which is a contradiction.
Hence, d(S\{c}) ≤ d(Ak) as desired. �

5.4 Identical Budgets

In the previous three subsections, we considered the case where chores are iden-
tical in some way—be it in value, size, or density. Now, we relax constraints on
these three properties, and consider the case where agents’ budgets are identical.
Again, the same Algorithm 2 is able to return an EF1 allocation.

Theorem 7. When agents have identical budgets, Algorithm 2 returns an EF1
allocation.

Proof. Let B be the identical budget. We first show the EF1 property between
agents. Consider any agent i ∈ [n]. We will show that at each iteration of the
while loop, the envy agent i has towards any other agent disappears after drop-
ping a new chore from her bundle. Note that since agents have identical budgets,
any feasible bundle for agent i will be feasible for any other agent i′ ∈ [n] as
well. Now, the claim is clearly true for the initial allocation A with Ai = ∅ for
all i ∈ [n]. Assume that the claim holds at some iteration, just before agent i∗ is
allocated a new chore c∗. The new allocation that assigns c∗ to i∗ is EF1 since
i∗ does not envy any other agent if we remove the chore c∗ from her bundle.

Next, we show the housekeeper is EF1 towards agent i. Consider any subset
of chores S ⊆ An+1 with s(S) ≤ B. Let c ∈ S be a chore with maximum
density among the chores in S, i.e., c ∈ argmaxc′∈S ρ(c′). Also, let Wc := {h ∈
Ai | ρ(h) ≥ ρ(c)}. Note that Wc �= ∅; otherwise, Ai = ∅ and chore c with
s(c) ≤ s(S) ≤ B would have been added to i’s bundle.

By a similar reason, we have that s(Wc∪{c}) > B. Since s(S\{c}) ≤ B−s(c),
this means s(Wc) > B − s(c) ≥ s(S\{c}). Thus, we get that d(Ai) ≥ d(Wc) ≥
s(Wc) × ρ(c) > s(S\{c}) × ρ(c) ≥ d(S\{c}), as desired. �

5.5 Two Agents

The last special case that we consider is the setting with two agents, which is
often studied in the fair allocation literature [9–11,15,16,18]. In fact, the case of
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two agents is particularly important in the allocation of chores, given that a key
application of our results is the domain of household chore division, and many
households consist of two adults [19].

We propose an algorithm (Algorithm 3, which is similar to Algorithm 4
in [15]) that returns an EF1 allocation. The algorithm uses Algorithm 2 as a
subroutine and runs in polynomial time.

Algorithm 3: Computes an EF1 allocation for two agents
1 Input disutility function d, size function s, budgets (B1, B2) with B1 ≤ B2;
2 Run Algorithm 2 on both agents with identical budget B1 and obtain allocation

A′ = (A′
1, A

′
2, A

′
3);

3 if d(A′
1) ≥ d(A′

2) then
4 A1 ← A′

1;

5 else
6 A1 ← A′

2;

7 Run Algorithm 2 on agent 2 with budget B2 and set of chores C\A1. Let the
output be (A2, A3);

8 return allocation (A1, A2, A3);

Theorem 8. When there are two agents, Algorithm 3 returns an EF1 allocation
in polynomial time.

Proof. The fact that Algorithm 3 runs in polynomial time is easy to observe,
given that Algorithm 2 runs in polynomial time (as is proven in Theorem 2),
and the other operations take polynomial time as well.

Next, we prove the correctness of the algorithm. Without loss of generality,
suppose that A1 = A′

1. Note that B1 ≤ B2. We first show that agent 1 does not
envy agent 2 after dropping a chore from his own bundle.

Observe that A′
2 is produced by running Algorithm 2 on a single agent (agent

2) with budget B2 on items C\A1. If A2\A′
2 = ∅, then A2 = A′

2 (since B1 ≤ B2)
and the result follows trivially, so assume that this is not the case. Let c∗ be
the first chore in A2\A′

2 allocated to agent 2. Let X be agent 2’s bundle right
before the algorithm allocates c∗. Then, since Algorithm 2 allocates chores in a
densest-first fashion, it must be that X ⊆ A′

2. Since c∗ ∈ A2 and c∗ /∈ A′
2, we

have
s(A′

2) ≤ B1 < s(X ∪ {c∗}) ≤ B2.

Since chores in A′
2\X have density at most that of c∗ and X ⊆ A′

2, we get
d(X ∪ {c∗}) > d(A′

2), and

d(A2) ≥ d(X ∪ {c∗}) > d(A′
2).

Then, since d(A′
1\{c}) ≤ d(A′

2), where c is the last chore added to A′
1, we get

that
d(A1\{c}) = d(A′

1\{c}) ≤ d(A′
2) < d(A2),

as desired.
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Next, we show that agent 2 as well as the housekeeper do not envy agent 1
by more than one chore. To prove this, consider any subset S ⊆ A2 ∪ A3 with
s(S) ≤ B1. If S ⊆ A′

2, then d(S) ≤ d(A′
2) ≤ d(A′

1) = d(A1). Thus, assume that
S\A′

2 �= ∅. Let c ∈ S\A′
2 be a chore with maximum density ρc among the chores

in S\A′
2.

Let Wc = { j ∈ A′
2 | ρj ≥ ρc }. Note that Wc �= ∅; otherwise, A′

2 = ∅
and chore c with s(c) ≤ s(S) ≤ B1 would have been added to A′

2. Since c is not
included in A′

2, we have s(Wc ∪{c}) > B1. Moreover, since s(S\{c}) ≤ B1−s(c),
this means that

s(Wc) > B1 − s(c) ≥ s(S\{c}).
Thus, we get

d(A1) ≥ d(A′
2) ≥ d(Wc) ≥ s(Wc) × ρc > s(S\{c}) × ρc ≥ d(S\{c}).

Finally, the EF1 property by the housekeeper towards agent 2 can be easily
verified due to Theorem 7. �

6 Conclusion

In this work, we propose a model of allocating indivisible chores under budget
constraints. We prove the existence of EFX allocations. Our proof is constructive
and provides a pseudopolynomial time algorithm for finding EFX allocations.
Moreover, we put forward a polynomial-time algorithm that returns an EF2
allocation for general instances, and EF1 allocations in five special cases—when
chores are identically-valued, identically-sized, identically-dense, when agents
have identical budgets, and the case of two agents.

Possible future directions include exploring definitions of envy-freeness
when agents have subjective size or disutility functions (i.e., generalized
assignment constraints for chores), or considering approximate EF guarantees
under non-additive size or disutility functions (while maintaining the identical
size/disutility function assumption). Another exciting direction is to extend our
formal model and results to mixed manna, i.e., items that are viewed as goods by
some agents and as chores by others [3]; anecdotally, this model may be appro-
priate for some household tasks, such as cooking, gardening, or spending time
with children or animals.
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Abstract. We introduce the study of designing allocation mechanisms
for fairly allocating indivisible goods in settings with interdependent val-
uation functions. In our setting, there is a set of goods that needs to
be allocated to a set of agents (without disposal). Each agent is given
a private signal, and his valuation function depends on the signals of
all agents. Without the use of payments, there are strong impossibility
results for designing strategyproof allocation mechanisms even in settings
without interdependent values. Therefore, we turn to design mechanisms
that always admit equilibria that are fair with respect to their true sig-
nals, despite their potentially distorted perception. To do so, we first
extend the definitions of pure Nash equilibrium and well-studied fairness
notions in literature to the interdependent setting. We devise simple allo-
cation mechanisms that always admit a fair equilibrium with respect to
the true signals. We complement this result by showing that, even for
very simple cases with binary additive interdependent valuation func-
tions, no allocation mechanism that always admits an equilibrium, can
guarantee that all equilibria are fair with respect to the true signals.

Keywords: Fair Division · Interdependent Values · Mechanisms
without Money

1 Introduction

The problem of fair division centers around the challenge of allocating a collec-
tion of resources to a set of individuals in a fair way. The roots of this problem
can be traced back to the early work of Banach, Knaster, and Steinhaus [35],
who introduced the notion of proportionality, a concept that demands that each
person receives at least an equal share of the total value. Another prominent
concept in the realm of fairness is envy-freeness [23,24,38], which dictates that
each individual values their resources as much as anyone else’s. However, when
resources are indivisible, proportionality and envy-freeness become impossible
to attain in general. For example, consider an instance with two agents and one
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good, being positively valued by both: No allocation exists where no agent envies
the other, or every agent gets his proportional share. This motivated the intro-
duction of new (relaxed) fairness notions, such as EF1 (Envy-Freeness up to One
Good) [12,28], EFX (Envy-Freeness up to Any Good) [14], and MMS (Maximin
Share) [12], to grapple with the division of indivisible resources to agents with
equal entitlements, and APS (the AnyPrice Share) [8], WMMS (Weighted Max-
imin Share) [22], WEF (Weighted Envy-Freeness) [15] or �-out-of-d share [9],
to agents with unequal entitlements. For an overview of results on the area, we
refer the reader to the survey of [2].

When we demand fair allocations, under agents with incentives, the prob-
lem becomes much more challenging. [13,30] and [5] introduced the strategic
version of the problem, where the agents are assumed to be selfish, and their
goal is to maximize their own utility. In particular, they considered the question
of whether it is possible to have truthful allocation mechanisms (without pay-
ments) that provide fairness guarantees. This question was later resolved by [1],
who showed that truthfulness and fairness are incompatible even for the case of
additive valuation functions, as no meaningful fairness notion can be guaranteed
by a truthful allocation mechanism. This impossibility, led subsequent works to
pursue positive results regarding truthfulness and fairness in more specialized
valuation function settings, such as dichotomous additive [6,26], matroid rank
functions [7,10,40], or combining fairness with weaker versions of truthfulness,
e.g., [33]. In a work that is mostly related to ours, [3] followed a different approach
and explored the fairness properties of the pure Nash equilibria (PNE) of non-
truthful mechanisms. They focused on the case of additive agents, and showed
that there are mechanisms that always admit PNE, all of which induce fair allo-
cations according to the agents’ true valuation functions. [4] later expanded the
applicability of these results to richer valuation function classes (e.g. cancellable,
and submodular).

All the mechanisms that have been devised in the context of strategic fair
division assume the agent’s valuation functions to be independent of each other.
In several scenarios, however, such an assumption is either too strong or unre-
alistic. The concept of agents with interdependent valuation functions was first
introduced in the context of auctions by [41] and [31]. It has recently gained a lot
of attention in the algorithmic game theory community, for efficient and strat-
egyproof implementation of interdependent value (IDV) auctions [18–21,27,29]
and IDV public projects [17] (we defer the interested reader to Sect. 1.2). How-
ever, its applicability goes further beyond that. In the case of fair division, con-
sider, for example, a couple of heirs that need to partition (indivisible) inher-
itance goods between them: Each of them possesses some information (signal)
about the goods, but their value depends on the other’s signal too. The strategic
nature of the situation is apparent, as it becomes clear that both parties have
a vested interest in distorting the truth regarding their signals to manipulate
the other party’s perception and ultimately gain an advantage in the allocation
of goods. Whether by exaggerating or downplaying the value of certain goods,
each party hopes to influence the other’s perception and come out ahead in
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the final allocation. Another example, is where a company is allocating tasks
to its employees, where the perception of the newer employees over the tasks,
is affected by the opinion of the employees that work years for the company.
Senior employees, possessing a comprehensive understanding of the task difficul-
ties, may sometimes overstate the challenges in order to delegate their workload
more effortlessly. Incorporating private signals into the mechanism design pro-
cess poses a critical challenge now that the goal becomes to ensure fairness that
aligns with the true valuation functions of all agents involved, as opposed to the
perceived ones. Since allocation mechanisms that do not use monetary transfers
cannot compensate the agents for revealing their private signals, having guar-
antees with respect to the true signal is even more challenging. Our main goal
is to design allocation mechanisms that seek to establish equilibria, where the
allocation is fair with respect to the agents’ true values, despite their potentially
distorted perception.

1.1 Our Contributions

Before we begin, we highlight that although the aforementioned impossibility
results regarding truthfulness and fairness in the independent value model (e.g.,
[1]) transfer to the setting of interdependent values, the positive results that
regard the fair PNE of non-truthful mechanisms (e.g., [3,4]) do not. We demon-
strate the latter at Sect. 6 of our paper. Therefore, we initiate the study of
mechanisms that admit the existence of fair equilibria with respect to the true
signals of the agents, in settings where their values are interdependent.

We extend several notions of fairness, along with the notion of pure Nash
equilibrium, to the interdependent value model, and we design a class of mecha-
nisms that, for every signal vector, have at least one pure Nash equilibrium with
the following property: the allocation that corresponds to it, is fair with respect
to the true values (in contrast to what has been reported or perceived by the
agents). The common characteristic between the mechanisms of this class is that
each agent is not only required to report her own signal (her private informa-
tion), but her strategy space is larger than the space of the private information
she has. In other words, the mechanisms we consider are not direct revelation
mechanisms.

As the following example demonstrates, such mechanisms are a necessity in
the IDV model as there might be cases for which there is no direct revelation
mechanism that admits a pure Nash equilibrium that is fair, according to any
meaningful fairness notion.

Example 1. Let us consider an instance with two agents and the set of four
goods M = {a, b, c, d}, along with a mechanism M that always has at least one
fair equilibrium for every signal. Agent 1 values good j ∈ M just according to
her signal, i.e., v1j = s1j . Agent 2 instead values the same good according to
agent 1’s signal, i.e., v2j = s1j . Since only agent 1 has information regarding the
valuations of both agents, it is natural to assume that agent 2 is not able to report
something to the mechanism. Consider the following instance where the values of
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agent 1 (that also defines agent 2’s) are v1 = (1, 1, 1, 1) = v2. By our assumption
on M, we know that there exists a report r1 that agent 1 can declare, which
induces a fair PNE according to the true value. This corresponds to allocation
(A1, A2), where A1, A2 �= ∅ for the allocation to be fair. The specifics of this
allocation depend on the fairness notion that we examine. Now, if we consider a
new valuation function for agent 1 that associates v1j = s1j = 1 if j ∈ A1, and 0
otherwise. For this new instance, in any PNE, agent 1 should receive all goods in
A1, as otherwise she could declare r1 and get them. This means that the goods
that agent 2 receives have 0 value for him in any PNE. This shows the absence
of fairness with respect to any meaningful fairness notion, a contradiction. This
means that allocation mechanisms that don’t ask agent 2 for a report cannot
guarantee the existence of fair equilibria.

Below we present a roadmap to our paper:
– In Sect. 3, we consider the case of two general monotone agents with equal

entitlements, and we design a mechanism that is based on the cut and choose
protocol. Our mechanism (Mechanism 1), induces an equilibrium where the
corresponding allocation is MMS and EFX for the cutter and EF for the
chooser. Although our mechanism is based on the cut-and-choose framework,
the implementation of the interdependent version of it, and the proof of its
guarantees are very different from the simple implementation and proof of
the independent cut-and-choose mechanism.

– In Sect. 4, we consider the case of two general monotone agents with unequal
entitlements, and we devise a mechanism (Mechanism 2) that induces an
equilibrium where the corresponding allocation gives at least the APS to one
agent, and the proportional share to the other agent as long as her valuation
function is XOS. We, in fact, show that achieving the same fairness guaran-
tees is impossible if the valuation functions of both agents are subadditive.
As a byproduct, we emphasize that Mechanism 2 for the special case of inde-
pendent additive values, guarantees that both agents receive their APS in
every equilibrium, which to our knowledge, is the first fairness guarantee in
a strategic setting for agents with arbitrary entitlement and additive valua-
tions1.

– In Sect. 5, we consider the case of three or more agents. There, we present a
way of transforming, in a black-box manner, any algorithm into a mechanism
with at least one PNE that guarantees the same properties of the algorithm
with respect to the true signals of the agent.

– In Sect. 6, we complement the above picture with the following negative result:
it is impossible to construct allocation mechanisms that always admit a PNE,
for which all equilibria are fair with respect to the true signals for either of
the fairness notions of MMS and EF1. This impossibility is shown under
agents with additive valuation functions and binary signals, and creates a
stark separation with the independent valuation model considered in [3].

1 [36] and [37] showed fairness guarantees in a strategic setting for agents with unequal
entitlements in the special cases of binary valuation functions and matroid rank
valuation functions respectively.
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The missing proofs can be found in the full version of our paper [11].

1.2 Related Work on Interdependent Mechanism Design
with Money

As previously underlined, mechanism design (with or without money) has tradi-
tionally been conceived for settings where agents’ valuations are assumed to be
independent. In this setting, a celebrated result by [16,25,39] (the VCG mech-
anism) resolves the problem of truthful mechanism design optimally. However,
the independence assumption falls short of characterizing natural scenarios, such
as the illustrative oil drilling auction example of [41]. The auctioned land’s value
depends on how much oil there is underneath, and different agents might have
different pieces of information (signals) about it. Most importantly, unlike tra-
ditional settings, each agent’s value for that parcel of land depends on all such
pieces of information. In the context of single-item auctions, [31] formulated the
interdependent value (IDV) model, which prescribes each agent i has a private
signal si that summarizes the information she possesses about the item being
auctioned. Furthermore, the value agent i attributes to the item is a function of
all signals, i.e., vi(si, s−i).

In the IDV model, it is impossible to design dominant strategy incentive-
compatible mechanisms for single-item auctions in that if one agent does not
report her signal truthfully, then another agent might not even be aware of its
true valuation. More strongly, it is even impossible2 to design ex-post incen-
tive compatible mechanisms [27], unless a condition called single-crossing is met
[34]. This signifies that each agent values her own signal above everybody else’s.
Beyond not being realistic, the single-crossing condition does not generalize well
to multi-dimensional signal settings: [18,20,21], and especially [19], circumvent
this issue (and later refined by [29]), extending ex-post incentive compatibility
results to settings where valuations satisfy Submodularity over Signals (SOS), a
natural property to impose on valuations. Loosely, this means that the marginal
increase in one’s value due to her signal’s increase is smaller the higher every-
body else’s signal is. Beyond auctions, [17] have recently studied the problem of
interdependent public projects.

2 Model

We study the problem of fairly allocating a set M of m indivisible goods to a
set N = [n] of n ≥ 2 agents with interdependent valuations. Each agent i ∈ N
is characterized by the following three parameters: (1) a private signal si from
the set of potential signals Si �= ∅, where we denote by S the Cartesian product
×i∈N

Si; (2) a publicly known entitlement αi ∈ (0, 1); and (3) a publicly3 known
2 [27] show this impossibility even for Bayesian settings.
3 The assumption that the valuations are public (and only the signals are private) is

without loss of generality since one can use some dedicated bits of the private signal
to encode the private valuation, and these bits will not influence the other agents’
valuations.
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monotone and normalized4 combinatorial valuation vi : S × 2M → R≥0. We
assume without loss of generality that the sum of entitlements is 1, and we
denote by α the vector of entitlements (α1, . . . , αn). A special case is when all
entitlements are 1

n , (i.e., equal entitlements). An allocation A = (A1, . . . , An) of
the goods is a partition of M where agent i receives the set of goods Ai. We
denote by A the set of all allocations of M (without disposal) to the set of agents
N . An instance of our setting is described by I = (N, M, α, S, v1, . . . , vn).

Fairness Notions. We consider the following natural extensions of the well-
studied fairness notions to the interdependent setting. For the case of equal
entitlements (i.e., αi = 1

n for all i ∈ N), the envy-based fairness notions that we
consider are:

Definition 1 (Envy-based Fairness Notions). An allocation A is EF
(respectively, EF1, EFX) for agent i ∈ N with respect to a signal vector
s = (s1, . . . , sn) if, for all agents i′ ∈ N it holds that

vi(s, Ai) ≥ vi(s, Ai′) (EF)
Ai′ = ∅ or ∃j ∈ Ai′ : vi(s, Ai) ≥ vi(s, Ai′\{j}) (EF1)

∀j ∈ Ai′ : vi(s, Ai) ≥ vi(s, Ai′\{j}) (EFX)

An allocation A is EF (respectively, EF1, EFX) with respect to perceived signal
vectors s(1), . . . , s(n) if for all i ∈ N , A is EF (respectively EF1, EFX) for agent
i with respect to a perceived signal vector s(i). If s(1) = . . . = s(n) = s, we say
that A is EF (respectively, EF1 or EFX) with respect to s.

The share-based fairness notions that we consider are:

Definition 2 (Share-based Fairness Notions). The PROP (respectively
MMS or APS) of agent i with valuation vi : S × 2M → R≥0 with respect to
signal vector s = (s1, . . . , sn) is:

PROPi(αi, s) = αi · vi(s, M) (PROP)

MMSi(αi = 1
n

, s) = max
(A1,...,An)∈A

min
i′∈N

vi(s, Ai′) (MMS)

APSi(αi, s) = min
p∈P

max
T ⊆M

vi(s, T ) · 1
{ ∑

j∈T

pj ≤ αi

}
(APS),

where P is the set of all non-negative price vectors that sum to 1, and given
a price vector p ∈ P , and a subset of goods T ⊆ M , we denote by p(T ) the
sum of prices of goods in T , (i.e., p(T ) =

∑
j∈T pj). Note that the MMS is only

defined for the case of equal entitlements. An allocation A is PROP (respectively,
MMS or APS) with respect to signal vectors s(1), . . . , s(n) if for every agent
i ∈ N , the value of agent i with respect to signal vector s(i) is at least the
4 A valuation function v is monotone if for every signal vector s and sets T ⊆ T ′ ⊆ M

it holds that v(s, T ) ≤ v(s, T ′). A valuation function v is normalized if for every
signal vector s it holds v(s, ∅) = 0.
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PROP (respectively, MMS or APS) of agent i with respect to signal vector s(i).
If s(1) = . . . = s(n) = s, we say that A is PROP (respectively, MMS or APS)
with respect to s.

Allocation Mechanisms.

Definition 3 (Deterministic Mechanisms). A (deterministic) allocation
mechanism M (without payments) for the interdependent setting is defined by a
product set of bids B =×i∈N

Bi and a mapping M : S ×B → A. The allocation
mechanism collects from each agent i ∈ N a report (ri, bi) ∈ Si × Bi, and allo-
cates the goods according to M(r, b), where r = (r1, . . . , rn), and b = (b1, . . . , bn).
We also denote by Mi(r, b) as the bundle of goods that agent i receives under
reports corresponding to (r, b).

Definition 4 (Interdependent Pure Nash Equilibria). For an instance I,
and a mechanism M for signal vector s ∈ S a report vector ((r1, b1), . . . , (rn, bn))
is a pure Nash equilibrium (PNE) if for every agent i ∈ N and report (r′

i, b′
i) it

holds that:
vi(r(i), Mi(r, b)) ≥ vi(r(i), Mi(r′, b′)),

where b = (b1, . . . , bn), b′ = (b′
i, b−i), r = (r1, . . . , rn), r′ = (r′

i, r−i), r(i) =
(si, r−i). Note that the vector signal that agent i calculates his value with respect
to, is the reported signals of the other agents along with his own true signal.

Some of our results apply to the special cases with additive, XOS, and
subadditive valuations. We say that an instance is additive if for every agent
i ∈ N , every signal vector s ∈ S, and every subset T ⊆ M it holds that
vi(s, T ) =

∑
j∈T vi(s, {j}). We say that an instance is XOS if for every agent

i ∈ N , every signal vector s ∈ S, there exist an integer � and � non-negative
vectors a1, . . . , a� of dimension |M |, such that for every subset T ⊆ M it holds
that vi(s, T ) = max�′∈{1,...,�}

∑
j∈T a�′

j . We say that an instance is subadditive
if for every agent i ∈ N , every signal vector s ∈ S, and every pair of subsets
T, T ′ ⊆ M it holds that vi(s, T ) + vi(s, T ′) ≥ vi(s, T ∪ T ′).

Remark 1. We note that independent private values can be captured by our
model by setting all vi to be independent of s−i. I.e., there exist functions ui :
Si × 2M → R≥0 such that for every agent i ∈ N , for every signal vector s =
(s1, . . . , sn) ∈ S, and every subset T ⊆ M it holds that vi(s, T ) = ui(si, T ).

Throughout the paper, we use s to denote signals, r to denote reports of
signals, and b to report the bidding strategies besides the reported signals.

3 The Case of 2 Equal Entitlement Agents

In this section, we consider the case where there are two agents (i.e., n = 2)
with equal entitlements (i.e., α1 = α2 = 1

2 ) and general monotone valuation
functions. We devise the IDV Cut-&-Choose mechanism (Mechanism 1), which
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involves agents reporting their own signal along with a guess of the other agent’s
signal. The mechanism then divides the goods into two sets in order to maximize
the value of the set (according to the cutter’s report) the chooser does not select
(again, according to the cutter’s report). The chooser then selects the better set
based on his report. We show that the IDV Cut-&-Choose induces an equilibrium
where, once one agent declares her own signal truthfully and guesses correctly
the other’s signal, the other agent’s best response is to also report truthfully his
own signal, and repeat the signal of the other agent. The resulting allocation in
this equilibrium is MMS and EFX for the cutter and EF for the chooser with
respect to the true signals.

3.1 The IDV Cut-&-Choose Mechanism

We consider both shared-based and envy-based notions of fairness and devise a
mechanism that has guarantees of both types (EFX and MMS for the cutter,
and EF for the chooser). Formally, we show that:

Theorem 1. For every instance I = (N, M, α = (1
2 , 1

2 ), S = S1 × S2, v1, v2)
composed of two agents with equal entitlements, there exists an allocation mecha-
nism M such that for every signal vector s ∈ S there is a report ((r1, b1), (r2, b2))
such that: (1) Report ((r1, b1), (r2, b2)) is a PNE; (2) The allocation M((r1, r2),
(b1, b2)) is MMS and EFX for one agent with respect to the true signal vector s;
(3) The allocation M((r1, r2), (b1, b2)) is EF for the other agent with respect to
the true signal vector s.

To prove the above theorem, we devise the IDV Cut-&-Choose mechanism
(Mechanism 1). Following Definition 3, in Mechanism 1, the set of bids of agents
1, 2, are the set of signals of agents 2, 1 respectively (i.e., B1 = S2, and B2 =
S1). For ease of understanding, in the statements that follow, we subsume the
notation of above.

In our proof and in the mechanism construction, we also use the following
theorem that immediately derives from [32, Theorem 4.2], for the case of inde-
pendent valuations.

Theorem 2 ([32]). For every monotone valuation function v : 2M → R≥0, there
exists a set T ∗ such that v(T ∗) ≥ v(M\T ∗) = MMS(v), and for every j ∈ T ∗, it
holds that v(T ∗\{j}) ≤ v(M\T ∗), where MMS(v) = max

T ⊆M
min(v(T ), v(M\T )).

We first observe that since for TMMS = arg maxT ⊆M min(v1(s, T ), v1(s, M
\T )), and since at least one of TMMS, M\TMMS is in T (s1, s2), it holds that:

ξ1(s1, s2) = max
T ∈T (s1,s2)

v1((s1, s2), M\T )

≥ min(v1((s1, s2), TMMS), v1((s1, s2), M\TMMS))
= MMS1(1/2, s). (1)
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Mechanism 1: IDV Cut-&-Choose
Data: Report (r1, b1) of agent 1 (cutter) and (r2, b2) of agent 2 (chooser).
Cutter:

Let T (r1, b1) := {T ⊆ M | v2((r1, b1), T ) ≥ v2((r1, b1), M\T )}
Let ξ1(r1, b1) := max

T ∈T (r1,b1)
v1((r1, b1), M\T )

if ξ1(r1, b1) > MMS1( 1
2 , (r1, b1)) then

Let T ∗(r1, b1) be a set in T (r1, b1) for which
v1((r1, b1), M\T ) = ξ1(r1, b1)

end
else

Let T ∗(r1, b1) be the set of Theorem 2, when applied to v1((r1, b1), ·)
end
Partition goods into subsets (T ∗(r1, b1), M\T ∗(r1, b1))

Chooser:
Select A2 = arg max

T ∈{T ∗(r1,b1),M\T ∗(r1,b1)}
v2((b2, r2), T ), in case of a tie select

A2 = T ∗(r1, b1)
Result: Return allocation

M((r1, r2), (b1, b2)) = (A1, A2),

where A1 = M\A2.

Lemma 1. For Mechanism 1 and signal vector s = (s1, s2) ∈ S, report vector
((s1, s2), (s2, s1)) is a PNE.

Lemma 2. For Mechanism 1 and signal vector s = (s1, s2) ∈ S, in PNE
((s1, s2), (s2, s1)), the cutter receives at least her MMS with respect to signal vec-
tor s. Moreover, the allocation M((s1, s2), (s2, s1)) is EFX for the cutter with
respect to signal vector s.

Since the chooser selects the bundle with higher value according to his report,
we can observe the following:

Claim. For Mechanism 1 and signal vector s = (s1, s2) ∈ S, in equilibrium
((s1, s2), (s2, s1)), the allocation M((s1, s2), (s2, s1)) is EF for the chooser with
respect to s.

The proof of Theorem 1 follows by combining Lemmas 1 and 2 and Sect. 3.1.

3.2 Discussion on Mechanism 1

We next discuss the extent of Theorem 1, and some of its implications. Regarding
envy-based notions of fairness, it is clear that there might not exist an alloca-
tion that is EF for both agents (e.g., two agents with a single good). Thus,
guaranteeing EF for one agent and EFX for the other is the best we can aim for.
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For what concerns shared-based notions of fairness, giving the MMS to both
agents is impossible for general (subadditive or even XOS) valuations as the next
example illustrates.5 Consider set of goods M = {a, b, c, d}, and valuations

v1 = max (1 {a ∨ b} + 1 {a ∧ b} ,1 {c ∨ d} + 1 {c ∧ d})
v2 = max (1 {a ∨ d} + 1 {a ∧ d} ,1 {b ∨ c} + 1 {b ∧ c}) ,

for agent 1 and agent 2, respectively. We observe that (1) these valuations are
XOS, and (2) the MMS for both agents is 2. However, no allocation gives the
MMS to both agents: If one agent receives one good (and the other three goods),
her value is at most 1. Otherwise, both agents receive two goods, and one of them
must have a value of at most 1 which is strictly less than the MMS.

In case of subadditive valuations, it holds that EF implies PROP. Therefore,
if the chooser’s valuation is subadditive then in equilibrium ((s1, s2), (s2, s1)),
Mechanism 1 guarantees agent 2 his proportional share with respect to signal
vector s, and when the chooser’s valuation is additive, then it guarantees the
MMS with respect to signal vector s to both agents.

In the special case of identical valuations (i.e., v1 = v2), the MMS can be
guaranteed to both agents (for all valuation classes). Indeed, when cutter and
chooser have identical valuations, the chooser receives at least his MMS with
respect to signal vector s, in equilibrium ((s1, s2), (s2, s1)) of Mechanism 1. This
is because the chooser gets a value of at least ξ1(s1, s2) which is at least the
MMS.

4 The Case of 2 Unequal Entitlement Agents

This section considers the case where two agents (i.e., n = 2) have unequal
entitlements and general monotone valuation functions. Our main contribution
is the design of the IDV Price-&-Choose mechanism (Mechanism 2). Mechanism
2 first prices the goods according to the pricer’s report. The pricing tries to
maximize the pricer’s value of the remaining goods (according to the pricer’s
report) while assuming that the chooser first picks the set that maximizes his
own value (again, according to the pricer’s report), and whose total price does
not exceed the chooser’s entitlement. As for the equal entitlement case, this
mechanism guarantees that there exists a PNE of the same form, of reporting
your own signal truthfully and guessing the other’s signal correctly. The resulting
allocation gives at least the PROP share to the pricer as long as his valuation
is XOS, and the APS to the chooser. We, in fact, show that achieving the same
fairness guarantees is impossible if both valuation functions are subadditive.

4.1 The IDV Price-&-Choose Mechanism

We show the following result:
5 We omit the dependence on s, since this also holds in non-interdependent settings

(and even without incentive considerations).
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Theorem 3. For every instance I = (N, M, α = (α1, α2), S = S1 × S2, v1, v2)
composed of two agents with unequal entitlements with monotone valuations,
there exists an allocation mechanism M such that for every signal vector s ∈ S
there exists a report ((r1, b1), (r2, b2)) such that: (1) Report ((r1, b1), (r2, b2)) is a
PNE; (2) The allocation M((r1, r2), (b1, b2)) is APS for one agent with respect
to the true signal vector s; (3) If the other agent’s valuation is XOS, then the
allocation M((r1, r2), (b1, b2)) is PROP for the other agent with respect to the
true signal vector s.

We devise the IDV Price-&-Choose mechanism (Mechanism 2) to prove the
above theorem. Following Definition 3, in Mechanism 2, the set of bids of agents
1, 2, are the set of signals of agents 2, 1 respectively (i.e., B1 = S2, and B2 = S1).

Mechanism 2: IDV Price-&-Choose
Data: Report (r1, b1) of agent 1 (pricer) and (r2, b2) of agent 2 (chooser).
Pricer:

Let ξ2(r1, b1, p) := max
T ⊆M

v2((r1, b1), T ) · 1 {p(T ) ≤ α2}

Let T (r1, b1, p) := {T ⊆ M | p(T ) ≤ α2 ∧ v2((r1, b1), T ) = ξ2(r1, b1, p)}
Let T (r1, b1) :=

⋃
p∈P

T (r1, b1, p)
Let T ∗(r1, b1) := arg max

T ∈T (r1,b1)
v1((r1, b1), M\T )

Let p∗ ∈ P be a price vector such that T ∗(r1, b1) ∈ T (r1, b1, p∗)
Offer goods for prices p∗

Chooser:
if v2((b2, r2), T ∗(r1, b1)) = max

T ⊆M :p∗(T )≤α2
v2((b2, r2), T ) then

Select A2 = T ∗(r1, b1)
end
else

Select an arbitrary set A2 in arg max
T ⊆M :p∗(T )≤α2

v2((b2, r2), T )

end
Result: Return allocation M((r1, r2), (b1, b2)) = (A1, A2), where

A1 = M\A2.

Lemma 3. For Mechanism 2 and signal vector s = (s1, s2) ∈ S, report vector
((s1, s2), (s2, s1)) is a PNE.

Lemma 4. For Mechanism 2 and signal vector s = (s1, s2) ∈ S, in PNE
((s1, s2), (s2, s1)), if the pricer’s valuation is XOS, then she receives at least
her PROP with respect to s.

Since the chooser selects the bundle with the highest value according to his
report subject to his entitlement, we can observe the following:
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Claim. For Mechanism 2 and signal vector s = (s1, s2) ∈ S, in equilibrium
((s1, s2), (s2, s1)), the allocation M((s1, s2), (s2, s1)) is APS for the chooser with
respect to s.

The proof of Theorem 3 follows by combining Lemmas 3 and 4 and Sect. 4.1.

4.2 Discussion on Mechanism 2

We showed that Mechanism 2 under XOS valuations gives in equilibrium
((s1, s2), (s2, s1)) the pricer her PROP, and the chooser the APS with respect
to the true signals. This implies that in the independent values model, for two
XOS agents there is always an allocation that gives one agent her proportional
share, and the other his APS. In the special case where the pricer’s valuation is
additive, since PROP is at least as large as the APS [8], this guarantees the APS
for both agents. Moreover, for our Price-&-Choose mechanism when applied to
independent additive valuation functions, all equilibria are APS fair with respect
to the true values of the agents. Thus, we have the following corollary:

Corollary 1. When applied to the independent values model (see Remark 1) for
additive agents, Mechanism 2 guarantees that in every equilibrium, both agents
receive their APS.

Giving both agents their proportional share is trivially impossible even for the
simple case of additive valuations (e.g., when there is a single good). We next
show that there are subadditive instances with two agents (even in the non-
interdependent case, with no incentive constraints) for which there is no alloca-
tion that gives one agent her APS and the other her PROP. This is true even
for agents with equal entitlements and same valuation.

Proposition 1. There exists a subadditive valuation v : 2M → R≥0, such that
for every set T ⊆ M , either

v(T ) <
v(M)

2 = PROP

or,

v(M\T ) < min
p∈P

max
T ′⊆M

v(T ′) · 1

⎧⎨
⎩

∑
j∈T ′

pj ≤ 1
2

⎫⎬
⎭ = APS.

5 The Case of 3 or More Agents

In this section we show how for the case of n ≥ 3 agents, we can reduce the
problem of designing a mechanism that has at least one fair equilibrium with
respect to the true signal s, to the purely algorithmic problem. On a high level,
we do so as follows: Let each agent report her signal as well as everybody else’s.
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Since n ≥ 3, if at least n − 1 (unanimity up to one vote) agents agree on their
reports and guesses, we can execute the algorithm with respect to the reported
declarations, excluding the agent that did not agree (if any). This implies that
when all the agents bid the same, the produced allocation is identical to the
one where all the agents report as before, and just one agent deviates to some-
thing different6. The latter is crucial to guarantee a PNE with the algorithm’s
properties.

To formalize this reduction, consider any algorithm F : V1 × . . . × Vn → A
that receives for every agent i an (independent) valuation vi : 2M → R≥0 from
a set of valuations Vi, and returns an allocation that satisfies some property
X (where property X can be EF, EFX, EF1, PROP, MMS, APS, and even
non-fairness properties such as maximizing social welfare, or Pareto optimality).
Then we prove the following:

Theorem 4. For every property X, every algorithm F : V1 × . . . × Vn → A that
always satisfies property X, and every instance I = (N, M, α, S, v1, . . . , vn) with
n ≥ 3 agents, for which for all i, and every signal vector s ∈ S, it holds that
vi(s, ·) ∈ Vi, there exists an allocation mechanism M such that for every signal
vector s ∈ S there is at least one PNE, ((r1, b1), . . . , (rn, bn)), that satisfies that
the allocation M((r1, . . . , rn), (b1, . . . , bn)) satisfies property X with respect to s.

Proof. To prove the theorem, we devise the following mechanism, for which the
set of bids of agent i, is the product of the set of signals of all agents, i.e., Bi = S,
and B = B1 × . . . × Bn. We denote by bi,j the jth coordinate of vector bi.

Mechanism 3: IDV Black Box Transformation from F to M
Data: Report vector ((r1, b1), (r2, b2), . . . (rn, bn)).
if there exists a set N ′ ⊆ N of size at least n − 1, such that 1) for every
i, i′ ∈ N ′, we have bi = bi′ , and 2) for every i ∈ N ′ it holds that ri = bi,i then

Select an arbitrary i∗ ∈ N ′ Set M(r, b) = F(v1(bi∗ , ·), . . . , vn(bi∗ , ·))
end
else

Set M(r, b) = A = (A1, A2, . . . , An), where A is some predefined allocation
end
Result: Return allocation M(r, b)

The mechanism is well defined since because n ≥ 3, there cannot be more
than one value of bi∗ that has n − 1 agents that report it.

Consider the report vector (s1, s), . . . , (sn, s). It is clear that since more than
n−1 agents agree on the value of bi (since all of them are s), and for every agent
i, ri = si = bi,i, then the output of Mechanism 3 is F(v1(s, ·), . . . , vn(s, ·)), which
satisfies all properties that F satisfies with respect to signal vector s. Therefore,
6 It is easy to see that this technique cannot be implemented when there are only two

agents, something that (surprisingly) makes this case more challenging.
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the only thing that remains to show, is that the report vector (s1, s), . . . , (sn, s)
is a PNE. This follows directly from the construction of Mechanism 3, as in the
case that one agent deviates, the produced allocation remains the same.

Remark 2. It is worth noting that in Mechanism 3, the predefined allocation can
be chosen arbitrarily, and the proof applies regardless of the chosen allocation.
However, this chosen allocation might not align with the desired properties. The
theorem aims to establish the existence of at least one favorable equilibrium that
meets property X. This equilibrium occurs when all agents report their true
signals. Conversely, a scenario where only n − 1 agents concur on the signals is
not an equilibrium: If an agent deviates, the allocation shifts to the predefined
one, and there might be agents that prefer it.

6 Impossibilities

So far, we considered allocation mechanisms that for every signal vector s ∈ S,
have at least one PNE, and the allocation that corresponds to one of these PNE
is fair (according to some fairness criterion) with respect to the true signals
s. The next natural direction is to explore whether there are mechanisms that
always admit a PNE for every signal vector s, and all equilibria are fair with
respect to the true signal vector s.

In the following theorem, we consider the notions of MMS and EF1, and
we show that this is impossible. Notice that this creates a separation with the
strategic model of non-interdependent values, where it is known that there are
allocation mechanisms with this property under agents with additive valuation
functions, both for the case of MMS (2 agents), and the case of EF1 (n agents).

Theorem 5. There is no IDV-allocation mechanism that for every signal vector
s ∈ S has a PNE, and all of its equilibria induce MMS (or EF1) allocations with
respect to the true signal vector s. Moreover, this holds even for the special case
where all valuation functions are additive dichotomous (where each good has a
value of either 0 or 1).

Remark 3. Note that our counter-example considers additive valuation func-
tions, with equal entitlements, and binary values, for which in the independent
settings, there is a truthful allocation mechanism that is MMS and EF1 fair
[6,26]. This creates a separation between the two models.

7 Future Directions

In this paper, we initiated the study of fair division of indivisible goods, under
agents with interdependent values. We showed that despite the complexity of this
setting, the design of mechanisms that have at least one pure Nash equilibrium,
which is fair with respect to the true signals of the agents, is still possible. In
addition, the mechanisms that we designed, provide a variety of fairness guaran-
tees, even for agents with valuation functions that go beyond the additive class.
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Finally, we also presented a negative result showing that it is not possible to have
mechanisms that always admit PNE, and all the PNE of which, are fair (with
respect to either MMS or EF1). The latter creates a clear separation between
the interdependent and the independent valuation function setting.

Our work leaves several interesting questions open. In particular, for the case
of 2 agents, it would be compelling to explore whether it is possible to design
mechanisms that, besides having at least one fair PNE for every instance, also
have additional efficiency properties, e.g., Pareto Optimality (as this is not the
case with our mechanisms).

Moreover, moving to the general case of n agents, the fair PNE that our
mechanisms have, are of a very specific form, where an agent has to more or less
guess the true signals of the other agents. As this may be practically unappealing,
it would be nice to examine if we can have mechanisms with fair equilibria of
simpler structures.

Finally, another interesting direction would be to see whether we could iden-
tify meaningful settings of interdependent values where the impossibility results
that we present do not apply, i.e., settings where it is possible to design allocation
mechanisms for which all the PNE are fair.
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Abstract. A set of objects is to be divided fairly among agents with dif-
ferent tastes, modeled by additive utility-functions. An agent is allowed
to share a bounded number of objects between two or more agents in
order to attain fairness.

The paper studies various notions of fairness, such as proportionality,
envy-freeness, equitability, and consensus. We analyze the run-time com-
plexity of finding a fair allocation with a given number of sharings under
several restrictions on the agents’ valuations, such as: binary generalized-
binary and non-degenerate.
—
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1 Introduction

Consider several siblings who have inherited some assets and need to decide
how to allocate them, or several parties who form a coalitional government and
need to allocate the government ministries, or several faculty members who have
moved to a new building and need to allocate the offices. In all these cases, a
set of valuable objects has to be allocated among several agents, who may have
different preferences over the objects, and it is important that all agents view
the allocation as fair.

In many cases, fairness can only be attained by giving fractions of the same
object to different agents. For example, if three siblings inherit four identical
houses, then fairness requires that each sibling receives one house plus 1/3 of
the fourth house.

Fractional allocation means that some objects must be shared among two or
more agents. Sharing can be implemented in various ways. For example, sharing
a house can be implemented by renovating it in a way that will enable all three
siblings to live in it simultaneously; sharing a cabinet ministry is often done by
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a rotational agreement, in which each party controls the ministry for a fraction
of the time. Still, sharing an object is inconvenient, so it is desirable to share
as few objects as possible. In the above example, a fair allocation could also be
attained by sharing all four houses, giving each of the three siblings 1/3 of each
house, but this allocation is clearly less desirable than the allocation in which
only one house is shared.

This motivates the following generic computational problem, which is at the
heart of the present research:

(*) Given m objects, n agents with different valuations over the objects, a
fairness notion, and an integer s ≥ 0, find a fair allocation in which at
most s objects are shared, if such an allocation exists.

We also consider a variant in which s is the number of sharings rather than the
number of shared objects (e.g. a single object shared between 10 agents counts as
9 sharings). We assume that agents have linear additive valuations, and consider
four common fairness notions: proportionality (each agent values his share as
at least 1/n of the total value, where n is the number of agents), envy-freeness
(each agent values his share as at least the share of any other agent), equitability
(the subjective value of all agents is the same), and consensus (all n agents value
all n bundles exactly the same); see Sect. 2 for the formal definitions.

Throughout the paper we focus on the allocation of goods—objects with a
non-negative utility.

1.1 Related Work

Fair allocation with bounded sharing was first studied by Brams and Taylor [5,6].
Their Adjusted Winner (AW) procedure finds an allocation for n = 2 agents with
at most s = 1 shared object, that is simultaneously proportional, envy-free,
equitable, and fractionally Pareto-optimal (fPO: no other fractional allocation
is at least as good for all agents and strictly better for some agent). They also
show an example with three agents [5] where no allocation is simultaneously
fPO, envy-free and equitable. This does not rule out the option of satisfying
each of these properties on its own.

For n ≥ 3 agents, the number of required sharings was studied in an unpub-
lished manuscript of Wilson [19]. He proved the existence of an egalitarian allo-
cation of goods—an allocation in which all agents have the largest possible equal
utility [16]—with n−1 sharings. Egalitarian allocations are proportional but not
necessarily envy-free.

Several more recent works have proved a polynomial upper bound on the
required number of sharings for other fairness notions ([2][Appendix B] provides
complete proofs and references):

– For proportionality, envy-freeness and equitability, there always exists a fair
allocation with s = n − 1 (sharings or shared objects), and there may not
exist a fair allocation with smaller s.

– There always exists a consensus allocation with s = (n − 1)n (sharings or
shared objects), and there may not exist a fair allocation with smaller s.
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In all cases, an allocation satisfying the worst-case upper bound can be computed
in polynomial time (see [2][Appendix B]).

Although the worst-case upper-bounds on sharing are well-understood,
experiments on real-life and simulated instances show that most instances admit
a fair allocation with fewer sharings [3,17]. This motivates the question of decid-
ing whether a specific instance admits a fair allocation with s shared objects or
sharings, where s is smaller than the upper bound. In our opening example, as
there are n = 3 siblings, the worst-case upper bound is n−1 = 2, but there exists
an allocation in which only s = 1 house is shared, which is more convenient than
having to share two houses.

In general, the problem (*) is strongly NP-hard, as even for s = 0, it can be
used to solve the strongly NP-hard problem 3-Partition (Given a 3-Partition
instance with 3p items, we construct an instance of the problem (*) with m = 3p
objects and n = p agents with identical valuations, and s = 0). But, as many
real-life problems (e.g. inheritance allocation or cabinet ministries) involve a
small number of agents, there is value in studying the case when n is a small,
fixed constant, and the run-time should be polynomial in m. Even for fixed n the
problem is NP-hard in general, as the special case of s = 0 and n = 2 agents with
identical valuations is equivalent to the NP-hard Partition problem. However,
several recent works provide polynomial-time algorithms for some other special
cases:

1. Bismuth, Makarov, Segal-Halevi and Shapira [3] consider agents with identical
valuations. With identical valuations, all fairness notions coincide, and are
equivalent to finding a perfect scheduling of m jobs on n identical machines.1
They develop a polytime algorithm for deciding if there exists a fair allocation
with s = n − 2 shared objects, that is, one fewer than the worst-case upper
bound, for any fixed n ≥ 3. They prove that the n−2 is tight, as the problem
is NP-hard for any fixed n ≥ 3 and s ≤ n − 3.

2. Sandomirskiy and Segal-Halevi [17] go to the other extreme and consider
agents with non-degenerate valuations (for every two agents, their value ratios
for the m objects are all different). They also require the allocation to be fPO
in addition to being fair. They prove that, with non-degenerate valuations, the
number of fPO allocations with s shared objects is polynomial in m (for every
fixed n), so it is possible to enumerate all such allocations in polynomial time
and check whether one of them satisfies any desired fairness notion. Therefore,
the problem (*) is in P for every fixed n. Misra and Sethia [13] complement
this result by proving that, when n is not fixed, the problem is NP-hard even
for non-degenerate valuations and s = 0.

3. Goldberg, Hollender, Igarashi, Manurangsi and Suksompong [9] study con-
sensus splitting—a partition of objects into k subsets each of which has a
value of exactly 1/k for all agents. They show that computing a partition
with at most (k − 1)n sharings can be done in polynomial time. However,
computing a partition with fewer sharings is hard even for k = 2: for any

1 In fact, their result pertains also to the more general case of uniform machines,
which is equivalent to agents having identical valuations but different entitlements.
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fixed n and any s < n, it is NP-hard to decide whether a partition with at
most s sharings exists.

Further related work is surveyed in [2][Appendix D].

1.2 Our Contribution

Our goal is to better understand the computational aspects of fair allocation with
bounded sharing. We provide results for various special cases of the problem (*).

We start with the case of binary valuations (every agent values every object
at 0 or 1). This case was not handled before, but it is easy to show that, for
any constant n and s, the existence of a fair allocation for n agents with s
sharings/shared objects can be decided in polynomial time by a mixed integer
linear program with a fixed number of variables (Sect. 3).

Second, we consider agents with generalized binary valuations [7], also known
as cost valuations [4]—for every object o there is a price po such that each agent
i values o at either po or 0. In particular, we focus on a subset of the generalized
binary valuations in which the sum of the utilities is equal for each agent. We call
these equal-sum generalized binary utilities. These valuations generalize identical
valuations that were studied in [3]; the results there imply that deciding existence
of fair allocation with s ≤ n − 3 shared objects, or with s ≤ n − 2 sharings, are
both NP-hard for any fixed n ≥ 3. The remaining unsolved cases for equal-sum
generalized binary valuations are the cases with s = n − 2 shared objects. We
present a polynomial-time algorithm for deciding the existence of a proportional
allocation for n = 3 agents and s = 1 shared object. We note that, in fair item
allocation, even the case of three agents is often interesting and non-trivial. For
example, an important recent paper [8] is devoted to finding an EFX allocation
for three agents, whereas the case of four agents is still open. Our algorithm is
presented in Sect. 4.

Our third set of results involves agents with non-degenerate valuations. Non-
degeneracy is arguably a weak requirement, as, informally, almost all valua-
tions are non-degenerate [17] (see formal statement in Proposition 1 in Sect. 5).
Polynomial-time solvability for non-degenerate valuations means that almost all
instances are “easy”; this result is in the spirit of smoothed analysis [14,18]. But
fPO—the other assumption made by [17]—is a strong requirement, as, infor-
mally, “almost all” allocations are not fPO.2 Dropping the fPO may enable allo-
cation with fewer sharings, which the agents may prefer to an fPO allocation
with many sharings. This raises the question of whether a fair allocation (not
necessarily fPO) can be found efficiently for agents with non-degenerate valu-
ations. Our findings are mostly negative: for most fairness notions, we prove
NP-hardness even for non-degenerate valuations.

Our proofs use an unusual reduction technique, which may be of independent
interest. Usually, NP-hardness of a problem P2 is shown by reduction from a

2 Formally, even without sharing, the number of fPO allocations is in O(m(n2)+2)
[17], whereas the total number of allocations is at least nm, so the fraction of fPO
allocations goes to 0 as m → ∞, when n is fixed.
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known NP-hard problem P1, where each instance of P1 is transformed to a single
instance of P2 with the same answer. We define multi-reductions, in which, for
each instance of P1, we construct a large set of instances of P2 with the same
answer. We use these multi-reduction to prove that (unless P = NP) it is not
true that “almost all instances of P2 can be solved in polynomial time”. These
results are presented in Sect. 5.

Finally, we study truthful mechanisms for fair allocation. A truthful mecha-
nism is an algorithm which incentivizes the agents to reveal their true valuations.
Truthfulness is another reason to drop the fPO requirement: it is known that
no truthful mechanism can guarantee both fairness and Pareto-efficiency; it may
be desired to give up efficiency to get truthfulness. In [2][Appendix C] we sur-
vey several truthful fair allocation algorithms, and check whether they can be
adapted to construct an allocation with bounded sharing.

The results from this and previous works are summarized and compared in
Table 1.

2 Preliminaries

2.1 Agents, Objects, and Allocations

There is a set [n] = {1, . . . , n} of agents and a set [m] = {1, . . . , m} of objects.
For each agent i ∈ [n] and object o ∈ [m], the value vi,o ∈ Q represents agent i’s
utility of receiving the object o ∈ [m] in its entirety. The set of all instances is
Qnm, representing the set of all n × m matrices. The total value of agent i to all
objects is denoted by Vi :=

∑
o∈[m] vi,o. In general, the matrix v may contain

values of mixed signs; but in this paper, we focus on allocation of goods and
assume that all elements of v are non-negative.

A bundle x of objects is a vector (xo)o∈[m] ∈ [0, 1]m, where the component xo

represents the fraction of object o in the bundle. Each agent i ∈ [n] has a utility
function ui, assigning a numeric utility to each bundle. The utility functions are
assumed to be linear and additive, which means that ui(x) =

∑
o∈[m] vi,o · xo.

An allocation z is a collection of bundles (zi)i∈[n], one for each agent, with the
condition that all the objects are fully allocated. An allocation can be identified
with the matrix z := (zi,o)i∈[n],o∈[m] such that all zi,o ≥ 0 and

∑
i∈[n] zi,o = 1

for each o ∈ [m].

2.2 Fairness and Efficiency Concepts

We focus on four common fairness concepts. An allocation z is called:

– Proportional (PROP)—if every agent prefers her bundle to the equal division.
Formally, for all i ∈ [n]: ui(zi) ≥ Vi/n.

– Envy-free (EF)—if every agent prefers her bundle to the bundles of others.
Formally, for all i, j ∈ [n]: ui(zi) ≥ ui(zj). Every envy-free allocation is
also proportional; with n = 2 agents, envy-freeness and proportionality are
equivalent.
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Table 1. Run-time complexity of allocating m objects among agents, with a bound on
the number of sharings/shared objects.

Valuations Allo- Num of Measure bound Run-time
cation agents complexity

Identical Faira Unboun- sharing s (any) Strong NP-hard [[3]]
ded shared ob. s (any) Strong NP-hard [[3]]
Const. n sharing s ≤ n − 2 NP-hard [[3]]

s ≥ n − 1 O(m+ n) [cut-the-line]
shared s ≤ n − 3 NP-hard [[3]]

s = n − 2 O(poly(m, log(V1))) [3]
s ≥ n − 1 O(m+ n) [cut-the-line]

Binary EF Unboun- both s = 0 NP-complete [Section 3.1]
PROP ded s = 0 O(poly(m,n))[Section 3.1]
EQ s = 0 O(poly(m,n))[Section 3.1]
All Const. n both s (any) MILP [Theorem1]

Equal- Fair Const. n shared ob. s ≤ n − 3 NP-hard [see Identical]
sum- s ≥ n − 1 Weak poly [see Arbitrary]
generalized PROP 3 shared ob. s = 1 O(poly(m, log(V1)) [Theorem2]

All Const. n sharing s ≤ n − 2 NP-hard [See Identical]
s ≥ n − 1 Weak poly [see Arbitrary]

Non- PROP, Unboun- sharing s (any) Strong NP-hard [[2]Thm 11]
degenerate EF ded shared ob. s (any) Strong NP-hard [[2]Thm 12]

PROP, Const. n sharing n ≥ 2, s = 0 NP-complete [Theorem3]
EF or n ≥ 3,

shared ob. s ≤ n − 3 NP-complete [Theorem4]
PROP+ both s = 0 NP-complete [Theorem5]
dPO
EF+
dPO
Fair+ s ≥ n − 1 O(mpoly(n)) [17]
fPO

Arbitrary PROP Const. n both s ≥ n − 1 O(mn log(n)) [[2][App. B]]
CONS both s ≥ n(n − 1) Strong poly [10]

LP [[2][Appendix C]]
EQ both s ≥ n − 1 LP [[2][Appendix B]]
EF both s ≥ n − 1 O((n+m)4 log(n+m)) [15]

LP [[2][Appendix B]]
a With identical valuations, all fairness concepts coincide.

– Equitable (EQ)—if it gives each agent exactly the same relative value, defined
as the value of the bundle divided by the total value. Formally, for all i, j ∈ [n]:
ui(zi)/Vi = uj(zj)/Vj .

– Consensus (CONS)—if every agent attributes exactly the same value to every
bundle: for all i, j ∈ [n]: ui(zj) = Vi/n. A consensus allocation is proportional,
envy-free and equitable. Often a more general notion is considered, in which
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the number of parts may be different than n; a consensus k-partition is a
partition of the objects into k bundles such that for all i ∈ [n], j ∈ [k]:
ui(zj) = Vi/k.

We also consider two common efficiency concepts. We say that an allocation
z is Pareto-dominated by an allocation y if y gives at least the same utility to
all agents and strictly more to at least one of them. An allocation z is called:

– Fractionally Pareto-optimal (fPO): if it is not dominated by any allocation
y.

– Discretely Pareto-optimal (dPO): if it is not dominated by any allocation y
with no sharing.

2.3 Measures of Sharing

If for some i ∈ [n], zi,o = 1, then the object o is not shared—it is fully allocated to
agent i. Otherwise, object o is shared between two or more agents. Throughout
the paper, we consider two measures quantifying the amount of sharing in a
given allocation z.

The simplest one is the number of shared objects:

#shared(z) :=
∣
∣ {o ∈ [m] : zi,o ∈ (0, 1) for some i ∈ [n]} ∣

∣.

Alternatively, one can take into account the number of times each object is
shared. This is captured by the number of sharings

#sharings(z) :=
∑

o∈[m]

(
∣
∣{i ∈ [n] : zi,o > 0}∣∣ − 1

)

Both measures are zero for discrete allocations. They differ, for example, if only
one object o is shared but each agent consumes a bit of o: the number of shared
objects in this case is 1 while the number of sharings is n−1. Clearly, #shared(z)
≤ #sharings(z) for every allocation z.

2.4 Types of Utilities

Recall that for each agent i ∈ [n] and object o ∈ [m], the value vi,o ∈ Q represents
agent i’s utility of receiving the object o ∈ [m] in its entirety. In general, vi,o can
be any value in Q with no relation with other agent values. We relate to this as
arbitrary valuations. We consider several special classes:

– Identical valuations—for each object o ∈ [m], there is a rational number
po > 0 such that vi,o = po for every agent i ∈ [n].

– Binary valuations—Each agent i ∈ [n] values every object o ∈ [m] as either
vi,o = 0 or vi,o = 1.
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– Generalized binary valuations—for each object o ∈ [m], there is a rational
number po > 0 such that, for every agent i ∈ [n], either vi,o = po or vi,o = 0.3
In the special case Equal-sum generalized binary valuations, the sum of values
of all objects is the same for all agents.

– Non-degenerate valuations—for every two agents i, j ∈ [n], there are no two
objects o1, o2 ∈ [m] such that the value-ratios are equal (vi,o1 · vj,o2 = vi,o2 ·
vj,o1).

2.5 Computational Problems

In this paper we consider computational problems of the following kinds.

Definition 1. Let F be a fairness criterion (proportionality, envy-freeness,
etc.).

(a) For any fixed integers n ≥ 2 and s ≥ 0, F-Sharings(n, s) is the problem of
deciding if a given instance with n agents admits an F allocation with at most
s sharings. F-SharedObj(n, s) is the same problem where s is the maximum
number of shared objects.

(b) For any fixed integer s ≥ 0, F-Sharings(s) is the problem of deciding if a
given instance admits an F allocation among n agents (where n is part of
the input) with at most s sharings; F-SharedObj(s) is the same problem where
s is the maximum number of shared objects.

All those problems are obviously in NP, so proving NP-hardness is enough to
prove that those problems are NP-complete.

3 Binary Utilities

3.1 Unbounded n

When all agents have binary valuations, the following results are known (or easy
to derive) for the setting without sharing, when n is unbounded:

– EF-Sharings(s = 0) is NP-complete, by reduction from Exact 3-Cover or from
Equitable Coloring [1,11].

– In contrast, Prop-Sharings(s = 0) can be solved in polynomial time by a
standard reduction to network flow: there is an arc from the source to each
agent i with capacity �Vi/n�; from each agent i to each object he values at
1 with capacity ∞; and from each object to the sink with a capacity 1. An
maximum integral network flow can be found in polynomial time. The network
has an integral flow in which all arcs from source to agents are saturated, if
and only if the instance has a PROP allocation with no sharing.

3 A similar utility function is used in [4,7].
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– Eq-Sharings(s = 0) can be solved in polynomial time by checking, for each
k ∈ 0, . . . ,m, whether there exists an equitable allocation with common value
k. This can be done by reduction to maximum-weight matching: we construct
a weighted bipartite agent-object graph in which each agent has m copies.
k copies are connected only to objects that the agent values at 1, and their
weight is 1; m − k copies are connected only to objects the agent values at
0, and their weight is ε (sufficiently small). An EQ allocation with common
value k corresponds to a matching with weight n ·k+ε ·(m−nk). Assume first
that we have an EQ allocation with common value k. In the graph, connect
each object received by an agent with one of the agent’s copies. The weight
is at least n · k. All the remaining objects are connected randomly, adding
ε · (m − nk) to the total weight. That is, we reach a matching with weight
n · k + ε · (m − nk). Assume second that we have a matching with weight
n ·k+ ε · (m−nk). This means that with ε sufficiently small, in the matching,
there are exactly n · k edges with weight 1 and (m − nk) edges with weight
ε. For each edge with weight 1, give the object to the corresponding agent.
Obviously, every agent gets a bundle with a value of exactly k, corresponding
to an EQ allocation.

All results are not immediately applicable to the setting with s ≥ 1. In particular,
to extend the network-flow algorithm to solve Prop-Sharings(s) for s ≥ 1, we
would need to make the capacity of each edge from the source to agent i equal
Vi/n, and apply a variant of the integer network flow which finds the maximum
network flow with at most s non-integral edges. Currently, we do not know of
any polynomial-time algorithm for this problem.

Open Problem 1. (a) What is the running time of Prop-Sharings(s), EF-
Sharings(s) and Eq-Sharings(s) for any s ≥ 1, for agents with binary valua-
tions?

(b) What is the running time of Cons-Sharings(s) for any s ≥ 0, for agents with
binary valuations?

3.2 Fixed n

When the number of agents n is fixed, finding a PROP, EF, EQ or CONS
allocation becomes polynomial, for every fixed number of agents n and number
of sharings/shared objects s.

Theorem 1. For every fixed number of agents n and number of sharings s:

(a) Prop-Sharings(n, s), EF-Sharings(n, s), Eq-Sharings(n, s), Cons-Sharings(n, s)
with binary utilities can be solved in polynomial time.

(b) Prop-SharedObj(n, s), EF-SharedObj(n, s), Eq-SharedObj(n, s), and Cons-
SharedObj(n, s) can be solved in polynomial time.

Proof.4 If s ≥ n − 1 then the theorem follows from the results in [2][Appendix
B]. Therefore we assume s ≤ n − 2.
4 We are grateful to Rohit Vaish for the proof idea for s = 0.
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For each subset N of agents, let MN be the set of objects that are valued
at 1 by all and only the agents in N . Denote by N the set of all these subsets,
there are at most 2n subsets in N .

We brute-force all possibilities of objects to share. We call the � shared objects
o1, o2, . . . , o� (note that � ≤ s, for both sharings and shared objects). Every
shared object can belong to any one of the 2n subsets in N , and all objects in
the same subset are equivalent, so it is enough to consider at most (2n)� ≤ 2ns

cases.
In addition, for each shared object k ∈ [�], we denote by Hk the nonempty

subset of agents who get a non-zero fraction from ok. Overall there are 2n − 1
options for each Hk, so at most (2n − 1)� < 2ns cases to check. Overall, for fixed
constants n, s we consider only a constant number of cases.

For part (a), where s is the number of sharings, in each subcase we check
that

–
∑

k∈[�](|Hk| − 1) ≤ s.

If this is not true, we simply discard this case. For part (b), where s is the number
of shared objects, this check is not required, it is sufficient that � ≤ s.

For each case, we construct a mixed integer linear program with the following
variables:

– For every subset N ∈ N and agent i ∈ N , create an integer variable xi,N

representing how many indivisible objects in MN agent i obtains.
– For each k ∈ [�] and each agent i ∈ Hk create a real variable yi,k representing

the fraction agent i gets from object ok.

Now, we describe the constraints for variables xi,N , yi,k that are true if and only
if the corresponding allocation distributes all items among agents:

– xi,N ≥ 0,∀i ∈ [n], N ∈ N , and xi,N is an integer number;
–

∑
i∈[n] xi,N = |MN\{o1, . . . , o�}|, ∀N ∈ N—we distribute all non-shared

objects from MN among all agents;
– yi,k ≥ 0, ∀i ∈ Hk, k ∈ [�]—each agent in Hk gets a non-negative fraction from

ok;
–

∑
i∈Hk

yi,k = 1, ∀k ∈ [�]—the divisible object ok is completely distributed
among agents from the set Hk.

Next, we add equations for computing the value each agent i attributes to each
bundle j

ui,j =
∑

N :N�i

(

xj,N +
∑

k: Hk�j, ok∈MN

yj,k

)

∀i, j ∈ [n].

The value of agent i is determined only by objects in sets MN for which N
contains i. For each such N , we add the number of objects given completely
to j (xj,N ), and the fractions of divisible objects ok given to j. Based on these
equations, it is easy to write constraints for any desired fairness notion, according
to the definitions in Sect. 2.2.
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An MILP can be solved in polynomial time for any constant number of integer
variables [12][Section 5]. The number of variables in our MILPs bounded by some
function of n, s, as n and s are fixed constants. So we have that all our MILP-s
is solvable in polynomial time.

4 Generalized Binary Utilities with Equal Sum

We recall the definition of the generalized binary utilities—assume that for each
object o ∈ [m], there is a rational number po > 0, for every agent i ∈ [n] and
object o ∈ [m], vi,o ∈ {0, po}. We assume that the sum of the utilities is equal
for every agent, so for every two agents, Vi = Vj .

Our main positive result in this section is for the case n = 3, s = 1.

Theorem 2. Prop-SharedObj(3, 1) with equal-sum generalized binary valuations
can be solved in polynomial time.

To design our algorithm, we use another algorithm for the max-min variant
of the n-way partition problem in which s = 1 object is allowed to be shared.
The problem is defined as follows: given m objects and n = 3 agents with
identical valuations, return an allocation with at most s = 1 shared object, for
which the smallest bundle value is as large as possible. We call this problem
MaxMinIdentical(3, 1). A polynomial-time algorithm for MaxMinIdentical(3, 1) is
given in [3]. Their proof uses two structure Lemmas, that we will use later:

Lemma 1. In any instance of MaxMinIdentical(3, 1) either the output is perfect
(all the bundle values are equal), or, the shared object is shared only between the
two smallest bundles, say bundle 1 and bundle 2, and their values are equal.

Lemma 2. With identical valuations, for every allocation with s = 1 shared
object and bundle sums b1, b2, b3, there exists an allocation with the same bundle
sums b1, b2, b3 in which only the highest-valued object is shared.

When there are three agents, it is easy to visualize the utilities of the agents
using a table that we introduce next. Consider Table 2, that divide the set of
objects into seven different categories, from X1 to X7.

Table 2. equal-sum generalized binary utilities for three agents

Xl

∑
j∈Xl

u1(xj)
∑

j∈Xl
u2(xj)

∑
j∈Xl

u3(xj)

X1 U1 =
∑

j∈X1
pj U1 =

∑
j∈X1

pj U1 =
∑

j∈X1
pj

X2 U2 =
∑

j∈X2
pj U2 =

∑
j∈X2

pj 0
X3 U3 =

∑
j∈X3

pj 0 U3 =
∑

j∈X3
pj

X4 0 U4 =
∑

j∈X4
pj U4 =

∑
j∈X4

pj

X5 U5 =
∑

j∈X5
pj∗ 0 0

X6 0 U6 =
∑

j∈X6
pj∗ 0

X7 0 0 U7 =
∑

j∈X7
pj∗
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There is no interest in assigning an object to an agent that values it at zero,
so we automatically assign objects in X5 to agent 1, objects in X6 to agent 2,
and objects in X7 to agent 3. To notify that the entire set of objects is assigned
to an agent, we add a star to the corresponding cell. Denote by V the sum of
the utilities. Note that:

V = U1 + U2 + U3 + U5 = U1 + U2 + U4 + U6 = U1 + U3 + U4 + U7.

It is easy to see that:

U3 + U5 = U4 + U6; U2 + U6 = U3 + U7; U2 + U5 = U4 + U7.

Assume w.l.o.g. that U5 ≥ U6 ≥ U7, so U2 ≤ U3 ≤ U4.
Using this notation, we present the algorithm for proving Theorem 2. The

algorithm is based on a detailed case analysis, which we provide in [2][Appendix
A]. In general, there are three main cases:

– U1 ≤ U4—there is always a PROP allocation. The intuitive meaning of this
case is that some set of objects (namely X4) is worth a lot to agents 2 and 3,
but worth little to agent 1. We can allocate these objects among agents 2 and
3 in any way we like with a single shared object, and use the other objects
(which are less valuable) to compensate agent 1 without additional splits (see
Case 1 in [2][Appendix A]);

– U4 < U1 ≤ 2
3 · V —there is always a PROP allocation. The intuitive meaning

of this case is that there is a set of objects (namely X1) that are worth a lot to
all three agents, but the sum of these objects is at most 2/3 of the total value
V . Therefore, it is enough to allocate this set among two of the three agents
(giving each of them at least V/3), and use the other objects to compensate
the third agent (see Case 2 in [2][Appendix A]);

– U1 > 2
3 · V . The intuitive meaning of this case is that there is a set of objects

(namely X1) that are worth a lot to all three agents, and their sum is larger
than 2/3 the total value. Therefore, we must partition these objects among
all three agents. To do this, we use MaxMinIdentical(3, 1). If the largest bundle
sum is at most U1+U2+2·(U3+U4+U5+U6)

3 , then a PROP allocation exists and
we answer “yes”; otherwise, we prove that no PROP allocation can exist, so
we answer “no” (see Case 3 in [2][Appendix A]).

This is a polynomial time algorithm for Prop-SharedObj(3, 1) with equal-sum
generalized binary utilities, proving Theorem 2.

Open Problem 2. Given some fixed n ≥ 3, what is the run-time complexity of
the problems Prop-SharedObj(n, n − 2) and of EF-SharedObj(n, n − 2) for gener-
alized binary and arbitrary utilities?

In particular, what is the run-time complexity of Prop-SharedObj(3, 1) for
arbitrary utilities and EF-SharedObj(3, 1) for generalized binary utilities?

The same questions are interesting for CONS and EQ.
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5 Non-degenerate Valuations

NOTE: following reviewers’ comments, this section was rewritten in a substan-
tially more formal way. Most of the proofs have been moved to appendices and
can be found in the full version [2].

As mentioned in the introduction, Sandomirskiy and Segal-Halevi [17] prove
that problems PropFpo-Sharings(n, s), EFFpo-Sharings(n, s), PropFpo-SharedObj(
n, s), EFFpo-SharedObj(n, s) are solvable in time O(poly(m)) for any fixed
n and s, whenever the valuations are non-degenerate, and argue—somewhat
informally—that “almost all” valuations are non-degenerate; this means that
almost all instances of the above problems are easy. In this section we would like
to show that the requirement of fractional Pareto-optimality (fPO) is essential
for this result: when this requirement is dropped, or even just relaxed to dPO,
computational hardness strikes even for non-degenerate valuations, and it is no
longer true that almost all instances are easy.

To prove this statement, we first have to formally define the notion of “almost
all valuations are easy”.

5.1 Definitions

We consider a decision problem P , whose input is a vector of some t non-negative
integers. As the input size is measured by t, the binary encoding length of the
numbers should be polynomial in t. For simplicity, we assume that all input
integers are in the range [0, 2ct], for some constant c that may depend on the
problem. We denote the set of possible inputs of size t (that is, t-sized vectors
of integers in [0, 2ct]) by I(t, c).

For any input vector x ∈ I(t, c), we denote its infinity norm by ‖x‖. For any
x and integer r, we denote by B(x, r) the ball of radius r around x: B(x, r) :=
{x′ ∈ I(t, c) : ‖x − x′‖ ≤ r}.

The notion of “almost all instances are easy” is formalized by the following
definition of “generically polynomial-time algorithm”.

Definition 2. Given an algorithm A for a problem P , we say that A runs
generically in polynomial time if there exists a polynomial function fp such
that, for every size t and input x ∈ I(t, c), there is a subset of “Good inputs”
G(x) ⊆ B(x, fp(t)), such that the following holds:

(a) Algorithm A runs in time poly(t) on all inputs in G(x);
(b) The fraction of good inputs approaches 1, that is,

lim
t→∞ min

x∈I(t,c)

|G(x)|
|B(x, fp(t))| = 1,

(c) Given x, it is possible to compute in time poly(t) a vector in G(x).

The results in [17] imply:
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Proposition 1. For every fixed n, s, decision problems PropFpo-Sharings(n, s),
EFFpo-Sharings(n, s),PropFpo-SharedObj(n, s),EFFpo-SharedObj(n, s) have algo-
rithms that run in generically-polynomial time.

Proof. In these problems, the input is x ≡ v = a valuation matrix, and the
number of integers in the input is t = mn = the number of values in the valuation
matrix. We choose the polynomial fp(t) := t3. We define the set G(v) as the
subset of matrices in B(v, t3) that define non-degenerate valutions. We show
that this set satisfies Definition 2.

(a) Is satisfied by the algorithms in [17].
(b) For each input (valuation matrix) v′ ∈ B(v, t3), for each value v′

i,o in the
matrix there are some ri,o options, where t3 + 1 ≤ ri,o ≤ 2t3 + 1.5 The
inputs in G(v) are the matrices v′ in which each value v′

i,o (the value of
agent i to object o) satisfies inequalities of the form: v′

i,o/v′
j,o �= v′

i,p/v′
j,p for

other agents j and objects p; the number of such inequalities is smaller than
mn = t. Therefore, the number of options to choose v′

i,o is at least ri,o − t.
Overall,

|G(v)|
|B(v, t3)| ≥

∏
i,o(ri,o − t)
∏

i,o(ri,o)

=
∏

i,o

(1 − t/ri,o) ≥ (1 − t/(t3 + 1))t,

which approaches 1 as t → ∞; this formalizes the claim that “almost all
inputs are non-degenerate”.

(c) To compute an input in G(v), it is sufficient to check at most t options for
changing each coefficient vi,o; this can be done using polynomial in t time.
��

Our goal is to prove that some problems do not have generically-polynomial-
time algorithms. To this end, we first define a multi-reduction. We present a
simplified version first, and then the full version.

Definition 3 (multi-reduction – simplified). Given two decision problems
P1 and P2, both defined on inputs in I(t, c) for some c ≥ 1, a polynomial-time
multi-reduction from P1 to P2 is a family of functions, ht : I(t, c) → I(t, c),
which maps an input for P1 to an input for P2, and satisfies the following:

(a) ht runs in time poly(t);
(b) There exists a super-polynomial function fe such that, for all t and all x1 ∈

I(t, c), when x2 := ht(x1),

P2(x′
2) = P1(x1) for all x′

2 ∈ B(x2, fe(t)),

5 ri,o = t3 + 1 when the original value vi,o is at the bottom or top end of the allowed
interval, and ri,o = 2t3 + 1 when vi,o is at the middle of the allowed interval.
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A multi-reduction is stronger than a usual reduction in that each input to P1 is
transformed simultaneously to an super-polynomially-large set of inputs to P2,
all of which have the same output.

Definition 3 is “simplified” since it assumes that the size and encoding length
of the inputs to P1 is equal to the size and encoding length of the inputs to P2.
In fact, reductions often add some inputs or increase the encoding length. We
handle this technical issue by assuming that the input x1 is in I(t1, c1) and the
transformed input x2 is in I(t2, c2), where t2 depends polynomially on t1 but
they do not have to be equal. We also allow the constants c1 and c2 to differ.

Definition 4 (multi-reduction – full). Given two decision problems, P1

defined on inputs in I(t1, c1) for some constant c1 ≥ 1 and P2 defined on inputs
in I(t2, c2) for some constant c2 ≥ 1, a multi-reduction from P1 to P2 consists
of a polynomial-time-computable function t2 : N → N and a family of functions,
ht1 : I(t1, c1) → I(t2(t1), c2), which maps an input for P1 to an input for P2,
and satisfies the following:

(a) ht1 runs in time poly(t1);
(b) There exists a super-polynomial function fe such that, for all t1 and all

x1 ∈ I(t1, c1), when x2 := ht1(x1),

P2(x′
2) = P1(x1) for all x′

2 ∈ B(x2, fe(t2)),

Definition 5. A decision problem P2 is called generically NP hard if there exists
a multi-reduction from some NP-hard problem P1 to P2.

In [2][Appendix B] we prove that the relation between “generically-
polynomial” and “generically-NP-hard” is analogous to the relation between
“polynomial” and “NP-hard”:

Proposition 2. If a problem is generically-NP-hard, then it does not have a
generically-polynomial algorithm unless P = NP.

Now we are ready for our main results: showing that fair division problems
without the fPO requirement are generically-NP-hard, and therefore probably
do not have generically-polynomial-time algorithms (in particular, they are NP-
hard even for non-degenerate valuations).

5.2 EF and PROP Allocations—Fixed n

Theorem 3. The decision problems Prop-Sharings(n, s) and EF-Sharings(n, s)
are generically NP-hard in the following cases:

(a) For any fixed n ≥ 2 and s = 0;
(b) For any fixed n ≥ 3 and s ∈ {0, . . . , n − 3}.
The proof is by showing a multi-reduction from k-way partition, where k = n
in part (a) and k = n − s − 1 in part (b). Due to space constraints, we moved
all proofs to [2][Appendix B].

We could not adapt the proof of Theorem 3 to shared objects. We can still
prove similar results for shared objects, but with a different multi-reduction.
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Theorem 4. Problems Prop-SharedObj(n, s) and EF-SharedObj(n, s) are gener-
ically NP-hard in the following cases:

(a) For any fixed n ≥ 2 and s = 0;
(b) For any fixed n ≥ 3 and s ∈ {0, . . . , n − 3}.

The hardness of Theorem 3(a) and Theorem 4(a) remains even if we add the
requirement of discrete PO (in contrast to fractional PO). We consider only part
(a) as the requirement of discrete PO makes sense only for allocations without
sharing.

Theorem 5. For any fixed integer n ≥ 2, the decision problems PropDpo-
Sharings(n, 0) (≡ PropDpo-SharedObj(n, 0)) and EFDpo-Sharings(n, 0) (≡
EFDpo-SharedObj(n, 0)) are generically NP-hard.

Theorem 5 is interesting as it shows a crucial difference between the
apparently-similar concepts fPO and dPO: whilst the fPO allocations can be
enumerated in polynomial time (as their number is polynomial in m when the
valuations are non-degenerate [17]), the dPO allocations cannot.

When s = n − 1, an EF and PROP allocation with s sharings always exists
(see [2][Appendix B]). Therefore, only the case s = n − 2 remains open. With
identical valuations, this case is NP-hard with sharings and polynomial with
shared objects [3]. We do not know if the same is true with non-degenerate
valuations.

Open Problem 3. For any n ≥ 3 and s = n − 2, do the problems Prop-
Sharings(n, s), EF-Sharings(n, s), Prop-SharedObj(n, s), EF-SharedObj(n, s) have
a generically-polynomial-time algorithm?

For equitability and consensus allocation, we do not yet have any generic
results:

Open Problem 4. (a) For any n ≥ 2 and s ∈ [0, n − 1), do the problems
Eq-Sharings(n, s), Eq-SharedObj(n, s) have a generically-polynomial-time
algorithm?

(b) For any n ≥ 2 and s ∈ [0, n(n − 1)), do the problems Cons-Sharings(n, s),
Cons-SharedObj(n, s) have a generically-polynomial-time algorithm?

5.3 EF and PROP Allocations—Unbounded n

So far we assumed that n is fixed. If n is unbounded (part of the input), then
we can prove strong NP-hardness for both sharings and shared objects. This
requires to adapt the notions of multi-reduction and generic NP-hardness to
strong NP-hardness. All definitions and proofs are in [2][Appendix B].
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6 Conclusion

Our work presented several results related to fairly allocating objects among
agents, with a mixture of divisible and indivisible objects. In our work all objects
are divisible, however, divisibility is highly discouraged. We covered many fair-
ness and efficiency concepts, with a bound on the number of sharings or shared
objects. We tackle the difficulty of finding an allocation for agents with arbitrary
valuations by restricting the agent valuations to some well-studied domains, espe-
cially the binary, generalized-binary, and the non-degenerate valuations. In addi-
tion, our work shows that sometimes a polynomial algorithm can be designed if
we allow a bounded number of objects to be shared among agents. Such a behav-
ior is already analyzed in [3], and our work can be seen as a confirmation—when
searching for a fair allocation is too hard, considering the objects as divisible,
but still constraining the number of shared objects, might be reasonable for the
agents, and may significantly decrease the runtime of the search. Thus, we high-
lighted a new way to relax the difficult fair-division problem, as it is common in
the literature using for example Envy-freeness up to one good (EF1).

Our main result considers 3 agents under equal-sum generalized binary utili-
ties. Despite the fact that we consider only 3 agents, the algorithm is complicated,
and involves an exhaustive cases analysis. That is why, as a next challenge, one
can try to generalize our algorithm and see if it is possible to extend it for any
fixed number n of agents. Also, it is interesting to see if the same result holds
for agents under general additive utilities.

We dedicated one section to non-degenerate valuations. Despite the surprising
polynomial time algorithm designed in [17], several results in our paper point
up the hardness of this problem, even when allowing shared objects.

Along the paper, we left many open problems. This paper is an invitation for
researchers interested in the fair-division field, to find new results, with the goal
to find theoretic and practical solutions, to numerous fair-division problems.
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Abstract. Every computer system performs resource allocation across
system users. The defacto allocation policies used in most of these
systems are max-min fairness for single resource settings and domi-
nant resource fairness for multiple resources. These allocation schemes
guarantee desirable properties like incentive compatibility, envy-freeness,
and Pareto efficiency. Assuming that user demands are static (time-
independent) the allocation is also fair. However, in modern real-world
production systems, user demands are dynamic, that is, vary over time.
As a result, there is now a fundamental mismatch between the resource
allocation goals of computer systems and the properties enabled by classi-
cal resource allocation policies. This paper aims to bridge this mismatch.
When demands are dynamic, instant-by-instant max-min fairness can
be extremely unfair over a longer period of time, i.e., lead to unbalanced
user allocations, as previous large allocations have no effect in the current
time step. We consider a natural generalization of the classic algorithm
for max-min fair allocation and dominant resource fairness for multiple
resources when users have dynamic demands. This algorithm guarantees
Pareto optimality while ensuring that resources allocated to users are as
max-min fair as possible up to any time instant, given the allocation in
previous periods. While this dynamic allocation scheme remains Pareto
optimal and envy-free, unfortunately, it is not incentive compatible. We
study the strength of the incentive to misreport; our results show that
the possible increase in utility by misreporting demand is bounded and,
since this misreporting can lead to a significant decrease in overall useful
allocation, this suggests that it is not a useful strategy.

Keywords: Dominant Resource Fairness · Resource Allocation

1 Introduction

Resource allocation is a fundamental problem in computer systems. Companies
like Google [45] and Microsoft [20] use schedulers in private clouds to allocate
a limited and divisible amount of resources (e.g., CPU, memory, servers, etc.)
among many selfish and possibly strategic users that want to maximize their allo-
cation; the goal of the scheduler is to maximize resource utilization while achiev-
ing fairness in resource allocation. The defacto allocation policies used in many
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of these systems are the classic max-min fairness (MMF) and its generalization,
dominant resource fairness (DRF) [19] policies, for single and multiple resource
settings, respectively. For instance, these policies are used in most schedulers in
private clouds [8,19–22,25,42,43,45]; they are deeply entrenched in congestion
control protocols like TCP and its variants [2,11]; and are the default policies
for resource allocation in most operating systems and hypervisors [9,33]. DRF
has also attracted a lot of attention in the economics and computing community,
starting with [38] and with followup work [17,18,27,30,34].

The strong prevalence of MMF and DRF is rooted in their guarantees: Pareto-
efficiency, sharing incentives (users are not better off by getting their fair share
of resources every round), incentive compatibility, envy-freeness (no user envies
the allocation of another user), and fairness. However, to guarantee these prop-
erties, both MMF and DRF policies assume that user demands do not change
over time. This assumption is far from realistic in modern real-world deploy-
ments: several recent studies in the systems community have shown that user
demands have become highly dynamic, that is, vary over time [10,40,46,47,49].
For such dynamic user demands, naively using these policies (e.g., to perform
a new instantaneously max-min fair allocation every round) can result in vastly
disparate user allocations over time—intuitively, since MMF does not take past
allocations into account, dynamic user demands can result in increasingly unfair
user allocations over time. We have also studied this issue in [46], where we imple-
ment a dynamic version of MMF that aims to equalize users’ total allocations
and show that it results in reasonably fair allocation on practical user data.

Motivated by the realistic case of dynamic user demands over divisible
resources with multiple resources, we study Dynamic DRF1, a mechanism that
generalizes DRF for dynamic demands; just like DRF generalizes MMF for
multi-resource allocations, Dynamic DRF generalizes Dynamic MMF [16] for
multi-resource allocations over dynamic demands by taking past allocations into
account. Our model is the same as the original DRF paper [19]: every round,
each user specifies a vector of ratios (the proportions according to which the
user uses the different resources, e.g., for her application) and a demand (the
maximum allocation of resources that would be useful to her). Users have Leon-
tief preferences—as they are known in economics—which capture the idea that
the user’s workload requires fixed proportions of the resources. Formally, the
utility in each round is equal to the minimum over the amount of every resource
received divided by their ratio for it, up to their demand. However, in contrast
to [19], we consider scenarios where the ratios and the demands can vary over
time and users want to maximize the sum of their utilities across rounds.

In every round, Dynamic DRF allocates resources while being as fair as pos-
sible given the past allocations: first the minimum total utility of any user is
maximized, then the second minimum, etc. Besides being fair, Dynamic DRF
is also Pareto-efficient by construction: every round, either every user’s demand

1 The name Dynamic DRF has also been used by [30] for the extension of DRF when
users arrive and depart sequentially. See more about the difference in our Relate
work.
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is satisfied or for every user a resource she wants to use is saturated. However,
neither Dynamic MMF [16], nor Dynamic DRF are incentive compatible, i.e., it
is possible that a user can misreport her demand or her ratios on one round to
increase her total useful allocation in the future. The lack of incentive compati-
bility was already true for Dynamic MMF [16], but our study leads to improved
lower bounds on the incentive compatibility violation of Dynamic MMF; see
Theorems 4 and 8.

Despite Dynamic DRF not being fully incentive compatible, studying it is
both important and interesting. First, similar to the widely-used classic MMF
and DRF (also referred to as static MMF and DRF), Dynamic DRF is simple
and easy to understand; thus, it has the potential for real-world adoption (similar
to many other non-incentive compatible mechanisms used in practice, e.g., non-
incentive compatible auctions used by U.S. Treasury to sell treasury bills since
1929 and by the U.K to sell electricity [23,32,39]). Second, our results show that
Dynamic DRF is approximately incentive compatible, that is, strategic users
can increase their allocation by misreporting their demands but this increase
is bounded by a relatively small constant factor, independent of the number of
users and the number of resources. Moreover, effective misreporting not only
requires knowledge of future demands but can significantly decrease overall use-
ful allocation, suggesting that misreporting is unlikely to be a useful strategy
for any user. Approximate incentive compatibility has been extensively used to
analyze various systems in other areas, with the idea that closeness to incentive
compatibility (and the danger of reward loss by misreporting) will make truthful
reporting a likely strategy in practice. We review this literature at the end of
this section.

Our Contribution. Our goal is to study Dynamic DRF and the incentive to
misreport in it. A popular relaxation of incentive compatibility is γ-incentive
compatibility [3–5,12,13,31,36], which requires that the possible increase in util-
ity by untruthful reporting must be bounded by a factor of γ ≥ 1 (γ is referred
to as incentive compatibility ratio). Using this notion we show that users have
limited incentive to be untruthful:

Our main results are presented in Sect. 3, where we focus on the setting
of multiple resources. In the case that every user demands every resource when
using the system, we show that in Dynamic DRF user i cannot increase her utility
more than a factor of (1 + ρi) (Theorem 3) and give a matching lower bound
(Theorem 4) where ρi is a parameter that quantifies the relative importance of
every resource between user i and the other users. We also show that in this case
users have no incentive to over-report their demand or misreport their ratios
(Theorem 2); these guarantee that resources allocated to the users are always
in use. The assumption that every user demands every resource when using the
system, even if in different ratios, is quite natural; in computer systems where the
resources shared are CPU, memory, storage, etc. the users run applications that
use every resource. This assumption is also used by [30], where they extend DRF
to the case of users arriving and leaving sequentially resulting in dynamically
changing the allocations in the system. Additionally, we show that Dynamic
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DRF is envy-free (Theorem 5), and the variant where every user is guaranteed
an α fraction of her fair share satisfies α-sharing incentives while retaining every
one of the aforementioned properties.

In Sect. 4 we consider the simpler problem of single resource environments.
We study Dynamic weighted MMF which generalizes Dynamic MMF for the
case when every user i has a positive weight wi that indicates her priority. Our
guarantees for Dynamic DRF (that are tight in that setting) carry over to the
single resource setting but prove to be too weak: we offer better incentive com-
patibility bounds under more adverse conditions. More specifically, we consider
the setting where players can create coalitions to increase their total utility.
In this case, Dynamic weighted MMF is 2-incentive compatible (Theorem 7)
and demand over-reporting does not increase utility (Theorem 6). The former
of these results strikes a big contrast between single and multiple resource set-
tings: assuming that users do not collude, we can directly apply our results from
Dynamic DRF to the Dynamic weighted MMF mechanism. In this case, we have
that ρi = maxk �=i{wi/wk}, giving an upper bound of 1+ρi = 1+maxk �=i{wi/wk}
for the incentive compatibility ratio, that can possibly be unbounded. In con-
trast, we prove a 2-upper bound for Dynamic weighted MMF. In addition, we
prove a lower bound: in Dynamic MMF a user can increase her utility by a factor
of

√
2 by under-reporting her demand (Theorem 8).

Related Work. The simplest algorithm for resource allocation is strict parti-
tioning [44,48], which allocates a fixed amount of resources to each user inde-
pendent of their demands. While incentive compatible, strict partitioning can
have arbitrarily bad efficiency. Static MMF and DRF [16,19,20,22,38,42] are
Pareto-efficient, incentive compatible, envy-free, and satisfy sharing incentives,
but are fair only when user demands are static.

[16] prove that Dynamic MMF is not incentive compatible under the same
utility model as ours. The papers [16,26] study resource allocation for single
resource settings with dynamic demands focusing on the case when users have
utility for resources above their demand, only at a lower rate. They offer alter-
nate mechanisms where past allocations have some effect on the current ones
(unlike static MMF) while maintaining incentive compatibility, but the mecha-
nisms they consider are closer to MMF separately in each round, and aim less to
be fair overall. Under this model, they present two mechanisms that are incentive
compatible but either satisfy sharing incentives and have no Pareto-efficiency
guarantees or approximately satisfy sharing incentives and are approximately
Pareto-efficient under strong assumptions (user demands being i.i.d. random
variables and number of rounds growing large).

[41] present minor improvements in fairness over static DRF for dynamic
demands while maintaining incentive compatibility. Their mechanism allocates
resources in an incentive compatible way according to DRF while marginally
penalizing users with larger past allocations using a parameter δ ∈ [0, 1). Specif-
ically, if t rounds ago a user received an allocation of r, that allocation penalizes
the user in the current round by r(1 − δ)δt. This means that the penalty of
(1 − δ)δt ≤ 0.25 reduces exponentially fast with time for any fixed δ < 1 and
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as δ → 1 the penalty tends to 0. Thus, for every δ (and, especially for δ = 0
and δ → 1), their mechanism suffers from similar problems as static DRF: past
allocations are barely taken into account.

In [46] we implement a version of Dynamic MMF and analyze its perfor-
mance under practical user data. Our results show that Dynamic MMF yields
much fairer outcomes for users with dynamic demands compared to other static
mechanisms like classic MMF. In [46] we also prove that Dynamic MMF is
3/2-incentive compatible. Here we generalize this result, obtaining the afore-
mentioned one as one of the corollaries of Theorem 7 (were we study Dynamic
weighted MMF, the generalization of Dynamic MMF).

Several other papers study resource allocation when user demands are
dynamic, but with significantly different settings than ours. [1,50] examine the
setting where indivisible items arrive over time and are allocated to users whose
utilities are random; however [1] study a very weak version of incentive com-
patibility in which a mechanism is incentive compatible if misreporting cannot
increase a user’s utility in the current round and [50] do not consider strategic
users. [28] study single resource allocation and assume the users do not know
their exact demands every round, needing to provide feedback after each round
of allocation to allow the mechanism to learn. The goal of the paper is to offer
a version of MMF that approximately satisfies incentive compatibility, sharing
incentives, and Pareto-efficiency, despite the lack of information, but is not con-
sidering the long-term fairness that is the focus of our mechanisms.

Another series of work study users arriving and leaving consecutively after
some period of time: [17,34] focus on single resource settings, while [18,27,30]
also study the allocation of multiple resources. Even though their setting is
dynamic, users have constant demands and cannot re-arrive after leaving, mak-
ing the user demands static. After every arrival or departure of a user, resources
need to be re-distributed while maintaining some sort of fairness, e.g., the users’
utilities need to be approximately similar. [30] focus on never decreasing a user’s
allocation when re-distributing resources, thus creating a mechanism that allo-
cates at most k/n fraction of every resource when k out of n users are present in
the system. They offer a mechanism for this setting that they also call dynamic
DRF, however, in their setting the dynamic nature of the problem comes from
churn in users, as well as the corresponding changes in total resources, and not
from dynamic demands. The papers [17,18,27,34] consider resource allocation,
but incentive compatibility is not taken into account and the focus is to maxi-
mize fairness while bounding the “disruptions” of the system every time a user
enters or leaves, which is how many users’ allocations are altered.

There are many reasons why mechanisms used in practice are often not incen-
tive compatible, including the relative simplicity of these mechanisms that makes
it easier for users to understand and use them and the fact that mechanisms
claimed to be incentive compatible may not turn out to actually be incentive
compatible in practice, depending on the information structure, e.g., when par-
ticipants collude (see [5] for more examples and a nice discussion of a long list
of other reasons). In most settings, even if the mechanism is manipulable, find-
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ing a profitable manipulation is hard. In our setting, finding such manipula-
tion requires knowledge of all users’ future demands, and while under-reporting
demand has the potential to increased future utility, it seems more likely to lead
to decreased utility. When using a manipulable mechanism, it is important to
understand how large is the incentive to manipulate. γ-incentive compatibility
has been considered in many settings. [6] show that there is a gap of O(

√
γ)

in the optimal achievable revenue between γ-approximate incentive compatible
mechanisms and incentive compatible ones in the context of auctions. [7] design
mechanisms that have a constant incentive compatibility ratio when the auc-
tioneer has an estimate of constant error for the users’ private information. [14]
show that when designing contracts there is a provable trade-off between the
approximate incentive compatibility ratio and the approximation of the optimal
payoff of the contract. As we mentioned before, [28] study a setting similar to
ours, but where long-term fairness is not their focus, instead they try to learn
users’ demands; to achieve their results they propose several mechanisms most
of which are only approximately incentive compatible. [3,13,31,36] study combi-
natorial auctions that are almost incentive compatible. [12] study approximate
incentive compatibility in machine learning, when users are asked to label data.
[4] examines approximate incentive compatibility in large markets, where the
number of users grows to infinity. [5] develop algorithms that can estimate how
incentive compatible are various mechanisms for buying, matching, and voting.
[29] propose a mechanism for repeated second price auctions where the mechan-
ics of one auction depend one the previous one, making the overall mechanism
approximately incentive compatible. [35] study different concepts of approxi-
mate incentive compatibility that can be used to design mechanisms that have
better guarantees (e.g., computational efficiency, bypassing impossibility results,
etc.) than incentive compatible ones in the context of mechanism design with
or without money. [37] reviews the limitations imposed by incentive compati-
bility, e.g., in some settings multi-dimensional user information makes incentive
compatibility imply a constant outcome—one independent of user types. [24]
develop auctions that use samples from past non-incentive compatible auctions
to improve social welfare or revenue guarantees.

2 Preliminaries

We first make some definitions that apply to all sections. We use [n] to denote
the set {1, 2, . . . , n} for any n ∈ N. Additionally, we define x+ = max{x, 0} and
denote with 1 [·] the indicator function.

There are n users, where n ≥ 2. The set of users is denoted with [n]. In
some settings, every user i is associated with a weight, wi > 0 which indicates
each user’s priority and in this case we view the allocation fair, if user i has
(approximately) wi/wj more utility than user j. Additionally, we sometimes
assume that user i has initial endowment or fair share a wi/

∑
j∈[n] wj fraction

of the total resources. The game is divided into rounds 1, 2, . . . , t, . . .
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A mechanism is called envy-free if for any users i and j, where i is truthful,
she would not have gained utility if she had been allocated the resources user
j was allocated. Similarly, we define weighted envy-freeness: if every user i is
associated with a weight wi > 0, a mechanism is envy-free if for users i and j,
user i would not have gained utility if she had been allocated the resources user
j was allocated, scaled by wi/wj (note that this scaling sometimes results in
comparing to usage of more resources than what is available).

A mechanism satisfies sharing incentives if every truthful user’s utility is not
less than her utility if she had been allocated her fair share every round, i.e.,
a 1

n fraction of the total resources. For weighted users, a mechanism satisfies
sharing incentives if the utility of user i is not less than her utility if she had
been allocated her fair share every round, i.e., a wi/

∑
j∈[n] wj fraction of the total

resources. For α ∈ [0, 1], there is also the notion of α-sharing incentives, in which
user i’s utility must be at least α times her utility if she had been allocated her
fair share every round.

3 Multiple Resources Setting

In this section we analyze Dynamic Dominant Resource Fairness (Dynamic
DRF), the generalization of DRF for dynamic demands.

Notation and User Utilities. We consider users that have varying demand
for a set of m ≥ 1 different resources over time. We use q ∈ [m] to denote the m
resources, and w.l.o.g., we assume that for every resource the amount available
is the same, R. A typical example of such a system may focus on users running
applications that use resources such as CPU, memory, storage, etc.

Every round, each user demands an amount of every resource which they
report to the mechanism. With the multidimensional nature of demand, users
have very complex ways to misreport their demand. Throughout this paper we
will assume that users have Leontief preferences, which we define next. Leon-
tief preferences have been considered by much of the previous work in resource
sharing, e.g., [19,30,38].

Formally, with Leontief preferences a user i’s demand in a round t is charac-
terized by the vector of m ratios at

i = (at
i1, . . . , a

t
im) she needs for the resources

and a demand dt
i. The ratios indicate the proportions according to which the user

demands the resources: for some ξ ≥ 0, user i’s application in that round is going
to use ξat

iq amount of every resource q ∈ [m]. The demand dt
i of user i in round

t represents the maximum fraction ξ (possibly, ξ > 1) of the ratios the user can
take advantage of. Specifically, user i demands (or is asking for) dt

ia
t
iq amount

of every resource q. The resource q with the maximum ratio at
iq is called the

dominant resource of user i in round t. W.l.o.g. we assume that for every round
t, maxq at

iq = 1 for all users. If a user i receives xt
i1, . . . , x

t
im of every resource,

respectively, her utility that round is equal to ut
i = min

{
dt

i,minq:aiq>0

{
xt

iq/at
iq

}}
.

The total utility of user i by round t is U t
i =

∑t
τ=1 uτ

i .
In each round, users will be asked to report both their ratios for the round as

well as their demand. Note that users can misreport their type in two different
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ways: they can either request less or more from all the resources or they can
demand the resources in different proportions (or they can do both).

Dynamic Dominant Resource Fairness. DRF is the generalization of MMF
for multiple resources, where the fairness criterion is applied to each user’s dom-
inant resource and the rest of the resources are distributed according to their
ratios. If rt

i is the amount that user i receives of her dominant resource in round
t, then she receives rt

ia
t
iq of every resource q (recall maxq at

iq = 1). We call rt
i the

allocation of user i in round t.
Dynamic DRF also extends to a weighted version, the case when users have

different weights representing their priorities. In this version the fairness criterion
is applied to the users’ allocation normalized by the weights. More specifically,
if every user i is associated with a weight wi > 0, then the mechanism tries to
give each user i an allocation proportional to her weight wi.

We also consider Dynamic DRF with a parameter α ∈ [0, 1] that guarantees a
fraction of her fair share of each resource to each user in every round, independent
of previous allocations. User i’s fair share of a resource q is Rwi/

∑
j wj. When

α = 1, we guarantee at least the fair share of their dominant resource (assuming
a big enough demand to use it), when α < 1 we guarantee a smaller share.
Beyond this guarantee, the goal of the mechanism in round t is to be as fair as
possible to the cumulative allocation of every user, normalized by their weights.
We use Rt

i =
∑t

τ=1 rτ
i for the sum of allocations till time t. Using this notation,

Dynamic DRF is easy to describe. For a given round t, assuming that every user
i has cumulative allocation Rt−1

i on round t − 1:

choose rt
1, rt

2, . . . , rt
n

applying MMF on
Rt−1

1 + rt
1

w1
,

Rt−1
2 + rt

2

w2
, . . . ,

Rt−1
n + rt

n

wn

subject to ∀i ∈ [n], min

{

dt
i, α

Rwi∑
k∈[n] wk

}

≤ rt
i ≤ dt

i,

∀q ∈ [m],
∑

i∈[n]

rt
i at

iq ≤ R

(1)

We define gi(dt
i) = min

{
dt

i, α
Rwi∑

k wk

}
to be the guaranteed amount that every

user receives every round.
We note a few properties that follow from the description. If all users share

the same dominant resource qt in each round t and have equal weights, then
the mechanism will become identical to Dynamic MMF, as at each round the
allocation of the shared dominant resource is the bottleneck for all users. Second,
if all the users share their dominant resource qt, α = 1, and demands are high,
then the minimum guarantee becomes g(dt

i) = Rwi/
∑

k wk which will become
user i’s allocation, as this saturates resource qt (the guaranteed total use of
qt is

∑
i g(dt

i)a
t
iqt =

∑
i g(dt

i) = R). However, even with large demands each
iteration and α = 1, the dynamic fair sharing nature of our allocation will play
an important role when applications (users) do not always share their dominant



116 G. Fikioris et al.

resource. Third, because of the guarantee of every user, Dynamic DRF satisfies
α-sharing incentives.

Theorem 1. Dynamic DRF with a guarantee of α satisfies α-sharing incentives.

User’s Utility when Misreporting Ratios. In defining the Dynamic DRF
mechanism, we have not considered the difference of truthful reporting and mis-
reporting demands or ratios to the mechanism. The main topic of this section is
explaining how a user’s utility behaves in these two scenarios.

When user i truthfully reports her demand dt
i and ratios at

i, and gets an
allocation of rt

i , her utility in that round is ut
i = min{dt

i,minq:at
iq>0

rt
iat

iq/at
iq} = rt

i ,
since Dynamic DRF guarantees rt

i ≤ dt
i.

When user i misreports ât
i and d̂t

i, and Dynamic DRF gives her an alloca-
tion r̂t

i based on the reported values, let ût
i denote the user’s true utility in

round t under that reporting. In this case she receives xt
iq = ât

iq r̂
t
i of every

resource q and thus she gets true utility ût
i = min{dt

i,minq:aiqt>0
xt

iq/at
iq} =

min{dt
i, r̂t

i minq:aiqt>0
ât

iq/at
iq} We define λ̂t

i = minq:aiqt>0{ât
iq/at

iq} making the
above expression equal to ût

i = min{dt
i, r̂t

i λ̂t
i}. We note that if the user reports

ratios truthfully (ât
i = at

i), then λ̂t
i = 1. Additionally, because each user is con-

strained to declare maxq ât
iq = maxq at

iq = 1, it holds λ̂t
i ≤ 1 for any ât

i.

3.1 Incentives Assuming Positive Ratios for All Resources

Our main results in this paper consider resource allocation with multiple
resources in Dynamic DRF under the assumption that users always demand
at least some of each of the resources, i.e., at

iq > 0 for all i, q, t. With typical
system resources, such as CPU, RAM, etc., it is indeed the likely scenario. While
different applications have different dominant resources (e.g., some have heavy
use of compute power, while in others the main bottleneck is bandwidth), each
uses at least some of each one of these basic resources.

As observed by [38], zero ratios for some resources significantly changes the
problem from having a tiny ε > 0 ratio. In the full version of the paper [15]
we show that with zero ratios users can have an incentive to over-report their
demand, which we show is not true with positive ratios. Further, the benefit of
such over-reporting can increase the user’s utility by a factor of Ω(m), increasing
with the number of resources in the system. With positive ratios, users are
bottlenecked by the same resource being saturated. In contrast, when ratios are
zero, different users are bottlenecked by different resources, resulting in users’
allocations being almost independent from one another.

In contrast, the main results of this section are that, assuming users have
positive ratios, misreporting them, as well as over-reporting demand, is not ben-
eficial (Theorem 2). Further, the approximate incentive compatibility ratio for
user i is bounded by 1 + ρi, where ρi = maxk �=i,q,t

{
wia

t
iq/wkat

kq

}
(Theorem 3),

and this bound is tight (Theorem 4) even with just two resources and ratios that
do not change over time.
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Upper Bound on Incentive Compatibility Ratio. We now focus on upper
bounds on how much utility a user can gain by deviating. For ease of presenta-
tion, we are going to focus on how much utility user 1 can get from deviating.

The assumption that all users are using each resource allows us to prove a
lemma that offers a simple condition on which pair of users can gain overall
allocations from one another. When users’ demands are not satisfied, for a user
to get more resources someone else needs to get less. The lemma will allow us
to reason about how a deviation by user 1 can lead to a user i getting more
resources and another user j getting less (possibly i = 1 or j = 1).

Lemma 1. Fix a round t and the total allocations up to round t − 1 of any two
outcomes {R̂t−1

k }k∈[n] and {R̄t−1
k }k∈[n]. Let i, j be two different users. Assume

that: (i) for i, r̄t
i < r̂t

i , d̂t
i ≤ d̄t

i, and ât
iq > 0 for all q, and (ii) for j, r̄t

j > r̂t
j,

d̄t
j ≤ d̂t

j, and āt
jq > 0 for all q. Then, for any α ∈ [0, 1] used by Dynamic DRF,

it holds that R̄t
i/wi ≥ R̄t

j/wj and R̂t
i/wi ≤ R̂t

j/wj, implying R̂t
i−R̄t

i

wi
≤ R̂t

j−R̄t
j

wj
.

The intuition behind this lemma is due to the conditions in the bullets: it is
feasible to trade resources between users i and j in each of the two outcomes.
This proves the bound for their total allocations due to the definition of Dynamic
DRF, which tries to equalize the users’ normalized total allocations. We defer
the full proof to the full version [15].

The main technical tool in our work is the following lemma bounding the
total amount a user can “win” because of user 1 deviating, i.e., maxk{R̂t

k − Rt
k}.

Rather than just bounding the deviating user 1’s gain directly, it is better to
consider the maximum increase of any user. This is because user 1 can increase
her utility by using the increase in utility of some other user.

Lemma 2. Fix a round t and two outcomes {R̂t−1
k }k∈[n] and {R̄t−1

k }k∈[n] which,

for some X ≥ 0, satisfy maxk∈[n]

{
R̂t−1

k −R̄t−1
k

wk

}
≤ X. If in round t users

have positive ratios, user 1 reports her ratios truthfully (i.e., ât
1 = āt

1 = at
1)

and d̂t
1 ≤ d̄t

1 then, for all α ∈ [0, 1] used by Dynamic DRF it holds that

maxk∈[n]

{
R̂t

k−R̄t
k

wk

}
≤ X + 1

[
d̂t
1 < d̄t

1

]
ρt
1

r̄t
1

w1
, where ρt

1 = maxk �=1, q∈[m]
w1at

1q

wkat
kq

.

The above lemma, by assuming truthful reporting of ratios and that user 1
does not over-report her demand (d̂t

1 ≤ dt
1), inductively proves a

(
1+maxt{ρt

1}
)

incentive compatibility ratio.
In order to prove this lemma we need to consider two cases. If d̂t

1 = d̄t
1, then

users with larger R̂t−1
k −R̄t−1

k /wk will not gain additional resources because they
are less favored by Dynamic DRF. If d̂t

1 < d̄t
1, user 1 can increase the allocation

of some other user k by under-reporting her demand, but by at most O(r̄t
1). The

full proof can be found in the full version of the paper [15].
Before stating the upper bound on the incentive compatibility ratio, we first

show that users have no incentive to over-report their demand or misreport
their ratios. Aside from being useful in proving the upper bound on incentive
compatibility, this property also proves that the resources allocated are always in
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use: any misreporting that aims to increase utility only under-reports demand,
leading to full utilization of the resources allocated.

The immediate effect of over-reporting or misreporting ratios for user 1 is
getting allocated resources that do not contribute to her utility. Intuitively, this
suggests that user 1 is put into a disadvantageous position: other users may get
less resources which makes them be favored by the allocation algorithm in the
future, while user 1 becomes less favored. However, a small change in the users’
resources causes a cascading change in future allocations making the proof of
this theorem not trivial. As we show in the full version [15] that this is no longer
the case when users only use a subset of them. The full proof can be found in
the full version of our paper [15].

Theorem 2. Assume that the users’ true ratios are positive, i.e., for all users
i ∈ [n], resources q ∈ [m], and rounds t, it holds that at

iq > 0. Then, for any
α ∈ [0, 1] used by Dynamic DRF, the users have nothing to gain by declaring a
demand higher than their actual demand, and any gain achievable by misreport-
ing ratios can also be obtained by under-reporting demand.

We now prove the desired upper bound on the incentive to deviate. We do
this by combining Lemma 2 and Theorem 2.

Theorem 3. Assume that all users have positive ratios: at
iq > 0 for all users i,

resources q, and rounds t. Then for any user i and α ∈ [0, 1] used by Dynamic
DRF, user i cannot misreport her demand or ratios to increase her utility by a
factor larger than (1 + ρi), where ρi = maxk �=i,q,t

{
wia

t
iq/wkat

kq

}
.

Proof. W.l.o.g. we are going to prove the theorem for i = 1. Because of Theorem
2 we can assume that user 1 does not over-report her demand or misreport her
ratios and thus we can bound R̂t

1 instead of Û t
1. Because of this condition, we

can use Lemma 2 which inductively implies that for any t, R̂t
1−Rt

1 ≤ ρ1R
t
1. This

proves the theorem.

We now prove Theorem 2. First, we prove the following lemma, with which
Theorem 2 is easily proven using induction. The lemma says that if in rounds
T0+1 to T (for any T0 ≤ T ) user 1 does not over-report her demand and reports
her ratios truthfully, she cannot increase her utility in round T by over-reporting
demand or misreporting ratios in T0.

Lemma 3. Fix a round T0 and the allocations of an outcome {R̂T0−1
k }k∈[n]. Fix

another round T ≥ T0 and assume that in rounds T0 + 1, T0 + 2, . . . , T user 1
reports her ratios truthfully and does not over-report her demand. Then, for any
α ∈ [0, 1] used by Dynamic DRF, any increase in user 1’s utility in round T
gained by over-reporting demand or misreporting ratios in T0 can be achieved
with truthful ratio reporting and no demand over-reporting in round T0.

By over-reporting her demand or misreporting ratios in T0, user 1 (poten-
tially) gains some resources that do not contribute to her utility, while other
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users get less resources. This puts user 1 in a disadvantage entailing that in the
rounds after T0 she cannot increase her total allocation further (even though it
is possible that her allocation in a single round can increase). Since she doesn’t
over-report her demand in rounds after T0, her utility in those rounds is the
same as her allocation, hence her total utility also does not increase. To prove
the lemma we consider an alternative reporting that both reports ratios truth-
fully and guarantees no demand over-reporting. With this reporting user 1 is
guaranteed the same utility without increasing her allocation or decreasing the
other user’s allocations; this entails a more advantageous position for her in the
following rounds. We defer the proof of Lemma 3 to the full version in [15].

Using Lemma 2 we can now easily prove Theorem 2.

Proof (of Theorem 2). Fix a round T and let T0 ≤ T be the last round where
user 1 over-reported or misreported her ratios. Lemma 3 allows us to change
user 1’s reporting in T0 to one that does not over-report demand and reports
ratios truthfully, without decreasing her total utility in T . Doing this inductively
for every such T0 creates a demand profile that does not decrease user 1’s total
utility in T .

Lower Bound on Incentive Compatibility Ratio. In Theorem 3 we proved
that the incentive compatibility ratio of user 1 is at most (1+ρ1). We now show
that if the only constraints on users’ ratios and weights are that they are positive
and ρ1 is fixed, then it is possible for the incentive compatibility ratio of user 1
to be (1 + ρ1). We prove this even if the users’ ratios do not change over time.
We defer the full proof to the full version of the paper [15].

Theorem 4. For any ε ∈ (0, 1), w1, w2 > 0, and α ∈ [0, 1] used by Dynamic
DRF, there is an instance where the users’ ratios are constant every round, user
1 has weight w1 and another user has weight w2, ρ1 = w1

w2ε , and user 1 can
under-report her demand to increase her total utility by a factor of 1 + ρ1.

3.2 Envy-Freeness in Dynamic DRF

In this section we examine the envy-freeness of Dynamic DRF. More specifically,
we show that in Dynamic DRF a user is envy-free if they are truthful.

Theorem 5. For every α ∈ [0, 1], Dynamic DRF is envy-free according to the
weights w1, . . . , wn, i.e., for every round t, no user i envies the total allocation
of user j scaled by wi/wj: U t

i ≥ ∑t
τ=1 min

{
dτ

i , wi

wj
rτ
j minq:aτ

iq>0
aτ

jq

aτ
iq

}
.

The key to this proof is to study the (potential) first round t user i envies
user j. In the simple case that wi = wj , that proves that rt

j > rt
i , which leads

to a reasoning similar to Lemma 1 proving that Rt
j ≤ Rt

i. Therefore, since user
j has an allocation smaller than i’s it is impossible for user i to envy her. We
defer the full proof of the theorem to the full version [15].
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4 Improved Guarantees in Single Resource Settings

In this section we examine the simpler single-resource setting and more specifi-
cally Dynamic weighted MMF, version of Dynamic DRF for only one resource.
The results of Sect. 3 apply to the single resource setting, making Dynamic
weighted MMF envy-free, satisfy α-sharing incentives when each user is guaran-
teed a α fraction of her fair share, and have bounded incentive compatible ratio.
However, as we show, one can prove much stronger incentive compatibility guar-
antees for this setting under more adverse conditions.

Dynamic Weighted Max-Min Fairness. Dynamic weighted MMF is a special
case of Dynamic DRF where there is only one resource, m = 1. This means that
every round t, given the allocations of the previous rounds {Rt−1

i }, the following
problem is solved

choose rt
1, r

t
2, . . . , r

t
n

applying MFF on
Rt−1

1 + rt
1

w1
,

Rt−1
2 + rt

2

w2
, . . . ,

Rt−1
n + rt

n

wn

subject to
∑

i∈[n]

rt
i ≤ R and min

{

dt
i, α

Rwi∑
k wk

}

≤ rt
i ≤ dt

i,∀i

(2)

where α ∈ [0, 1] and w1, . . . , wn are positive numbers, similar to the definition
of Dynamic DRF. Similar to the previous section, for a given α, we denote
gi(dt

i) = min {dt
i, αRwi/

∑
k wk} the guarantee of user i in round t.

Coalitions. In this section we are going to also consider that a deviating user
might not be acting alone. More specifically, we consider that users form coali-
tions to increase the sum of their utilities by each member of the coalition devi-
ating. We bound that increase, i.e., if the set I ⊂ [n] of users forms a coalition
and report demands {d̂t

i}i∈I,t instead of {dt
i}i∈I,t, then for some γ ≥ 1 and for

all t we want to prove that
∑

i∈I Û t
i ≤ γ

∑
i∈I U t

i .

Incentive Compatibility Upper Bound. We first present the analogue of
Theorem 2 in this setting: even if users can form coalitions, they have nothing
to gain in Dynamic weighted MMF by over-reporting.

Theorem 6. Let I ⊂ [n] be a set of users that form a coalition. Then, for any
value of α ∈ [0, 1] used by Dynamic weighted MMF, the users in I have nothing
to gain by over-reporting their demand.

Similar to Theorem 2, the proof of this theorem makes intuitive sense: if one
user of the coalition over-reports her demand she puts herself into disadvantage
by gaining unnecessary resources which harms the entire coalition. We defer the
proof of this theorem to the full version [15].

Next we upper bound the incentive of the users in the coalition to deviate.
If there is no coalition (I = {i}), Theorem 3 yields a bound. More specifically,
using the notation of that section, we have that ρi = maxj �=i{wi/wj}, making
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that theorem provide an upper bound of 1 + ρi. Even though this is possibly
unbounded, the incentive compatibility ratio we prove here is at most 2.

Theorem 7. Let I ⊂ [n] be a set of users that form a coalition and w1, . . . , wn

be any weights, according to which Dynamic weighted MMF allocates resources.
Then, for any α ∈ [0, 1], any deviation of the users in I, and any round t it holds
that

∑
i∈I Û t

i ≤ 2
∑

i∈I U t
i . Additionally, when I = {i} for any user i, it holds

Û t
i ≤

(

1 + max
j �=i

wi

wi + wj

)

U t
i .

Note that if I = {i} and users have the same weights the above theorem
recovers the bound of 3/2 of [46] for Dynamic MMF without coalitions.

To prove Theorems 6 and 7 we prove the following lemma, which is similar to
Lemma 2 but stronger. In Lemma 2 we bounded the increase of maxk{R̂t

k −Rt
k}

across rounds using the allocation of the deviating user. In the lemma that
follows we bound the increase of

∑
k{R̂t

k −Rt
k} again using the allocation of the

deviating user, leading to a strictly stronger result.
We note that unlike Lemma 2, here we do not have to normalize the users’

allocations by their weights. Because there is only one resource users’ alloca-
tions are more easily comparable: rt

i is not only the amount of user i’ dominant
resource received by her but rather the amount of the only available resource.
This intuition could likely prove that if all users have the same dominant resource
we can prove stronger guarantees of Dynamic DRF, but this is not a realistic
assumption that we did not explore.

Lemma 4. Fix a round t and the allocations of two different outcomes
{R̂t−1

k }k∈[n] and {R̄t−1
k }k∈[n]. Assume that {d̄t

i}i∈[n] are some users’ demands
and that {d̂t

i}i∈[n] are the same demands except users in I, who deviate but not
by over-reporting, i.e., d̂t

i ≤ d̄t
i for i ∈ I. Then, for any α ∈ [0, 1], it holds that

∑

k∈[n]

(
R̂t

k − R̄t
k

)+

−
∑

k∈[n]

(
R̂t−1

k − R̄t−1
k

)+

≤ 1

[
∑

k∈I

d̂t
k <

∑

k∈I

d̄t
k

]
∑

k∈I

r̄t
k (3)

When the users in the coalition are truthful in round t, then the l.h.s. of (3)
is at most 0: Dynamic weighted MMF allocates resources such that the large
R̂t

k − R̄t
k are decreased and the small R̂t

k − R̄t
k are increased. Finally, if the users

in I report lower demands, then the (at most)
∑

k∈I r̄t
1 resources these users do

not get might increase the total over-allocation by the same amount.
Using this lemma and Theorem 6 it is not hard to prove the incentive com-

patibility ratio of 2 in Theorem 7 by summing (3) across rounds.

Inventive Compatibility Lower Bound for Dynamic MMF. Finally, we
provide a lower bound for the single resource setting. We provide one for the
simpler case when users’ weights are equal and there is no coalition.

We prove in Dynamic MMF a user can increase her utility by a factor of√
2, which is close to the 3/2 upper bound for the same setting that Theorem 7

proves. We defer the proof of this theorem to the full version [15].
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Theorem 8. For any value of α ∈ [0, 1], there is an instance with n users,
where in Dynamic MMF a user can under-report her demand to increase her
utility by a factor of

√
2 as n → ∞.

5 Getting Increased Utility Multiple Times

In this section, we study what happens in Dynamic MMF when user 1 deviates
and gets more utility over an extended period, or multiple times. Specifically, we
study for how many rounds user 1 can get γ > 1 times more utility by deviating
and for how many rounds she needs to have reduced utility because of deviating
before having γ times more again. We first make the following definitions:

– For 
 = 0, 1, 2, . . . let s� be distinct and ordered times (i.e., s�−1 < s�) when
user 1 begins having more resources by misreporting, i.e., R̂s�−1

1 ≤ Rs�−1
1 and

R̂s�
1 > Rs�

1 .
– For 
 = 0, 1, 2, . . . let e� be the first time after round s� when user 1 begins

having less resources by misreporting, i.e., R̂e�−1
1 ≥ Re�−1

1 and R̂e�
1 < Re�

1 .

Note that 0 < s0 < e0 < s1 < e1 < . . . by definition. Using the above
notation we prove that if during every interval [s�, e�] user 1 got γ more resources
in some round t� ∈ [s�, e�] by misreporting, then t� cannot be much larger than
s�, implying that user i cannot keep having γ times more utility for a long period
of time. We also prove that t� scales exponentially with 
, implying that the 
-th
time user i gets increased resources must happen exponentially far away. The
proof of the theorem is presented in the full version of the paper [15].

Theorem 9. Assume that for every t, Rt
1 ∈ Θ(t) and for every 
 = 0, 1, . . .

there exists a round t� ∈ [s�, e�) for which R̂t�
1 ≥ γRt�

1 , for some γ > 1. Then,
in Dynamic MMF for any α ∈ [0, 1], any 
 = 0, 1, . . ., and any t� ∈ [s�, e�) such

that R̂t�
1 ≥ γRt�

1 , it holds that t� = O(s�) and t� =
(

2−γ
3−2γ

)�

Ω(t0).
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Abstract. We consider a truthful facility location problem in which
there is a set of agents with private locations on the line of real numbers,
and the goal is to place a number of facilities at different locations chosen
from the set of those reported by the agents. Given a feasible solution,
each agent suffers an individual cost that is either its total distance to
all facilities (sum-variant) or its distance to the farthest facility (max-
variant). For both variants, we show tight bounds on the approximation
ratio of strategyproof mechanisms in terms of the social cost, the total
individual cost of the agents.

Keywords: Mechanism design · Facility location · Approximation
ratio

1 Introduction

Suppose you are the mayor of a small town and your task is to decide where
to build a park and a library on a very busy street to accommodate the needs
of the citizens. One way to make this decision is to simply place the facilities
arbitrarily. Even though this is easy to implement, the chosen locations might
not be very accessible and the citizens most probably will end up complaining
and not vote for you in the next election. Instead, you could ask the citizens
to suggest the possible locations where the facilities could be built and choose
one that collectively satisfies them. While this now seems sufficient enough to
get you re-elected, you also need to make sure that the citizens are incentivized
to truthfully suggest their real ideal locations and not lie in order to minimize
the distance they have to walk. This is known as the truthful facility location
problem.

Since the seminal work of Procaccia and Tennenholtz [18] on approximate
mechanism design without money, many different variants of the problem have
been studied under assumptions about the number of facilities to be placed, the
preferences of the agents for the facilities, and the feasible locations where the
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facilities can be built; we refer the reader to the survey of Chan et al. [2] for an
overview, and to our discussion of related work below. In this work we consider a
previously unexplored, yet fundamental model where the facilities can be built at
locations that are dynamically proposed by the agents, in contrast to previously
studied models where the facilities could be placed either at any location on the
line or only at a predetermined set of fixed candidate locations.

1.1 Our Model

We consider the following agent-constrained truthful facility location problem.
An instance I consists of a set of n ≥ 2 agents with private locations on the line
of real numbers, and k ≥ 2 facilities that can be placed at different locations
chosen from the (multi-)set of locations reported by the agents. Given a feasible
solution x which determines the agent locations where the k facilities are placed,
each agent i suffers an individual cost. We consider two different models that
differ on the cost function of the agents. In the sum-variant, the cost of i in
instance I is its total distance from the facilities:

costsumi (x|I) =
∑

x∈x

d(i, x),

where d(i, x) = |i − x| is the distance between the location of agent i and point
x on the line. In the max-variant, the cost of i in instance I is its distance to
the farthest facility:

costmax
i (x|I) = max

x∈x
{d(i, x)}.

Whenever the variant we study is clear from context, we will drop the sum and
max from notation, and simply write costi(x) for the individual cost of i when
solution x is chosen; similarly, we will drop I from notation when the instance
is clear from context. We are interested in choosing solutions that have a small
effect in the overall cost of the agents, which is captured by the social cost
objective function, defined as:

SC(x|I) =
∑

i

costi(x|I).

A solution can also be randomized in the sense that it is a probability distribution
p = (px)x over all feasible solutions; the expected social cost of such a randomized
solution is defined appropriately as

E[SC(p|I)] =
∑

x

px · SC(x|I).

The solution is decided by a mechanism based on the locations reported by
the agents; let M(I) be the solution computed by a mechanism M when given
as input an instance I. A mechanism M is said to be strategyproof if no agent i
can misreport its true location and decrease its individual cost; that is,

costi(M(I)|I) ≤ costi(M(J)|I)
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for every pair of instances I and J that differ only on the location reported by
agent i. In case the mechanism is randomized, then it is said to be strategyproof-
in-expectation if no agent i cannot misreport its true location and decrease its
expected individual cost.

The approximation ratio of a mechanism is the worst-case ratio (over all
possible instances) of the (expected) social cost of the chosen solution over the
minimum possible social cost:

sup
I

E[SC(M(I)|I)]
minx SC(x|I) .

Our goal is to design mechanisms that are strategyproof and achieve an as small
approximation ratio as possible.

1.2 Our Contribution

For both individual cost variants, we show tight bounds on the best possible
approximation ratio that can be achieved by strategyproof mechanisms. We start
with the case of k = 2 facilities for which we study both deterministic and ran-
domized mechanisms. For the sum-variant, in Sect. 2, we show a tight bound of
3/2 for deterministic mechanisms and a bound of 10 − 4

√
5 ≈ 1.0557 for ran-

domized ones. For the max-variant, in Sect. 3, we show bounds of 3 and 2 on the
approximation ratio of deterministic and randomized mechanisms, respectively.
In Sect. 4, we switch to the general case of k facilities and focus exclusively on
deterministic mechanisms. For the sum-variant, we show that the approximation
ratio is between 2−1/k and 2, while for the max-variant, we show a tight bound
of k +1. Due to space constraints, the proofs of some statements are ommitted.

Our upper bounds follow by appropriately defined statistic-type mechanisms
that choose the agent locations where the facilities will be placed according to
the ordering of the agents on the line from left to right. In particular, for k = 2,
our mechanisms locate one facility at the median agent m and the other either
at the agent � that is directly to the left of m or the agent r that is directly to
the right of m. To be even more specific, our deterministic mechanism always
chooses the solution (m, r), while our randomized mechanisms choose the solu-
tions (�,m) and (m, r) according to some probability distribution. Interestingly,
for the sum-variant, it turns out that the probabilities are functions of the dis-
tances d(�,m) and d(m, r); to the best of our knowledge, this is one of few settings
in which the best possible randomized strategyproof mechanism is not required
to assign fixed, constant probabilities. For the general case of k facilities, our
(deterministic) upper bounds for both variants follow by a mechanism that is a
natural generalization of the one for k = 2; in particular, the mechanism places
the facilities around the median agent(s) within a radius of about k/2.

1.3 Related Work

Truthful facility location problems have a long history within the literature
of approximate mechanism design without money, starting with the paper of
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Procaccia and Tennenholtz [18]. Various different models have been studied
depending on parameters such as the number of facilities whose location needs
to be determined [11,17,18], whether the facilities are obnoxious [5], whether
the agents have different types of preferences over the facilities (for example,
optional [4,13,15,19], fractional [10], or hybrid [7]), and whether there are other
limitations or features (for example, the facilities might only be possible to be
built at specific fixed locations [8,12,14,22], there might be limited resources
that can be used to build some of the available facilities rather than all [6], there
might be limited available information during the decision process [3,9], or there
might be even more information in the form of predictions about the optimal
facility locations which can be leveraged [1,21]). We refer the reader to the sur-
vey of Chan et al. [2] for more details on the different dimensions along which
facility location problems have been studied over the years.

When there are multiple facilities to locate, the typical assumption about the
individual behavior of the agents is that they aim to minimize their distance to
the closest facility [11,17,18,20,21]; such a cost model essentially assumes that
the facilities are homogeneous (in the sense that they offer the same service)
and thus each agent is satisfied if it is close enough to one of them. In contrast,
both variants (sum and max) we consider here model different cases in which
the facilities are heterogeneous (in the sense that they offer different services)
and each agent aims to minimize either the total or the maximum distance to
the facilities. These variants have also been considered in previous work under
different assumptions than us; in particular, the sum-variant has been studied
in [12,14,19,22], while the max-variant has been studied in [4,16,23].

The main differences between our work and the aforementioned ones are the
following: In most of these papers, the agents have optional preferences over
the facilities; that is, some agents approve one facility and are indifferent to the
other, while some agents approve both facilities. Here, we focus exclusively on
the fundamental case where all agents approve both facilities. In addition, some
of these papers study a constrained model according to which the facilities can
only be built at different locations chosen from a set of fixed, predetermined
candidate ones. In our model, the facilities can also only be built at different
locations, which, however, are chosen from the set of locations that are reported
by the agents; this is a more dynamic setting in the sense that the candidate
locations can change if agents misreport. We remark that, in continuous facility
location settings (where the facilities can be placed anywhere on the line) such as
those studied in the original paper of Procaccia and Tennenholtz [18] and follow-
up work, the class of strategyproof mechanisms mainly consists of mechanisms
that place the facilities at agent locations (according to an ordering). However, to
the best of our knowledge, there has not been any previous work that has studied
the model where the candidate locations are restricted to the ones reported by
the agents, an assumption that also affects the optimal solution in terms of social
cost.
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2 Sum-Variant for Two Facilities

We start the presentation of our technical results with the case of k = 2 facilities
and the sum-variant. Recall that in this variant the individual cost of any agent
is its distance from both facilities. We will first argue about the structure of the
optimal solution; this will be extremely helpful in bounding the approximation
ratio of our strategyproof mechanisms later on. We start with the case where
the number of agents n is an even number, for which the optimal solution is
well-defined and actually leads to an optimal strategyproof mechanism.

Lemma 1. For any even n ≥ 2, an optimal solution is to place the facilities at
the two median agents.

Proof. Let m1 and m2 be two median agents. Suppose that there is an optimal
solution (o1, o2) with o1 ≤ o2. Since any point x ∈ [m1,m2] minimizes the total
distance of all agents from any other point of the line, we have

SC(m1,m2) =
∑

i

d(i,m1) +
∑

i

d(i,m2)

≤
∑

i

d(i, o1) +
∑

i

d(i, o2) = SC(o1, o2),

and thus (m1,m2) is also an optimal solution. ��
Before we continue, we remark that the Two-Medians mechanism, which

is implied by Lemma 1, is indeed strategyproof: To change the solution of the
mechanism, an agent i would have to report a location x > m1 in case i ≤ m1

or a location x < m2 in case i ≥ m2; such a misreport leads to an individual
cost of at least min{d(i, x), d(i,m2)} + d(i,m2) in the first case and of at least
d(i,m1) + min{d(i, x), d(i,m1)} in the second case, which is at least the true
individual cost d(i,m1)+d(i,m2) of i. Hence, agent i has no incentive to deviate
and the mechanism is strategyproof.

For the case where the number of agents n ≥ 3 is an odd number, it will be
useful to calculate the social cost of the solutions (�,m) and (m, r), where � and
r are the agents directly to the left and right of the median agent m, respectively.

Lemma 2. For any x ∈ {�, r}, the social cost of the solution (x,m) is

SC(x,m) = 2 ·
∑

i

d(i,m) + d(m,x).

Using this, we can argue about the structure of the optimal solution.

Lemma 3. For any odd n ≥ 3, an optimal solution is to place the facilities at
the median agent and the agent that is closest to it.

Proof. Clearly, one of � or r is the closest agent to m, say �; hence, d(�,m) ≤
d(m, r). To simplify our notation, for any x let f(x) =

∑
i d(i, x) denote the
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total distance of all agents from x. It is well-known that f is monotone such
that f(i) ≥ f(�) ≥ f(m) for every i ≤ � ≤ m, and f(i) ≥ f(r) ≥ f(m) for
every i ≥ r ≥ m. Consequently, the optimal solution is either (�,m) or (m, r).
By Lemma 2 with x = � and x = r, we get

SC(�,m) − SC(m, r) = d(�,m) − d(m, r).

Since d(�,m) ≤ d(m, r), we conclude that SC(�,m) ≤ SC(m, r) and the solution
(�,m) is indeed the optimal one. ��

It is not hard to observe that when n is odd, computing the optimal solution
is not strategyproof; the second-closest agent to the median might have incentive
to misreport a location slightly closer to the median to move the second facility
there. However, we do know that one of the solutions (�,m) and (m, r) must be
optimal. Based on this, we consider the following Median-Right mechanism:
Place one facility at the position the median agent m and the other at the
position of the agent r directly to the right of m.1 One can verify that this
mechanism is strategyproof using an argument similar to the one we presented
above for the Two-Medians mechanism in the case of even n. So, we continue
by bounding its approximation ratio.

Theorem 1. For any odd n ≥ 3, the approximation ratio of the Median-Right

mechanism is at most 3/2.

Proof. The solution of the mechanism is w = (m, r). If r is the closest agent to
m, then w is optimal by Lemma 3. So, assume that this is not the case and the
optimal solution is o = (�,m). By Lemma 2 with x = r, we get

SC(w) = 2 ·
∑

i

d(i,m) + d(m, r).

Similarly, for x = �, we get

SC(o) = 2 ·
∑

i

d(i,m) + d(�,m)

≥ 2 ·
∑

i

d(i,m)

≥ 2 · |{i ≥ r}| · d(m, r) = (n − 1) · d(m, r).

Using these two lower bounds on the optimal social cost, we can now upper-
bound the social cost of w as follows:

SC(w) ≤
(
1 +

1
n − 1

)
· SC(o) =

n

n − 1
· SC(o).

Therefore, the approximation ratio is at most n/(n − 1) ≤ 3/2 for any n ≥ 3. ��
1 Clearly, since we are dealing with the case of odd n, instead of this mechanism, one

could also consider the Median-Left mechanism which places the second facility
to the agent � that is directly to the left of m; both mechanisms are symmetric and
achieve the same approximation ratio.
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The approximation ratio of 3/2 is in fact the best possible that can be
achieved by any deterministic strategyproof mechanism; this follows directly by
Theorem 10 for k = 2.

Theorem 2. The approximation ratio of any deterministic strategyproof mech-
anism is at least 3/2.

Since the optimal solution is either (�,m) or (m, r), it is reasonable to think
that randomizing over these two solutions, rather than blindly choosing one of
them, can lead to an improved approximation ratio. Indeed, we can show a signif-
icantly smaller tight bound of 10 − 4

√
5 ≈ 1.0557 for randomized strategyproof

mechanisms when n ≥ 3 is an odd number; recall that, for even n ≥ 2, we
can always compute the optimal solution. For the upper bound, we consider the
following Reverse-Proportional randomized mechanism: With probability
p� = d(m,r)

d(�,r) choose the solution (�,m), and with probability pr = d(�,m)
d(�,r) choose

the solution (m, r).

Theorem 3. For any odd n ≥ 3, the Reverse-Proportional mechanism
is strategyproof-in-expectation and achieves an approximation ratio of at most
10 − 4

√
5 ≈ 1.0557.

Proof. We here focus on bounding the approximation ratio of the mechanism.
Without loss of generality, suppose that d(�,m) ≤ d(m, r) and thus the opti-
mal solution is o = (�,m). By the definition of the mechanism, the solu-
tions d(�,m) and d(m, r) are chosen with probability p� = d(m, r)/d(�, r) and
pr = d(�,m)/d(�, r), respectively; observe that p� ≥ pr. By Lemma 2 with x = �
and using the fact that that d(�,m) + d(m, r) = d(�, r), we can lower-bound the
optimal social cost as follows:

SC(o) = 2 ·
∑

i

d(i,m) + d(�,m) ≥ 2 · d(�, r) + d(�,m).

Again using Lemma 2 with x = � and x = r, as well as the fact that p� = 1− pr,
we can write the expected social cost of the randomized solution w chosen by
the mechanism as

E[SC(w)] = p� ·
(
2 ·

∑

i

d(i,m) + d(�,m)
)
+ pr ·

(
2 ·

∑

i

d(i,m) + d(m, r)
)

= 2 ·
∑

i

d(i,m) + (1 − pr) · d(�,m) + pr · d(m, r)

= 2 ·
∑

i

d(i,m) + d(�,m) + pr ·
(

d(m, r) − d(�,m)
)

= SC(o) + pr ·
(

d(m, r) − d(�,m)
)

.
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Consequently, the approximation ratio is

E[SC(w)]
SC(o)

≤ 1 + pr · d(m, r) − d(�,m)
2 · d(�, r) + d(�,m)

= 1 + pr ·
d(m,r)
d(�,r) − d(�,m)

d(�,r)

2 + d(�,m)
d(�,r)

= 1 + pr · p� − pr

2 + pr

Using the fact that p� = 1 − pr, we finally have that

E[SC(w)]
SC(o)

≤ 1 + pr · 1 − 2 · pr

2 + pr
.

The last expression attains its maximum value of 10 − 4
√
5 ≈ 1.0557 for pr =√

5 − 2. ��
Next, we will argue that the Reverse-Proportional mechanism is the

best possible by showing a matching lower bound on the approximation ratio
of any randomized strategyproof-in-expectation mechanism. To do this, we will
use instances with three agents for which we first show the following technical
lemma that reduces the class of mechanisms to consider.

Lemma 4. Consider any instance with three agents located at x < y < z. For
any randomized mechanism M that assigns positive probability to the solution
(x, z), there exists a randomized mechanism M0 that assigns 0 probability to that
solution and achieves at most as much expected social cost as M .

Using the above lemma, we can now show the desired lower bound.

Theorem 4. For the sum-variant, the approximation ratio of any randomized
strategyproof-in-expectation mechanism is at least 10 − 4

√
5 ≈ 1.0557.

Proof. Consider any randomized strategyproof mechanism and an instance I
with three agents located at 0, 1 and 2. Let p0(I) and p1(I) be the probabilities
assigned to solutions (0, 1) and (1, 2), respectively. By Lemma 4, we can assume
that p0(I) + p1(I) = 1, and thus suppose that p0(I) ≥ 1/2 without loss of
generality. The expected individual cost of the agent i that is located at 2 is
then

3 · p0(I) + 1 · p1(I) · 1 = 3 · p0(I) + 1 − p0(I) = 2 · p0(I) + 1 ≥ 2.

Now consider an instance J with three agents located at 0, 1 and x = 1/q ∈
(1, 2), where q = 3 − √

5 ≈ 0.764; hence, the only different between I and J
is that agent i is now located at x rather than 2. Let p0(J) and px(J) be the
probabilities assigned to solutions (0, 1) and (1, x), respectively. Again, using
Lemma 4 we can assume that p0(J) + px(J) = 1; any other case would achieve



Agent-Constrained Truthful Facility Location Games 137

worse approximation ratio. Suppose that px(J) > q. Then, the expected cost of
agent i when misreporting its position as 1/q rather than 2 would be

3 · p0(J) +
(
1 + 2 − 1

q

)
· px(J) = 3 ·

(
1 − px(J)

)
+

(
3 − 1

q

)
· px(J)

= 3 − 1
q

· px(J) < 2

and agent i would manipulate the mechanism. Therefore, for the mechanism to
be strategyproof, it has to be the case that px(J) ≤ q, and thus p0(J) ≥ 1 − q.

In instance J , the optimal solution is (1, x) with social cost 1+1/q+2(1/q −
1) = 3/q−1. Since the social cost of the solution (0, 1) is 2+1/q+1/q−1 = 2/q+1,
the approximation ratio is

p0(J) · SC(0, 1) + px(J) · SC(1, x)
SC(1, x)

= px(J) + p0(J) · 2/q + 1
3/q − 1

= 1 − p0(J) + p0(J) · 2 + q

3 − q

= 1 + p0(J) · 2q − 1
3 − q

≥ 1 + (1 − q) · 1 − 2(1 − q)
2 + (1 − q)

= 10 − 4
√
5.

Hence, the approximation ratio is at least 10 − 4
√
5 ≈ 1.0557. ��

3 Max-Variant for Two Facilities

We now turn our attention to the max-variant in which the individual cost of
any agent is its distance from the farthest facility. One might be tempted to
assume that the optimal solution has the same structure as in the sum-variant,
which trivially holds for the case of n = 2 agents. However, this is not true as
the following example demonstrates: Consider an instance with n = 4 agents
with locations −1/2, 0, 1, and 2. The optimal solution is (−1/2, 0) with a social
cost of 5; note that the two-medians solution (0, 1), which is optimal for the
sum-variant according to Lemma 1, has social cost 11/2.

In spite of this, we do not require the exact structure of the optimal solution
to identify the best possible strategyproof mechanisms. For the class of deter-
ministic mechanisms, we once again consider the Median-Right mechanism;
recall that this mechanism places one facility at the (leftmost) median agent m
and the other at agent r that is directly to the right of m. This mechanism is
strategyproof for the max-variant as well: The true individual cost of any agent
i ≥ r is d(i,m), and any misreport x ≥ m of does not change it, while any
misreport x < m can only lead to a larger cost; the case of i < m is similar.
We next show that this mechanism always achieves an approximation ratio of at
most 3, and it can achieve an improved approximation ratio of at most 2 when
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the number of agents is even. The bound can be derived by setting k = 2 to the
more general bound of k + 1 that we show for the case of multiple facilities in
Theorem 11.

Theorem 5. The approximation ratio of the Median-Right mechanism is at
most 2 for any even n ≥ 4 and at most 3 for any odd n ≥ 3.

We next show that the Median-Right mechanism is the best possible
by showing a matching lower bound of 3 on the worst-case (over all possible
instances) approximation ratio of any deterministic strategyproof mechanism;
this bound follows directly by Theorem 12 for k = 2.

Theorem 6. The approximation ratio of any deterministic strategyproof mech-
anism is at least 3.

While no deterministic strategyproof mechanism can achieve an approxima-
tion ratio better than 3 in general, as we have already seen in Theorem 5, the
Median-Right mechanism actually has an approximation ratio of at most 2
when n is an even number. We next show that when the number of agents
n ≥ 3 is odd (which is the worst class of instances for deterministic mech-
anisms), it is possible to design a randomized strategyproof mechanism with
improved approximation ratio of at most 2. In particular, we consider the fol-
lowing Uniform mechanism: With probability 1/2 choose the solution (�,m),
and with probability 1/2 choose the solution (m, r). This mechanism is clearly
strategyproof-in-expectation as it is defines a constant probability distribution
over two deterministic strategyproof mechanisms (the Median-Left and the
Median-Right).

Theorem 7. For any odd n ≥ 3, the approximation ratio of the Uniform mech-
anism is at most 2.

Proof. Since there is an odd number n ≥ 3 of agents, by the definition of m, we
have that |{i ≥ m}| = |{i ≤ m}| = (n + 1)/2. Hence, we can write the expected
social cost of the randomized solution w chosen by the mechanism as follows:

E[SC(w)] =
1
2

( ∑

i≤�

d(i,m) +
∑

i≥m

d(i, �)
)
+

1
2

( ∑

i≤m

d(i, r) +
∑

i≥r

d(i,m)
)

=
∑

i

d(i,m) +
1
2
|{i ≥ m}| · d(�,m) +

1
2
|{i ≤ m}| · d(m, r)

=
∑

i

d(i,m) +
1
2

· n + 1
2

· d(�, r).

For the optimal solution o, since the position of the median agent is the point
that minimizes the total distance from all agents, we have that

SC(o) ≥
∑

i

d(i,m).
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Since there are two facilities to be placed, in o one facility must be placed at the
position of some agent o ≤ � or o ≥ r. In the former case, we have that

∀i ≥ r : costi(o) ≥ d(i, o) = d(i, r) + d(r,m) + d(m, �) + d(�, o) ≥ d(�, r).

In the latter case, we have that

∀i ≤ � : costi(o) ≥ d(i, o) = d(i, �) + d(�,m) + d(m, r) + d(r, o) ≥ d(�, r).

Since |{i ≥ r}| = |{i ≤ �}| = (n − 1)/2 by the definition of � and r, we have
established that

SC(o) ≥ n − 1
2

· d(�, r).

Using these two lower bounds on the optimal social cost, we can upper-bound
the social cost of w as follows:

E[SC(w)] ≤
(
1 +

1
2

· n + 1
2

· 2
n − 1

)
· SC(o) =

3n − 1
2n − 2

· SC(o).

Hence, the approximation ratio is at most (3n − 1)/(2n − 2) ≤ 2 for n ≥ 3. ��
Finally, we show 2 is the best possible approximation ratio for any randomized

strategyproof-in-expectation mechanism.

Theorem 8. The approximation ratio of any randomized strategyproof-in-expe-
ctation mechanism is at least 2.

Proof. We again consider the same instance I with three agents that are located
at 0, 1, and 2. Since there are three possible locations for two facilities, there
is probability p ≥ 1/2 that one of the facilities will be placed at 0 or 2, say 0.
Then, the expected cost of the agent at position 2 is equal to 2p+1− p = p+1.

Now consider the instance J in which this agent moves to 1. If there is
probability q < p that a facility is placed at 0 in J , then the agent would have
decreased her expected cost from p + 1 to q + 1, which contradicts that the
mechanism is strategyproof-in-expectation. Hence, one facility must be placed
at 0 with probability at least p ≥ 1/2 in J , which means that the expected social
cost is

p · SC(0, 1) + (1 − p) · SC(1, 1) = 3p + 1 − p = 2p + 1 ≥ 2.

However, the optimal social cost is SC(1, 1) = 1, leading to an approximation
ratio of at least 2. ��

4 Deterministic Mechanisms for Multiple Facilities

Having completely resolved the case of k = 2 facilities in the previous sections,
we now consider the general case of k facilities for which we present (asymptot-
ically) tight bounds on the approximation ratio of deterministic strategyproof
mechanisms.
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4.1 Sum-Variant

We again start with the sum-variant and first argue about the structure of the
optimal solution when there are k facilities to be placed.

Lemma 5. For the sum-variant, an optimal solution is to place the facilities at
a set of consecutive agents that includes the median agent(s).

We now show our upper bound by considering a generalization of the
Median-Right mechanism that we used for k = 2. If k ≥ 2 is even, our mecha-
nism places the facilities at the (leftmost) median agent m, at the k/2−1 agents
at the left of m, and at the k/2 agents at the right of m (which might include
the second median agent in case of an even overall number of agents). If k ≥ 3 is
odd, the mechanism places the facilities at the (leftmost) median agent m, at the
(k−1)/2 agents at the left of m, and at the (k−1)/2 agents at the right of m. We
will refer to this mechanism as Median-Ball (given that it places the facilities
around the median agent within a radius of about k/2 in each direction).

Since the mechanism bases its decision only on the ordering of the agents on
the line, it is clearly strategyproof for the same reason that Median-Right is
strategyproof when k = 2, so in the following we focus on bounding its approxi-
mation ratio.

Theorem 9. For the sum-variant, the approximation ratio of the Median-

Ball mechanism is at most 2.

Proof. We present the proof for an odd number k ≥ 3 of facilities; the proof is
similar for even k. Let w = (x(k−1)/2, . . . , x1,m, y1, . . . , y(k−1)/2) be the solution
computed by the mechanism. To compute the social cost of w, we first consider
the agents that are not part of the solution. Let S< and S> be the sets of
agents that are to the left of agent x(k−1)/2 and to the right of agent y(k−1)/2,
respectively. Also, let X be the indicator variable that is 1 if n is even and 0
otherwise. By definition, we have that |S<| = |S>|−1 if X = 1, and |S<| = |S>|
otherwise. In any case, since |S<| ≤ |S>|, we can match every agent i ∈ S< to
an agent μ(i) ∈ S> and observe that, for any w ∈ w,

d(i, w) + d(μ(i), w) = d(i,m) + d(μ(i),m).

Clearly, if the number of agents is even, there will be an agent R ∈ S> that is
left unmatched;2 for this agent R, if it exists, we use the fact that d(x�, R) =
d(x�, y�) + d(y�, R). Given this, we have

2 Note that, if k is even, there might be an agent in S< that is left unmatched instead
of an agent in S>.
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∑

i�∈w

costi(w) =
∑

i∈S<

(
costi(w) + costμ(i)(w)

)
+ X · costR(w)

=
∑

i∈S<

∑

w∈w

(
d(i,m) + d(μ(i),m)

)
+ X ·

∑

w∈w

d(R,w)

= k ·
∑

i�∈w∪{R}
d(i,m)

+ X ·
( (k−1)/2∑

�=1

d(x�, y�) + 2
(k−1)/2∑

�=1

d(R, y�) + d(R,m)
)

.

Next, we consider the agents that are part of the solution w and the distances
between them. Consider any two agents x, y ∈ w between which there are t
different agents. For each such agent i ∈ (x, y), we need to take into account the
distance of x to i, the distance of i to x, the distance of y to i, and the distance
of i to y. All together, these distances are exactly

2 (d(x, i) + d(i, y)) = 2 · d(x, y).

Accounting for the agents x and y as well, we have that the contribution of the
distances of all agents in [x, y] to the social cost is

(2t + 2) · d(x, y).

We can now use this observation for all pairs of agents (x�, y�) for � ∈ [(k −1)/2]
(note that by doing this we will have calculated the distances of all agents in w
from all agents in w, including m). Since there are 2�− 1 agents between x� and
y�, the distance d(x�, y�) has a coefficient of 4� in the social cost.3 Hence,

∑

i∈w

costi(w) =
(k−1)/2∑

�=1

4� · d(x�, y�) ≤ 2(k − 1)
(k−1)/2∑

�=1

d(x�, y�).

Putting everything together, we have

SC(w) ≤ k ·
∑

i�∈w∪{R}
d(i,m) + X ·

(
2
(k−1)/2∑

�=1

d(R, y�) + d(R,m)
)

+ (2k − 2 + X)
(k−1)/2∑

�=1

d(x�, y�). (1)

We now focus on bounding the optimal social cost. By Lemma 4.1, the opti-
mal solution o can be thought of as a shift of w towards the left or the right.
We will only consider the case where the shift is towards the right; the other
3 If k is even, for any (x�, y�) for � ∈ [k/2] with x1 = m, there are 2�−2 agents between

x� and y�, leading to a coefficient of 4� − 2 for the distance d(x�, y�).
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case can be handled similarly and is simpler since the agent R, if it exists, will
have larger cost in the optimal solution, thus leading to a smaller bound on the
approximation ratio. We again start by considering the agents that are not part
of the solution w. As before, consider the same matching μ of the agents in S<

to the agents in S>. Let o ∈ o be some agent that is part of the optimal solution.
For any agent i ∈ S< such that o ≤ μ(i), we have that

d(i, o) + d(μ(i), o) = d(i,m) + d(μ(i),m).

On the other hand, for any agent i ∈ S< such that μ(i) < o,

d(i, o) = d(i, μ(i)) + d(μ(i), o) ≥ d(i,m) + d(μ(i),m).

Therefore,

∑

i�∈w

costi(o) =
∑

i∈S<

(
costi(o) + costμ(i)(o)

)
+ X · costR(o)

=
∑

i∈S<

∑

o∈o

(
d(i,m) + d(μ(i),m)

)
+ X ·

∑

o∈o

d(R, o)

≥ k ·
∑

i�∈w∪{R}
d(i,m) + X ·

( (k−1)/2∑

�=1

d(R, y�) + d(R,m)
)

.

Next, consider agent x� for � ∈ [(k − 1)/2] and let o ∈ o. If o ≤ y�, then

d(x�, o) + d(o, y�) = d(x�, y�),

Otherwise, if o > y�, then

d(x�, o) = d(x�, y�) + d(y�, o) > d(x�, y�).

Hence, we overall have that

∑

i∈w

costi(o) ≥
(k−1)/2∑

�=1

∑

o∈o

(
d(x�, o) + d(y�, o)

)
≥ k ·

(k−1)/2∑

�=1

d(x�, y�).

Putting everything together, we have

SC(o) ≥ k ·
∑

i�∈w∪{R}
d(i,m) + X ·

( (k−1)/2∑

�=1

d(R, y�) + d(R,m)
)

+ k ·
(k−1)/2∑

�=1

d(x�, y�)

≥ X ·
(k−1)/2∑

�=1

d(R, y�) + k ·
(k−1)/2∑

�=1

d(x�, y�).
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By (1), we now obtain

SC(w) ≤ SC(o) + X ·
(k−1)/2∑

�=1

d(R, y�) + (k − 2 + X) ·
(k−1)/2∑

�=1

d(x�, y�)

≤ SC(o) + X ·
(k−1)/2∑

�=1

d(R, y�) + k ·
(k−1)/2∑

�=1

d(x�, y�)

≤ 2 · SC(o).

This completes the proof. ��
We next provide an asymptotically tight lower bound of 2–1/k.

Theorem 10. For the sum-variant and k facilities, the approximation ratio of
any deterministic strategyproof mechanism is at least 2 − 1/k.

Proof. Consider an instance with n = k + 1 agents with one agent at 0, k − 1
agents at 1 (or very close to 1) and one agent at 2. Since not all facilities can
be placed at 1, at least one of them has to be placed 0 or 2, say 0. Then, the
cost of the agent i that is located 2 is at least k (in particular, the cost of i is
2 + k − 1 = k + 1 if no facility is placed at 2, and 2 + k − 2 = k if a facility is
placed at 2).

Now consider a new instance in which i has moved to 1+ε for some infinites-
imal ε > 0. Due to strategyproofness, the mechanism must place one of the
facilities at 0 as well. Otherwise, agent i would have cost k − ε according to its
position in the original instance, and would thus prefer to misreport its position
as 1+ε instead of 2. So, in the new instance, the social cost of any possible solu-
tion that is restricted to having a facility at 0 is approximately k−1+k = 2k−1,
while the social cost of the remaining solution is only k, leading to an approxi-
mation ratio of 2 − 1/k. ��

4.2 Max-Variant

For the max-variant, we will show a tight bound of k + 1 on the approximation
ratio of deterministic strategyproof mechanisms. The upper bound again follows
by the Median-Ball mechanism; note the upper bound of 2 on the approxima-
tion ratio of Median-Ball for the sum-variant immediately implies an upper
bound of 2k for the max-variant, which however is not the best possible we can
show.

Theorem 11. For the max-variant, the approximation ratio of the Median-

Ball mechanism is at most k + 1.

Proof. Let � and r be the leftmost and rightmost agents in the solution w com-
puted by the mechanism. By the definition of w, we have that ||{i ≤ �}| − |{i ≥
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r}|| ≤ 1. Since the individual cost of any agent i is the distance to its farthest
facility, we have

costi(w) =

⎧
⎪⎨

⎪⎩

d(i, r) if i ≤ �

max{d(i, �), d(i, r)} if i ∈ w \ {�, r}
d(i, �) if i ≥ r.

Given this, and using the fact that d(i, x) ≤ d(i,m)+ d(m,x) for any x ∈ {�, r},
we can bound the social cost of w as

SC(w) =
∑

i≤�

d(i, r) +
∑

i∈w\{�,r}
max{d(i, �), d(i, r)} +

∑

i≥r

d(i, �)

≤
∑

i

d(i,m) + |{i ≤ �}| · d(m, r) + (k − 2) · max{d(�,m), d(m, r)}

+ |{i ≥ r}| · d(�,m)

≤
∑

i

d(i,m) +
(
max

{|{i ≤ �}|, |{i ≥ r}|} + k − 2
)

· d(�, r).

We now bound the social cost of an optimal solution o. Since the location of
the median agent m minimizes the total distance of all agents, if we were allowed
to place the facilities at the same location, we would place all k facilities at m
to minimize the social cost. Since this is not allowed in our model, the optimal
social cost is larger than that, and we obtain

SC(o) ≥
∑

i

d(i,m).

In addition, since w is not optimal (as otherwise the approximation ratio would
be 1), at least one facility must be placed at an agent o that is weakly to the left of
� or weakly to right of r. Let S be the set of agents that are not part of the solution
w and are on the opposite side of o; that is, S = {i ≥ r} if o ≤ � and S = {r ≤ �}
if o ≥ r. For each agent i ∈ S, we have that costi(o) ≥ d(i, o) ≥ d(�, r), which
implies

SC(o) ≥ |S| · d(�, r) ≥ min
{|{i ≤ �}|, |{i ≥ r}|} · d(�, r).

Putting everything together, we have that

SC(w) ≤
(
1 +

max
{|{i ≤ �}|, |{i ≥ r}|} + k − 2
min

{|{i ≤ �}|, |{i ≥ r}|}
)

· SC(o).

Since max
{|{i ≤ �}|, |{i ≥ r}|} ≤ min

{|{i ≤ �}|, |{i ≥ r}|} + 1 and min
{|{i ≤

�}|, |{i ≥ r}|} ≥ 1, we obtain an upper bound of k + 1 on the approximation
ratio. ��

We conclude the presentation of our technical results with a matching lower
bound of k + 1 on the approximation ratio of deterministic mechanisms for the
max-variant, thus completely resolving this setting.
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Theorem 12. For the max-variant and k facilities, the approximation ratio of
any deterministic strategyproof mechanism is at least k + 1.

Proof. Consider an instance with n = k + 1 agents with one agent at 0, k − 1
agents at 1 (or very close to 1) and one agent at 2. Since not all facilities can be
placed at 1, at least one of them has to be placed 0 or 2, say 0. Then, the cost
of the agent i that is located 2 is 2.

Now consider a new instance in which i has moved to 1. Due to strategyproof-
ness, the mechanism must place one of the facilities at 0 as well. Otherwise, if
all facilities are placed at 1, agent i would have cost 1 according to its position
in the original instance, and would thus prefer to misreport its position as 1
instead of 2. So, in the new instance, the social cost of the solution chosen by
the mechanism is k + 1, while the social cost of solution that places all facilities
at 1 is just 1, leading to an approximation ratio of k + 1. ��

5 Conclusion and Open Problems

In this work, we showed tight bounds on the best possible approximation ratio
of deterministic and randomized strategyproof mechanisms for the two-facility
location problem where the facilities can be placed at the reported agent loca-
tions and the individual cost of an agent is either its distance from both facilities
or its distance to the farthest facility. We believe there are many directions for
future work. In terms of our results, it would be interesting to close the gap
between 2 − 1/k and 2 for the sum-variant and multiple facilities, as well as
consider randomized mechanisms. One can also generalize our model in multiple
dimensions, for example, by considering agents that might have different pref-
erences over the facilities (such as optional or fractional preferences), and the
efficiency of mechanisms is measured by objective functions beyond the social
cost (such as the egalitarian cost, or the more general family of �-centrum objec-
tives).
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Abstract. In this paper, we investigate the k-Facility Location Prob-
lem (k-FLP) within the Bayesian Mechanism Design framework, in which
agents’ preferences are samples of a probability distributed on a line. Our
primary contribution is characterising the asymptotic behavior of per-
centile mechanisms, which varies according to the distribution governing
the agents’ types. To achieve this, we connect the k-FLP and projection
problems in the Wasserstein space. Owing to this relation, we show that
the ratio between the expected cost of a percentile mechanism and the
expected optimal cost is asymptotically bounded. Furthermore, we char-
acterize the limit of this ratio and analyze its convergence speed. Our
asymptotic study is complemented by deriving an upper bound on the
Bayesian approximation ratio, applicable when the number of agents n
exceeds the number of facilities k. We also characterize the optimal per-
centile mechanism for a given agent’s distribution through a system of
k equations. Finally, we estimate the optimality loss incurred when the
optimal percentile mechanism is derived using an approximation of the
agents’ distribution rather than the actual distribution.

Keywords: Bayesian Mechanism Design · Facility Location Problem ·
Optimal Transport

1 Introduction

The scope of Mechanism Design is defining procedures that aggregate a group
of agents’ private information for optimizing a social objective. Nevertheless,
merely optimizing the social objective based on the reported preferences often
leads to undesired manipulation due to the agents’ self-interested behaviour. For
this reason, one of the most important properties a mechanism should possess
is truthfulness, which guarantees that no agent benefits from misreporting its
private information. This stringent property is often incompatible with the opti-
mization of the social objective, so we have to compromise on a sub-optimal
solution. To quantify the efficiency loss, Nisan and Ronen introduced the notion
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of approximation ratio, which is the highest ratio between the social objective
achieved by a truthful mechanism and the optimal social objective achievable
over all the possible agents’ reports [39].

One of the most famous examples of these problems is the k-Facility Location
Problem (k-FLP), where a central authority has to locate k facilities amongst
n self-interested agents. Every agent needs to access the facility, so they would
prefer to have one of the facilities placed as close as possible to their position.
Despite its simplicity, this problem and its variants have found a wide range of
applications in fields such as disaster relief [12], supply chain management [38],
healthcare [1], and public facilities accessibility [14]. The study of the k-FLP
from an algorithmic mechanism design viewpoint was initiated by Procaccia and
Tennenholtz. In their seminal work [41], they considered the problem of locating
one facility amongst a group of agents situated in a line. They were the first to
design an allocation process that places the facility while keeping in mind that
every agent is self-interested, i.e. that agents would manipulate the process in
its favour if able. Subsequently, a variety of methods with fixed approximation
ratios for positioning one or two facilities on different types of structures such
as double-peaked [24], trees [23], circles [33,34], graphs [2,21], and metric spaces
[37,46] were introduced. These positive outcomes, however, pertain to scenarios
with a limited number of agents or when the facilities to place are at most 2.
The approximation ratio results are much more negative when we move to three
or more facilities. Fotakis and Tzamos [26] showed that for every k ≥ 3, there
does not exist any deterministic, anonymous, and truthful mechanisms with
a bounded approximation ratio for the k-FLP on the line, even for instances
with k+2 agents. Nonetheless, it is possible to define truthful mechanisms with
bounded approximation ratio when the number of agents is equal to the number
of facilities plus one [22] or by considering randomized mechanisms [25].

Our study concerns a class of truthful mechanisms for the generic k-FLP, the
percentile mechanisms, introduced in [45]. Although every percentile mechanism
has an unbounded approximation ratio, we prove that this is not the case if
the agents’ type is sampled from a probability distribution. This framework is
also known as Bayesian Mechanism Design [18,29]. Our main contribution shows
that it is possible to select a percentile mechanism that asymptotically behaves
optimally, i.e. it minimizes the expected social objective.

1.1 Our Contribution

In this paper, we conduct a comprehensive investigation of the k-Facility Loca-
tion Problem (k-FLP) from a Bayesian Mechanism Design perspective, where
we assume that agents’ positions on the line follow a distribution μ [18,29]. We
focus specifically on the class of percentile mechanisms [45] and explore the con-
ditions under which the Bayesian approximation ratio of these mechanisms –
defined as the ratio between the expected cost induced by a mechanism and the
expected optimal cost – is bounded. We establish that each percentile mechanism
exhibits different performances depending on the measure μ, and we identify the
optimal percentile mechanism tailored to a distribution μ. Our study establishes
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a connection between the k-FLP and a projection problem in the Wasserstein
space. Through this connection, we import tools and techniques from Optimal
Transport theory to approach the k-FLP. In particular, we demonstrate that
when the number of agents on the line tends to infinity, the ratio between the
expected cost induced by the mechanism and the expected optimal cost con-
verges to a bounded value. Moreover, we characterize both the limit value of the
ratio and the speed of convergence. To retrieve these results, we make massive
use of Bahadur’s representation formula, which relates the j-th ordered statis-
tic of a random variable to a suitable quantile of the probability distribution
associated with the random variable Finally, leveraging the characterization of
the limit and its convergence rate, we derive a bound on the performances of
percentile mechanisms for any finite number of agents.

We then tackle the problem of retrieving the best percentile mechanism tai-
lored to a distribution μ and the number of facilities k. We show that there
always exists a percentile vector, namely vμ ∈ (0, 1)k, that induces the optimal
percentile mechanism, i.e. a mechanism whose expected social cost is asymp-
totic to the optimal expected cost when the number of agents increases. We
characterize this vector as the solution to a system of k equations and employ
it to compute the optimal percentile vector associated with common probability
measures, such as the Uniform and Gaussian distributions. Lastly, we show that
the optimal percentile vector is invariant under positive affine transformations
of the probability measures describing agents. In particular, vμ does not depend
on the specific mean and variance of the distribution μ.

To conclude the paper, we present a study on the stability of the optimal
percentile vector. Specifically, let μ̃ be an approximation of the true agents’ dis-
tribution μ. Additionally, let vμ̃ and vμ represent the optimal percentile vectors
associated with μ̃ and μ, respectively. We demonstrate that when the agents are
distributed according to μ, the Bayesian approximation ratio limit of the per-
centile mechanism induced by vμ̃ deviates from 1 by an amount proportional to
the infinity Wasserstein distance between μ and μ̃. The more precise the approx-
imation of μ, the better the asymptotic performance of the optimal percentile
mechanism induced by vμ when the agents are distributed according to μ. Due
to space limits, proofs and additional results are deferred to the full version of
the paper [10].

1.2 Related Work

The study of k-FLP research from an algorithmic mechanism design viewpoint
was initiated by Procaccia and Tennenholtz in [41]. When k = 1, 2 there are
several truthful mechanisms, such as the median mechanism [15] and its gen-
eralizations [13], that achieve small constant worst-case approximation ratios.
When k > 2, however, these efficiency guarantees are much more negative: there
are no truthful, deterministic and anonymous mechanisms with bounded approx-
imation ratio [26]. It is worthy of notice however, that this impossibility result
does not apply to randomized mechanisms [25], to instances where the number
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of agents is precisely equal to the number of facilities plus one, as shown in [22],
and to problems in which facilities have capacity limits [7,9].

The Percentile Mechanisms are a class of mechanisms for the k-FLP that,
similarly to the median mechanism, places the facilities at the locations of k
agents depending on their order on the line, [45]. Due to the dictatorial-like
nature of these mechanisms, it is easy to build an ad hoc instance of the k-FLP
on which the optimal social cost is as small as we like, but the cost attained by
the mechanisms is greater than a positive constant. These instances depend on
the percentile mechanism and carry little practical sense in applied contexts.

Bayesian Mechanism Design is an alternative paradigm to evaluate the per-
formances of a mechanism in which every agent’s type is drawn from a known
probability distribution, [18,29]. Consequentially, this defines a distribution over
the set of inputs over which the mechanism is defined, allowing us to introduce
the notion of expected cost of a mechanism. To the best of our knowledge, the
only other two papers studying the k-FLP in a Bayesian Mechanism Design
framework, are [11], where the k-Capacitated Facility Location Problem is con-
sidered, and [48], in which the authors study how to use the Lugosi-Mendelson
median [36] to define approximately truthful mechanisms for the 1-FLP. Other
fields in which Bayesian Mechanism Design framework has been applied are:
routing games [28], combinatorial mechanisms based on ε-greedy mechanisms
[35], and auction mechanism design problems [17,30].

Over the past few decades, Optimal Transport (OT) methods have gradually
found their application within the broad landscape of Theoretical Computer
Science. Notable examples include Computer Vision [8,40,42], Computational
Statistics [32], Clustering [6], and Machine Learning in general [27,43,44]. How-
ever, there has been limited advancement in applying OT theory to the field of
mechanism design. To the best of our knowledge, the only field related to mech-
anism design that has been explored using OT theory is auction design [19]. In
their work, the authors demonstrated that the optimal auction mechanism for
independently distributed items can be characterized by the Dual Formulation
of an OT problem. Moreover, they utilized this relationship to derive the optimal
mechanism for various item classes, thereby establishing a fruitful application of
OT theory in the context of mechanism design.

2 Preliminaries

In this section, we fix the necessary notations on the k-Facility Location Problem
(k-FLP), Bayesian Mechanism Design, and Optimal Transport (OT). Further-
more, we recall the definition of the percentile mechanisms.

The k-Facility Location Problem. Given a set of self-interested agents N = [n] :=
{1, 2, . . . , n}, we denote with X := {xi}i∈[n] the set of their positions over R.
Without loss of generality, assume that the agents are indexed such that the
positions xi’s are in non-decreasing order. We denote with x := (x1, x2, . . . , xn) ∈
R

n the vector containing the elements of X . In this setting, if the k facilities
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are located at the entries of the vector y := (y1, y2, . . . , yk) ∈ R
k, an agent

positioned in xi incurs a cost of ci(xi,y) = minj∈[k] |xi − yj | to access a facility.
In what follows, we will use y = (y1, . . . , yk) and the set of points {yj}j∈[k],
interchangeably. Given a vector x ∈ R

n containing the agents’ positions, the
Social Cost (SC) of y is the sum of all the agents’ utilities, that is SC(x,y) =∑

i∈[n] ci(xi,y). The k-Facility Location Problem, consists in finding the locations
for k facilities that minimize the function y → SC(x,y). Given that multiplying
the cost function by a constant does not alter the approximation ratio of the
mechanisms, we rescaled the Social Cost as SC(x,y) = 1

n

∑
i∈[n] ci(xi,y).

Mechanism Design and the Worst-Case analysis. A k-facility location mecha-
nism is a function f : Rn → R

k that takes the agents’ reports x in input and
returns a set of k locations y for the facilities. In general, an agent may mis-
report its position if it this results in a set of facility locations such that the
agent’s incurred cost is smaller than reporting truthfully. A mechanism f is said
to be truthful (or strategyproof ) if, for every agent, its cost is minimized when
it reports its true position. That is, ci(xi, f(x)) ≤ ci(xi, f(x−i, x

′
i)) for any mis-

report x′
i ∈ R, where x−i is the vector x without its i-th component. Albeit

deploying a truthful mechanism instead of computing the optimal location pre-
vents agents from misreporting their positions, it comes with a loss in terms
of efficiency. To evaluate this efficiency loss, Nisan and Ronen introduced the
notion of approximation ratio of a truthful mechanism [39]. Given a truthful
mechanism f , its approximation ratio is defined as

ar(f) := sup
x∈Rn

SCf (x)
SCopt(x)

, (1)

where SCf (x) is the Social Cost of placing the facilities at f(x) and SCopt(x)
is the optimal Social Cost achievable when the agents’ report is x. In what
follows, we will refer to the worst-case approximation ratio defined in (1) as the
approximation ratio. Evaluating a mechanism f from its approximation ratio is
also known as the worst-case analysis of f .

Bayesian Analysis. In Bayesian Mechanism Design, we assume that the agents’
types follow a probability distribution and study the performance of mechanisms
from a probabilistic viewpoint. Every agent’s type is then described by a random
variable Xi. In what follows, we assume that every Xi is identically distributed
according to a law μ and independent from the other random variables. A mech-
anism is said to be truthful if, for every agent i, it holds

EX−i [ci(xi, f(xi,X−i))] ≤ EX−i [ci(xi, f(x′
i,X−i))] ∀xi ∈ R, (2)

where xi agent i’s true type, X−i is the (n−1)-dimensional random vector that
describes the other agents’ type, and EX−i

is the expectation with respect to
the joint distribution of X−i. Given β ∈ R, a mechanism f is a β-approximation
if E[SCf (Xn)] ≤ β E[SCopt(Xn)] holds, so that the lower β is, the better the
mechanism is. To unify the notation, we define the Bayesian approximation ratio
for the Social Cost as the ratio between the expected Social Cost of a mechanism
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and the expected Social Cost of the optimal solution. More formally, given a
mechanism f , its Bayesian approximation ratio is defined as follows

B(n)
ar (f) :=

E[SCf (Xn)]
E[SCopt(Xn)]

, (3)

where the expected value is taken over the joint distribution of the vector
Xn := (X1, . . . , Xn). Notice that, if B

(n)
ar (f) < +∞, then f is a B

(n)
ar (f)-

approximation. Since we consider only truthful mechanisms, in what follows
we use x to denote the vector containing the agents’ reports and the agents’ real
position interchangeably. Moreover, we use the capital letter Xn to denote the
random vector describing the agents’ types.

The Percentile Mechanisms. The class of percentile mechanisms has been intro-
duced in [45]. Given a vector v = (v1, v2, . . . , vk), such that 0 ≤ v1 ≤ v2 ≤
· · · ≤ vk ≤ 1, the percentile mechanism induced by v, namely PMv , proceeds
as follows: (i) The mechanism designer collects all the reports of the agents,
namely {x1, . . . , xn} and reorders them non-decreasingly. Without loss of gen-
erality, let us assume that the reports are already ordered in non-decreasing
order, i.e. xi ≤ xi+1. (ii) The designer places the k facilities at the positions
yj = xij , where ij = �(n − 1)vj	 + 1. Notice that, if the values xi are sampled
from a distribution, the output of any percentile mechanism is composed by the
(�(n − 1)vj	 + 1)-th order statistics of the sample. Percentile mechanisms are
truthful whenever the cost of an agent placed at xi is ci = minj∈[k] |xi − yj |,
where yj are the position of the facilities. Thus, when k > 2, the approxima-
tion ratio of any percentile mechanism becomes unbounded since the percentile
mechanisms are also anonymous and deterministic, that is ar(PMv ) = +∞
for every percentile vector v. Moreover, it is worth noting that since percentile
mechanisms are truthful in the classic setting, they also retain their truthfulness
within the Bayesian framework [29].

Basic Notions on Optimal Transport. In the following, we denote with P(R) the
set of probability measures over R. Given a measure γ ∈ P(R), we denote with
spt(γ) ⊂ R the support of γ, that is, the smallest closed set C ⊂ R such that
γ(C) = 1. Furthermore, we denote with Pk(R) the set of probability measures
over R whose support consists of k points. That is, ν ∈ Pk(R) if and only if
ν =

∑k
j=1 νjδxj

, where xj ∈ R for every j ∈ [k], νj ≥ 0 are real values such that
∑k

j=1 νj = 1, and δxj
is the Dirac’s delta centered in xj . Given two measures

α, β ∈ P(R), the Wasserstein distance between α and β is defined as

W1(α, β) = min
π∈Π(α,β)

∫

R×R

|x − y|dπ, (4)

where Π(α, β) is the set of probability measures over R×R whose first marginal
is equal to α and the second marginal is equal to β, [31]. Lastly, the infinity
Wasserstein distance is defined as W∞(α, β) = minπ∈Π(α,β) max(x,y)∈spt(π) |x −
y|. It is well-known that both W1 and W∞ are metrics over P(R). For a complete
introduction to the Optimal Transport theory, we refer the reader to [47].
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Basic Assumptions. In the remainder of the paper, we tacitly assume that the
underlying distribution μ satisfies the following properties: (i) The measure μ
is absolutely continuous. We denote with ρμ its density. (ii) The support of μ
is an interval, which can be bounded or not, and that ρμ is strictly positive on
the interior of the support. (iii) The density function ρμ is differentiable on the
support of μ. Notice that the cumulative distribution function (c.d.f.) Fμ of a
probability measure μ satisfying these properties is locally bijective. Thus the
pseudo-inverse function of Fμ, namely F

[−1]
μ , is well-defined on (0, 1).

3 The Bayesian Analysis of the Percentile Mechanism

In this section, we study the percentile mechanisms in the Bayesian Mechanism
Design framework. Specifically, we consider a scenario where the agents’ reports
are drawn from a shared distribution μ, which satisfies the basic assumptions
outlined in Sect. 2. First, we establish a connection between the k-FLP and the
Wasserstein distance and use it to investigate the convergence behaviour of the
Bayesian approximation ratio as the number of agents tends to infinity.

3.1 The k-FLP as a Wasserstein Projection problem

Given a vector x := (x1, x2, . . . , xn) containing the reports of n agents, we
define the measure μx := 1

n

∑n
i=1 δxi

. Using the map x → μx , we are able to
associate any agents’ profile to a probability measure in Pn(R) ⊂ P(R). Let us
now consider the following minimization problem

min
λ∈Pk(R)

W1(μx , λ). (5)

Due to the metric properties of W1, problem (5) is also known as the Wasserstein
projection problem on Pk(R). Since Pk(R) is closed with respect to any W1

metric, any Wasserstein projection problem admits at least a solution [3]. When
μx is clear from the context, we denote with ν(k,n) the solution to problem
(5). In general, given a measure ζ, we say that ν is the projection of ζ over
S ⊂ P(R) with respect to W1 if ν ∈ S and W1(ζ, ν) ≤ W1(ζ, ρ) for every ρ ∈ S.
In particular, ν(k,n) is the projection of μx over Pk(R) with respect to W1.

The starting point of our Bayesian analysis of the percentile mechanisms con-
nects the k-FLP to a Wasserstein projection problem. In particular, the objective
value of problem (5) is the same as the objective value of the k-FLP.

Theorem 1. Let x be the reports of n agents. Let y be the solution to the k-FLP,
i.e. the facility locations that minimize the Social Cost. Then the set {yj}j∈[k] is
the support of a measure ν(k,n) that solves problem (5). Moreover, we have that

SCopt(x) = W1(μx , ν(k,n)) = min
λ∈Pk(R)

W1(μx , λ).

Vice-versa, if ν ∈ Pk(R) is a solution to problem (5), then its support {yj}j∈[k]

is a solution to the k-FLP.
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Proof. Let x be the vector containing the reports of n agents, and let y be
the vector containing the optimal location for k facilities when the agents are
located according to x. Without loss of generality, we assume that the closest
facility to each agent xi is unique so that the sets Aj , defined as Aj :=

{
xi :

minl∈[k] |xi − yl| = |xi − yj |
}

, are well-defined and disjoint. First, we show that,
given an optimal facility location y, it is possible to retrieve a measure ν ∈ Pk(R)
that solves the projection problem (5) and whose support is {yj}j∈[k].

For every yj , let us set νj = �j
n , where j := |Aj | is the number of agents

whose closest facility is located at yj . We then set ν =
∑

j∈[k] νjδyj
. Since Aj are

disjoint sets, we have ν ∈ Pk(R). Let us now consider the transportation plan,
namely π, between μx and ν defined as

πi,j := πxi,yj
=

{
1
n if xi ∈ Aj

0 otherwise.

Since according to π every agent goes to its closest facility, π is optimal, thus
we have W1(μx , ν) =

∑
i∈[n],j∈[k] |xi − yj |πi,j = 1

n

∑
j∈[k]

∑
xi∈Aj

|xi − yj |. We
now show that ν solves problem (5). Toward a contradiction, let us assume that
ν̃ =

∑k
j=1 ν̃jδỹj

∈ Pk(R) is such that W1(μx , ν̃) < W1(μx , ν). Let us define the
partition of agents A′

j related to the set of points {y′
j}j∈[k].1 Then we have

1
n

∑

j∈[k]

∑

xi∈A′
j

|xi − y′
j | = W1(μx , ν̃j) < W1(μx , ν) =

1
n

∑

j∈[k]

∑

xi∈Aj

|xi − yj |, (6)

which contradicts the optimality of y, proving the first part of the Theorem.
For the inverse implication, it suffices to repeat the same argument back-

wards. Indeed, let ν′ be a solution to the W1 Projection problem. Toward a
contradiction, let us assume that the support of ν′ is not a solution to the k-
FLP. Then, given a solution to the k-FLP problem, we can use the argument
used in the first part of the proof to build a new measure that has a lower cost
than ν′, which would contradict the optimality of the initial solution. ��

By restricting the set on which the projection problem is defined, we retrieve
a similar characterization for the cost of any k-facility location mechanism.

Theorem 2. Let f : Rn → R
k be a k-facility location mechanism. Then, the

following identity holds

SCf (x) = min
{λj}j∈[k]⊂R

W1(μx , λ), (7)

where λ =
∑

j∈[k] λjδyj
and y = (y1, y2, . . . , yk) = f(x).

1 Again, without loss of generality, we can assume that the facility that is closest to a
given agent is unique.
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Notice that the projection problem (7) is a further restricted version of the
projection problem (5). Indeed, in (5), the support of the solution can be any
subset of R containing k elements, while in (7), the support of the solution is
fixed by the mechanism f .

3.2 The Bayesian Analysis of the Percentile Mechanisms

In this section, we use the results presented in Theorem 1 and Theorem 2 to study
the limiting behaviour of the Bayesian approximation ratio of any percentile
mechanism PMv with v ∈ (0, 1)k. From Theorem 1, the k-FLP is equivalent
to a projection problem in the space of probability distributions with respect to
W1. It is well-known that, in order to ensure that the W1 distance between two
measures is finite, both the measures must have a finite first moment [47]. We
recall that a measure μ has a finite first moment if

∫

R

|x|dμ < +∞. (8)

Lemma 1. Let Xn := (X1,X2, . . . , Xn) be the random vector describing the
reports of n i.i.d. agents distributed as μ. If μ satisfies (8), then, for every
k ∈ N, we have that E[SCopt(Xn)] converges to W1(μ, ν(k)) as n → ∞, where
ν(k) is the solution to the following projection problem

min
λ∈Pk(R)

W1(μ, λ). (9)

In particular, we have that E[SCopt(Xn)] is strictly positive for n large enough.

Proof. Let ν(k,n) be the solution to problem (5) and let ν(k) be the solution to
problem (9). Owing to the triangular inequality and to the properties of the
projection problem, we have

W1(μx , ν(k,n)) ≤ W1(μx , ν(k)) ≤ W1(μx , μ) + W1(μ, ν(k))

and, similarly

W1(μ, ν(k)) ≤ W1(μ, ν(k,n)) ≤ W1(μ, μx) + W1(μx , ν(k,n)),

which implies |W1(μ, ν(k)) − W1(μx , ν(k,n))| ≤ W1(μ, μx) and thus

E[|W1(μ, ν(k)) − W1(μx , ν(k,n))|] ≤ E[W1(μ, μx)].

Since limn→∞ E[W1(μ, μx)] = 0, see [16], we infer that E[W1(μx , ν(k,n))] con-
verges to W1(μ, ν(k)) as n → ∞. Finally, since W1(μ, ν(k)) is strictly positive,
for n large enough, we have E[W1(μx , ν(k,n))] is strictly positive as well. ��

It is worthy of notice that in the proof of Lemma 1, we have shown a slightly
stronger result: the random variable SCopt(Xn) converges with respect to the
L1 norm to the constant value W1(μ, ν(k)). Moving on to the limit cost of the
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mechanism, we observe that the set characterizing the projection problem (7) is
dependent on the output of the percentile mechanism. Hence, the argument used
to prove Lemma 1 cannot be directly applied in this case. However, by employing
a more sophisticated construction and leveraging the convergence properties of
the k-th order statistics, it is possible to identify the limit of E[SCv (Xn)] and
ensure convergence by imposing mild assumptions on the percentile vector v.

Lemma 2. Let μ be a measure that satisfies (8). Given k ∈ N, let v ∈ (0, 1)k

be a percentile vector. Then, E[SCv (Xn)] converges to W1(μ, νQv
), where νQv

is defined as

νQv
:=

k∑

i=1

(Fμ(zi) − Fμ(zi−1))δF
[−1]
µ (vi)

, (10)

where zi = (F [−1]
µ (vi)+F [−1]

µ (vi+1))

2 for i = 1, . . . , k − 1, z0 = infx∈I x, and zk =
supx∈I x, Fμ is the cumulative distribution function of μ, and F

[−1]
μ is the pseudo-

inverse function related to μ.

Proof. First, we notice that the measure (10) is well-defined since there exists a
j such that vj = 0, 1. Let v = (v1, . . . , vk) be a percentile vector, x be the vector
containing the reports of the agents, ν(k,n) be the solution to problem (7), and
let y be the vector containing the facility positions returned by the percentile
mechanisms, so that ν(k,n) =

∑
j∈[k](ν

(k,n))jδyj
. To lighten-up the notation,

we set νQv
:= νQ, thus νQ :=

∑
j∈[k](νQ)jδF

[−1]
µ (vj)

, where (νQ)j := (Fμ(zj) −
Fμ(zj−1)), where z0 = −∞, zk = +∞, and zi =

yi+yi+1
2 for every i = 2, . . . , k−1.

We now show that νQ is the solution to the following minimization problem

min
{λj}j∈[k]

W1(λ, μ), (11)

where λ =
∑k

j=1 λjδF [−1](vj). We can rewrite the W1 distance between μ and νQ

as it follows

W1(μ, νQ) =
k∑

j=1

∫ F [−1](
∑k+1

i=1 (νQ)i)

F [−1](
∑k

i=1(νQ)i)

|x − F [−1](vj)|dμ.

By definition of νQ we have that
∑j

i=1(νQv
)i = Fμ(zj), thus

W1(μ, νQ) =
k∑

j=0

∫ zj+1

zj

|x − F [−1](vj)|dμ =
∫ +∞

−∞
min
j∈[k]

|x − F [−1](vj)|dμ, (12)

where we used the fact that z0 = −∞, zk = +∞, and zi =
F [−1](vi)+F [−1](vi+1)

2
for every i = 2, . . . , k − 1. Thus every point in the support of μ is assigned to its
closest facility, thus νQ is a solution to (11).
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We are now ready to study the convergence of E[SCv (Xn)]. For every n ∈ N,
let us define γn =

∑
j∈[k](νQ)jδyj

, where yj is the j-th point in the support of
ν(k,n). By a similar argument to the one used to prove Lemma 1, we have

W1(μx , ν(k,n)) ≤ W1(μx , γn) ≤ W1(μx , μ) + W1(μ, νQ) + W1(νQ, γn).

For every n ∈ N, let us now define ηn :=
∑

j∈[k](ν
(k,n))jδF

[−1]
µ (vj)

. We then have

W1(μ, νQ) ≤ W1(μ, ηn) ≤ W1(μ, μx) + W1(μx , ν(k,n)) + W1(ν(k,n), ηn).

Since W1(νQ, γn),W1(ν(k,n), ηn) ≥ 0, we infer that

E[|W1(μ, νQ) − W1(μx , ν(k,n))|] ≤ E[W1(μ, μx )] + E[W1(νQ, γn)] + E[W1(ν
(k,n), ηn)].

(13)
From [16], we have that limn→∞ E[W1(μ, μx)] = 0. To conclude the thesis, we
need to prove that both E[W1(νQ, γn)] and E[W1(ν(k,n), ηn)] go to zero as n →
∞. If we express ν(k,n) and ηn explicitly, we infer that E[W1(ν(k,n), ηn)] converges
to zero if the (�vj(n − 1)	 + 1)-th quantile converges to F

[−1]
μ (vj) with respect

to the l1 norm, which can be done using Bahadur’s representation formula [20]
and leveraging our hypothesis on the regularity of μ. A similar argument allows
us to handle E[W1(νQ, γn)] and conclude the proof. ��

By combining the convergence results shown in Lemma 1 and 2, we infer that
the Bayesian approximation ratio of any PMv converges to a bounded quantity.

Theorem 3. Let Xn be a random vector of n i.i.d. variables distributed as μ
and let v ∈ (0, 1)k be a percentile vector. If μ satisfies (8), we have

lim
n→∞

E[SCv (Xn)]
E[SCopt(Xn)]

=
W1(μ, νQv

)
W1(μ, ν(k))

.

Theorem 3 ensures that the limit of the Bayesian approximation ratio of any
percentile mechanisms is equal to a quantity that depends only on μ, k, and v.
For an illustration, we compute this quantity for a generic k and v, and μ is the
uniform distribution over [0, 1].

Example 1. Let v = (v1, . . . , vk) be a percentile vector and let the underlying
distribution μ be the uniform distribution over [0, 1]. The measure νQv

is then
defined as νQv

:=
∑k

i=1
vi+1−vi−1

2 δvi
, where v0 = 0 and vk+1 = 1. It is easy

to see that the projection of μ over Pk(R) is ν(k) := 1
k

∑k
j=1 δ 2j−1

2k
. From a

simple computation, we infer that W1(μ, νQv
) =

∑k
i=1

[
(vi+1−vi)

2+(vi−vi−1)
2

2

]

and W1(μ, ν(k)) = 1
4k . Moreover, since vi ≤ vi+1 and vj ∈ [0, 1], we have that

(vi+1 − vi)2 ≤ vi+1 − vi, and obtain

lim
n→∞ B(n)

ar (PMv ) ≤ 4k
k∑

i=1

[ (vi+1 − vi−1)
2

]
≤ 4k.



158 G. Auricchio and J. Zhang

That is, when the agents are distributed according to an uniform distribution,
the Bayesian approximation ratio of any percentile mechanism for the k-FLP is
upper bounded by 4k.

We now characterize the convergence rate of the Bayesian approximation
ratio. To do so, μ must have compact support or there exists δ > 0 such that

∫

R

|x|2+δdμ < +∞. (14)

In both cases, we have that the convergence rate is at most of the order n− 1
2 .

Theorem 4. Under the hypothesis of Theorem 3, let us further assume that
either μ is supported on a compact set or satisfies (14). Then, we have that

∣
∣
∣
∣
∣

E[SCv (Xn)]
E[SCopt(Xn)]

− W1(μ, νQv
)

W1(μ, ν(k))

∣
∣
∣
∣
∣
≤ O(n− 1

2 ). (15)

Thus the convergence rate of the Bayesian approximation ratio of PMv is
O(n− 1

2 ). Moreover, for every v ∈ (0, 1)k, there exists C > 0 such that

B(n)
ar (PMv ) ≤ W1(μ, νQv

)
W1(μ, ν(k))

+
C√
n

∀n > k, (16)

where νQv
is defined in (10) and ν(k) is a minimizer of (9).

Notice that the term W1(μ,νQv )

W1(μ,ν(k))
in (16), is a constant that does not depend

on n, but depends only on the specifics of the problem, that is μ, k, and v.

Remark 1. To conclude the section, we discuss the case in which vj ∈ {0, 1}
for at least one index j ∈ [m]. For the sake of argument, let us consider a
percentile mechanism induced by a percentile vector v such that v1 = 0. In this
case, the mechanism places a facility at the position of the leftmost agent. The
asymptotic behaviour of the mechanism then depends on whether the support of
μ is bounded from left or not. Indeed, if −∞ < a := infx∈spt(μ) x, we have that
the position of the leftmost agent converges to a. In this case, we can study the
limit Bayesian approximation ratio of the percentile mechanism, but we will not
be able to retrieve any guarantee on the convergence speed. If infx∈spt(μ) x =
−∞, the position of the leftmost agent does not converge, thus we cannot adapt
Theorem 3 to suit this case.

4 The Optimal Percentile Mechanism

Owing to Theorem 3, if W1(μ, νQv
) = W1(μ, ν(k)) the Bayesian approximation

ratio of PMv converges to 1 when n → ∞. We now show that, for any k ∈ N

and any underlying distribution μ, there exists a percentile vector whose associ-
ated mechanism asymptotically behaves optimally, i.e. the limit of the Bayesian
approximation ratio of the induced mechanism is equal to 1. Given an underlying
distribution μ, we denote with vμ its related optimal percentile vector.
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Theorem 5. Let μ be the underlying distribution and {yj}j∈[k] be the support
of the solution to problem (9). Then, the vector vμ defined as

(vμ)j = Fμ(yj), (17)

is an optimal percentile vector.

Remark 2. It is also worth of notice that νQv µ
= ν(k) holds. Indeed, toward

a contradiction, let us assume that νQv µ
= ν(k). Then there exists a j̄ ∈ [k]

such that (νQv µ
)i = ν

(k)
i for every i = 1, . . . , j̄ − 1 and (νQv µ

)j̄ = ν
(k)

j̄
. Since

the optimal transportation plan between two measures supported over a line is
monotone, we have that W1(μ, ν(k)) =

∑k
j=0

∫ lj+1

lj
|x − yj |dμ, where l0 = −∞

and lr = F
[−1]
μ (

∑r
i=1 ν

(k)
i ) for every r ∈ [k]. Since (νQv µ

)j̄ = ν
(k)

j̄
, we have

that lj̄ = yj̄+yj̄+1
2 . Thus we have W1(μ, ν(k)) = ∫ +∞

−∞ minj∈[k] |x − yj |dμ, which
contradicts the definition of ν(k) and (12), thus νQv µ

= ν(k).

Given k ∈ N and a probability measure μ, it is possible to retrieve a system
of k equations that characterizes the optimal percentile mechanism. Indeed, let
us denote with y1, . . . , yk the support of the solution to minλ∈Pk(R) W1(μ, λ) and
let zi =

yi+yi+1
2 for i = 1, . . . , k−1, z0 = −∞, and zk = +∞. Since every agent’s

cost is defined by its distance to the closest facility, we know that every agent in
(z0, z1) will access the facility located in y1. Due to the optimality of the solution,
we infer that y1 is locally optimal over the set (z0, z1). Otherwise, we could reduce
the cost of the solution by replacing y1 with the optimal facility location for the
problem restricted to (z0, z1). Since we are considering the Social Cost, the local
optimality of y1 is expressed by the identity 2(Fμ(y1)−Fμ(z0)) = F (z1)−Fμ(z0),
since y1 has to be the median of μ when the measure is restricted to (z0, z1).

Theorem 6. Given k ∈ N and μ ∈ P(R), let ν be a solution to Problem (9).
Then the optimal percentile vector is vμ = (Fμ(y1), . . . , Fμ(ym)) ∈ (0, 1)k, where
y1 ≤ y2 ≤ · · · ≤ yk satisfy the following system of k equations
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2Fµ(y1) = Fµ

(
y1+y2

2

)

2

(

Fµ(yj−1) − Fµ

(
yj−2+yj−1

2

))

= Fµ

(
yj+yj−1

2

)
− Fµ

(
yj−1+yj−2

2

)
, j ∈ [k − 1].

2

(

Fµ(yk) − Fµ

(
yk+yk−1

2

))

= 1 − Fµ

(
yk+yk−1

2

)

(18)

Since the projection problem (9) admits a solution, system (18) admits at
least a solution. In Table 1, we report the optimal percentile vectors associated
with the uniform, normal, and exponential distributions. The details on how to
apply Theorem 6 to compute them are deferred to the full version of the paper.

Theorem 7. Given a probability distribution μ such that condition (8) is satis-
fied, let vμ be the optimal percentile vector associated with μ. Then, there exists
a constant C such that, for every n > k, we have B

(n)
ar (PMvµ

) ≤ 1 + C√
n
.
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Table 1. The asymptotically optimal percentile vectors for the Normal (N ), Expo-
nential (E), and Uniform distribution (U). Every row contains the optimal percentile
vectors of a distribution for 1, 2, and 3 facilities and with respects to the Social Cost.

k = 1 k = 2 k = 3

N (0.5) (0.25, 0.75) (0.15, 0.5, 0.85)

E (0.5) (0.33, 0.83) (0.25, 0.67, 0.92)

U (0.5) (0.25, 0.75) (0.16, 0.5, 0.83)

To conclude, we show that the limit of the Bayesian approximation ratio
of the percentile mechanisms and the percentile vector vμ defined in (17)
are immune to scale changes. This is particularly useful when the mechanism
designer only knows the class of distribution to which the agents’ distribution
belongs. For example, the designer might know that the agents’ type follows
a Gaussian distribution but is unaware of its mean and/or its standard devi-
ation. In the following, we show that the optimal percentile and the limit of
the Bayesian approximation ratio of the percentile mechanisms are the same
regardless of the mean or standard deviation of the distribution.

Theorem 8. Let X be the random variable that describes the agents’ type dis-
tribution. If vμ is the optimal percentile vector associated with X, then vμ is also
the optimal percentile vector for any random variable of the form X ′ := σX+m,
where m ∈ R and σ > 0.

Theorem 8 formalizes the following observation: the optimal facility locations
and the output of any percentile mechanism do not depend on the scale. Indeed,
given a percentile vector v and the number of agents n, if the agents’ positions are
sampled from a random variable X, the output of PMv is the vector containing
the (�(n − 1)vj	 + 1)-th order statistics of the sample. Since the ordering of the
values is unaffected by positive affine transformations, scaling any sample just
magnifies (or shrinks) the cost of the output according to σ. Similarly, if we scale
the agents’ positions, the optimal facility locations will scale accordingly. Hence
the ratio of the two costs is immune to scale changes.

5 Computing the Optimal Percentile Mechanism
from an Approximation of µ

In the previous section, we have shown that if the agents’ types are sampled
from a common probability distribution μ, the mechanism designer is able to
detect a percentile mechanism whose cost is asymptotically optimal when the
number of agents increases. To detect the optimal percentile vector, however,
it is necessary to have access to μ. In many cases, this is not feasible since
the designer has only access to an approximation or a prediction of agents’
distribution, namely μ̃. Thus, the designer is able to compute vμ̃ rather than
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the real optimal percentile vector vμ. We show that it is possible to estimate the
difference between the limit of the Bayesian approximation ratio of PMv µ̃

and
1, i.e. the limit of the Bayesian approximation ratio of the optimal percentile
mechanism. In particular, we show that the closer μ and μ̃ are with respect to
W∞, the closer the asymptotic cost of PMv µ̃

gets to the optimal cost.

Theorem 9. Let μ̃ and μ be two probability measures supported over a compact
interval I. Let vμ̃ be the percentile vector obtained by solving the system (17) by
using μ̃ instead of μ. Then, we have

lim
n→∞

∣
∣
∣
∣
∣

E[SCv µ̃
(Xn)]

E[SCopt(Xn)]
− 1

∣
∣
∣
∣
∣
≤ W∞(μ, μ̃) + 2W1(μ, μ̃)

W1(μ, ν(k))
≤ 3

W∞(μ, μ̃)
W1(μ, ν(k))

, (19)

where E is the expected value with respect to the real agents’ distribution μ. In
particular, for every n > k, there exists a constant C > 0 such that

|B(n)
ar (PMvµ

) − B(n)
ar (PMv µ̃

)| ≤ 3
W∞(μ, μ̃)

W1(μ, ν(k))
+

C√
n

,

where vμ is the optimal percentile vector associated with μ.

Proof. Let us denote with ν̃(k) the projection of μ̃ over Pk(R) and with ν(k) the
projection of μ over Pk(R). We denote with {yj}j∈[k] the support of ν(k) and
with {ỹj}j∈[k] the support of ν̃(k). Accordingly, we denote with vμ̃ and vμ the
optimal percentile vectors associated with μ̃ and μ, respectively. By Lemma 2,
we have that the numerator of the Bayesian approximation ratio converges to
W1(μ, νQv µ̃

), where νQv µ̃
is defined as in (10). Let us now consider, βv µ̃

defined
as βv µ̃ :=

∑
j∈[k](ν̃

(k))jδzj
, where z = (z1, . . . , zk) is the support of νQv µ̃

, then

W1(μ, νQv µ̃
) ≤ W1(μ, βv µ̃) ≤ W1(μ, μ̃) + W1(μ̃, βv µ̃)

≤ W1(μ, μ̃) + W1(μ̃, ν̃(k)) + W1(ν̃(k), βv µ̃
) (20)

≤ W1(μ, μ̃) + W1(μ̃, ν(k)) + W1(ν̃(k), βv µ̃
)

≤ 2W1(μ, μ̃) + W1(μ, ν(k)) + W1(ν̃(k), βv µ̃
).

By definition of βv µ̃
and ν̃(k), we have W1(ν̃(k), βv µ̃

) ≤ ∑
j∈[k](ν̃

(k))j |F [−1]
μ̃ (p̃j)−

F
[−1]
μ (p̃j)|. Since W1(μ, μ̃) ≤ W∞(μ, μ̃) and W∞(μ, μ̃) = max�∈[0,1] |F [−1]

μ () −
F

[−1]
μ̃ ()|, we infer W1(ν̃(k), βv µ̃

) ≤ W∞(μ, μ̃). To conclude, we notice that,

|B(n)
ar (PMvµ

) − B(n)
ar (PMv µ̃

)|
≤ |1 − Bar(PMv µ̃)| + |B(n)

ar (PMvµ) − 1| + |Bar(PMv µ̃) − B(n)
ar (PMv µ̃)|

≤ 3
W∞(μ, μ̃)

W1(μ, ν(k))
+ |B(n)

ar (PMvµ
) − 1| + |Bar(PMv µ̃

) − B(n)
ar (PMv µ̃

)|,

where Bar(PMv µ̃
) = limn→∞ B

(n)
ar (PMv µ̃

). Since μ has compact support and
vμ,vμ̃ ∈ (0, 1)k, we infer that |B(n)

ar (PMvµ
)− 1| ≤ O(n− 1

2 ) and |Bar(PMv µ̃
)−

B
(n)
ar (PMv µ̃)| ≤ O(n− 1

2 ), which concludes the proof. ��
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6 Conclusion and Future Works

In this paper, we studied the percentile mechanisms in the Bayesian Mechanism
Design framework. We have shown that the ratio between the expected cost of
the mechanisms and the expected optimal cost converges to a constant as the
number of agents goes to infinity. We have characterized both the limit value and
the convergence speed. We then showed that for every underlying distribution μ,
there exists an optimal percentile vector vμ that does not depend on the mean
or the variance of the distribution. The scale invariance property allows us to
compute the optimal percentile vector when the designer only knows the class
to which the probability measure belongs. Lastly, we have shown that determin-
ing the optimal percentile mechanism from an approximation of the underlying
distribution leads to a mechanism whose performance is quasi-optimal as long
as the approximation is close to the real distribution with respect to W∞.

An open question is whether our formalism could be adopted to higher dimen-
sional cases. In [45], the percentile mechanisms are generalized to higher dimen-
sions by dealing with each dimension separately. This suggests that our approach
can be extended to handle higher-dimensional problems since the Wasserstein
Distance can be separated along each cardinal direction [4,5]. Moreover, our
framework can be extended beyond the classic k-FLP. In particular, it is fore-
seeable to use our results to tackle the case in which agents have fractional pref-
erences. Anotherdirection is to adapt our reformulation of the problem through
OT theory to design and study randomized mechanisms for the k-FLP.

Acknowledgments. Jie Zhang was partially supported by a Leverhulme Trust
Research Project Grant (2021–2024) and the EPSRC grant (EP/W014912/1).
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Abstract. We study the classic single-item auction setting of Myer-
son, but under the assumption that the buyers’ values for the item are
distributed over finite supports. Using strong LP duality and polyhedral
theory, we rederive various key results regarding the revenue-maximizing
auction, including the characterization through virtual welfare maximiza-
tion and the optimality of deterministic mechanisms, as well as a novel,
generic equivalence between dominant-strategy and Bayesian incentive
compatibility. Inspired by this, we abstract our approach to handle more
general auction settings, where the feasibility space can be given by arbi-
trary convex constraints, and the objective is a linear combination of
revenue and social welfare. We characterize the optimal auctions of such
systems as generalized virtual welfare maximizers, by making use of their
KKT conditions, and we present an analogue of Myerson’s payment for-
mula for general discrete single-parameter auction settings. Additionally,
we prove that total unimodularity of the feasibility space is a sufficient
condition to guarantee the optimality of auctions with integral alloca-
tion rules. Finally, in the full version of our paper, we demonstrate this
KKT approach by applying it to a setting where bidders are interested
in buying feasible flows on trees with capacity constraints, and pro-
vide a combinatorial description of the (randomized, in general) optimal
auction.

Keywords: Optimal auction design · Revenue maximization · LP
duality · KKT conditions · Discrete auctions · Network auctions ·
Ironing · Virtual valuations

1 Introduction

The design of optimal auctions [12,15] that maximize the seller’s revenue is
a cornerstone of the field of mechanism design (see, e.g., [11, Ch. 9] and [9]),
established into prominence by the highly-influential work of Myerson [16], and
traced back to the seminal work of Vickrey [17].

A full version of this paper can be found at https://arxiv.org/abs/2406.08125 [7].
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In its most classical form [16], which is the basis for the setting we are study-
ing in our paper as well, there is a single item to sell and the problem is modelled
as a Bayesian game. The seller has only incomplete information about the bid-
ders’ true valuations of the item, in the form of independent (but not necessarily
identical) probability distributions; these distributions are assumed to be public
knowledge across all participants in the auction. The players/bidders submit bids
to the auctioneer/seller and the seller decides (a) who gets the item, and with
what probability (since lotteries are allowed), and (b) how much the winning
bidders are charged for this transaction.

In this game formulation, the strategies of the players are the different bids
they can submit, and it could well be the case that bidders misreport their true
valuations, if this can result in maximizing their own personal utility. Therefore,
a desirable feature of mechanism design in such settings is the implementation
of auctions which provably guarantee that truth-telling is an equilibrium of the
game; such auctions are called truthful (or incentive compatible (IC)). Perhaps
surprisingly, the celebrated Revelation Principle of Myerson [16] ensures that
restricting our attention within the class of such well-behaved selling mechanisms
is without loss for our purposes.

The seminal work of Myerson [16] provides a complete and mathematically
satisfying characterization of revenue-maximizing truthful auctions in the afore-
mentioned single-item setting, under the assumption that valuation/bidding
spaces are continuous. It explicitly constructs an optimal auction that (a) is
deterministic, i.e. the item is allocated to a single bidder (with full probabil-
ity), or not sold at all, (b) satisfies truthfulness in a very strong sense, namely
under dominant-strategy equilibrium, and not just in-expectation (see Sect. 2.2
for more details), and (c) has a very elegant description, enabled via the well-
known virtual valuation “trick” (see (1)); this casts the problem into the domain
of welfare-maximization, simplifying it significantly by stripping away the game-
theoretic incentives components, and transforming it to a “purely algorithmic”
optimization problem—resembling the familiar, to any computer scientist, notion
of a reduction (a formalization of this connection, even for more general envi-
ronments, can be found in the work of Cai, Daskalakis, and Weinberg [2,3]).

Still, the assumption of continuity may be considered as too strong for many
practical, and theoretical, purposes. Any conceivable instantiation of an auction
on a computing system will require some kind of discretization; not only as a
trivial, unavoidable consequence of the fundamentally discrete nature of com-
putation (i.e., “bits”), but also for practical reasons: bids are usually expected
to be submitted as increments of some common denomination (e.g., “cents”).
And any implementation of optimal auction design as an optimization problem,
would need to be determined by finitely many parameters and variables, to be
passed, e.g., to some solver. Furthermore, although many of the key properties
and results for the continuous setting can be derived as a limiting case of a
sequence of discrete ones, in general the opposite is not true: most of the tech-
niques used in traditional auction theory rely on real analysis and continuous
probability, thus breaking down when called to be applied to discrete spaces.
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The above reasons highlight the importance of deriving a clear and robust
theory of optimal auction design, under the assumption of finite value spaces. In
other words, a discrete analogue of Myerson’s [16] theory. During the last couple
of decades, various papers within the field of algorithmic game theory have dealt
with this task; see Sect. 1.1 for a more detailed overview. Our goal in this paper is
to first rederive existing key results, in a unified way, with an emphasis on clarity,
simplicity, and rigorousness; and, do this via purely discrete optimization tools
(namely, LP duality and polyhedral combinatorics), “agnostically”, rather than
trying to mimic and discretize Myerson’s [16] approach for the continuous setting.
Secondly, this comprehensiveness and transparency allows us to lift our approach
up to handle quite general single-parameter mechanism design environments, by
concisely formulating our problem as an elegant KKT system.

1.1 Related Work

To the best of our knowledge, the first to explicitly study optimal auction design
at a discrete setting were Bergmann and Pesendorfer [1] and Elkind [6]; the
latter offers a more complete treatment, providing a natural discretization of
Myerson’s [16] techniques, including “ironing” of non-regular distributions. A
limitation of [6] is that it establishes that the discrete analogue of Myerson’s auc-
tion is optimal within the more restrictive class of dominant-strategy incentive
compatible (DSIC) mechanisms, instead of using the standard, weaker notion of
Bayesian incentive compatibility (BIC).

In a discussion paper, Malakhov and Vohra [14] study discrete auction envi-
ronments with identical bidders under BIC, providing a simpler, equivalent char-
acterization of truthfulness, through a set of local constraints. We will make
critical use of this characterization, appropriately adapted to our general, non-
symmetric setting of our paper (see Sect. 2.3). The treatment of [14] puts empha-
sis on linear programming (LP) formulations, and derive an interesting, flow-
based description of optimality for general, multi-dimensional mechanism design
settings; the monograph of Vorah [18] provides a comprehensive treatment of
this approach.

All aforementioned approaches work, essentially, by adapting the key steps of
Myerson’s derivations, from the continuous to the discrete setting. Cai, Devanur,
and Weinberg [4] provide a totally different, and very powerful, approach based
on Lagrangian duality. Conceptually, their paper is clearly the closest to ours.
[4] followed a line of work, where duality proved very useful in designing optimal
multiple-item auctions in the continuous case (see, e.g., [5,8]). Although the
duality framework of [4] is fundamentally discrete, it was also designed for multi-
dimensional revenue-maximization, a notoriously difficult and complex problem.
Therefore, its instantiation for a single-parameter Myersonian setting (see [4,
Sec. 4]) results, arguably, in a rather involved presentation. One of the goals of
our paper is exactly to demystify duality for single-item domains, by making use
of classical LP duality, particularly tailored for our problem, instead of the more
obscure Lagrangian flows interpretation in [4], resulting in greater transparency
and a wider spectrum of questions that we can attack (see Sect. 3).
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1.2 Our Results

We begin our presentation by introducing our single-parameter auction design
setting, and fixing some overarching notation, in Sect. 2. Our model formulation
is deliberately general, allowing for arbitrary feasibility domains A for the auc-
tion’s allocation; we will specialize this to the standard distributional simplex
when studying the classical Myersonian single-item setting in Sect. 3, however
we want to be able to capture the abstract convex environments we study later
in Sect. 4. Importantly, in Sect. 2.2 we discuss in detail the two different notions
of truthfulness used for our problem, and in Sect. 2.3 we provide a local charac-
terization of truthfulness, essentially taken from Malakhov and Vohra [14], which
we will extensively use in our optimization formulation throughout our paper.

Section 3 includes our rederivation of the key components of Myerson’s [16]
theory for single-item revenue-maximization, but for finite-support distributions,
as well as some novel results. They all arise, in a unified way, through a chain
of traditional LP duality, presented in Sect. 3.1 (see Fig. 1 for a concise pictorial
view). The resulting revenue-maximizing auction, together with some key results
characterizing optimality, are given in the “master” Theorem 1: in a nutshell, the
optimal auction first transforms the submitted bids to virtual bids and then irons
them, finally allocating the item to the highest nonnegative (virtual, ironed)
bidder. Similar to the classical results of [16] for continuous domains, this auction
turns out to be deterministic and truthful in the strongest DSIC sense, “for
free”, although we are optimizing within the much wider space of lotteries under
BIC. To the best of our knowledge, Point 2 where we formalize the equivalence
of DSIC and BIC, under revenue-maximization, as a more fundamental and
general consequence of the polyhedral structure of our feasibility space, rather
than just a feature of the particular optimal auction solution format, is novel.
The remaining Sects. 3.2, and 3.3, are dedicated in elaborating and formally
proving the various components of Theorem 1. A point worth noting is that
our virtual value (12) and ironing (14) transformations are not “guessed” and
the proven to impose optimality, as is the case with prior work in the area, but
rather arise organically as a necessity of our strong LP duality technique.

Inspired by the transparency of our duality framework in Sect. 3, we try to
generalize our approach to a more general single-parameter mechanism design
setting, where the feasibility space A is given by arbitrary convex constraints,
and the optimization objective is a linear combination of revenue and social
welfare; see Sect. 4.1. Our results are summarized in master Theorem 2, which
is essentially the analogue of Theorem 1. Given the generality of our model in
this section, we have to depart from our basic LP duality tools of Sect. 3, and
make use of the more general KKT conditions framework, including duality and
complementary slackness; our KKT formulation is discussed in the full version
of our paper [7, Sec 4.2]. The abstraction of our model allows for a very con-
cise and elegant description of the optimal auction’s allocation and payment
rules (see Sect. 4.2). Similarly to the single-item setting of Sect. 3, we can again
show that optimizing under the more restrictive notion of DSIC truthfulness is
without loss for our optimization objective. Furthermore, we investigate under
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what structural conditions of our underlying feasibility space we can “generically”
guarantee that there exists an optimal auction that does not need to allocate
fractionally/randomly, i.e. it is integral; it turns out, that total unimodularity is
such a sufficient condition (see Definition 2, and the full version of our paper [7,
Sec. 4.4], for more details and definitions).

Due to space constraints, all omitted proofs and missing content, including
an application of our framework to a combinatorial problem of buying flows on
a capacitated tree network, can be found in the full version of our paper [7].

2 Preliminaries

2.1 Model and Notation

Single-Parameter Settings. In a (Bayesian) single-parameter auction design set-
ting there are n ≥ 1 bidders, and each bidder i ∈ [n] has a value vi ∈ R≥0

for being allocated a single “unit” of some “service”. Each value vi is drawn
independently from a distribution (with cdf) Fi with support Vi ⊆ R≥0, called
the prior of bidder i. We will use fi to denote the probability mass function
(pmf) of Fi. These distributions are public knowledge, however the realization
vi is private information of bidder i only. In this paper we only study dis-
crete auction settings, where the prior supports Vi are finite. For notational
convenience we denote the corresponding product distribution of the value pro-
files v = (v1, v2, . . . , vn) ∈ V := ×n

i=1Vi by F := ×n
i=1Fi, and we also use

V −i := ×j∈[n]\iVj and F −i := ×j∈[n]\iFj .
There is also a set of feasible outcomes A ⊆ R

n
≥0, each outcome a =

(a1, a2, . . . , an) ∈ A corresponding to bidder i being allocated a “quantity”
ai. Throughout this paper we assume that A is convex. A canonical exam-
ple is the classical single-item auction setting (which we study in Sect. 3),
where ai can be interpreted as the probability of a lottery assigning the item
to bidder i, in which case the feasibility set A is the n-dimensional simplex
Sn :=

{
a ∈ R

n
+ | ∑n

i=1 ai ≤ 1
}
.

Auctions. An auction M = (a,p) consists of an allocation rule a : V −→ A
and a payment rule p : V −→ R

n that, given as input a vector of bids b ∈ V ,
dictates that each bidder i should get allocated quantity ai(b) and submit a
payment of pi(b) to the auctioneer.

Given such an auction M , the (ex-post) utility of a bidder i, when their true
value is vi ∈ Vi and bidders submit bids b ∈ V , is

uM
i (b; vi) = ui(b; vi) := ai(b) · vi − pi(b). (1)

Using the distributional priors Fi to capture the uncertainty about other bidders’
behaviour, we can also define the interim utility of a bidder, when having true
value vi ∈ Vi and bidding bi ∈ Vi as

Ui(bi; vi) := Eb−i∼F −i
[ui(bi, b−i; vi)] = Ai(bi) · vi − Pi(bi),



170 Y. Giannakopoulos and J. Hahn

where

Ai(bi) := Eb−i∼F −i
[ai(bi, b−i)] and Pi(bi) := Eb−i∼F −i

[pi(bi, b−i)]

are the interim versions of the allocation and payment rules of the mechanism,
respectively.

An auction whose allocations lie in the n-simplex, i.e. a(v) ∈ Sn for all
v ∈ V , will be called a lottery, since its fractional allocations ai ∈ [0, 1] can be
equivalently interpreted as the probability of assigning 1 unit of service to bidder
i, given the linearity of the utilities (1). In particular, lotteries with only integral
0-1 allocations, i.e. a ∈ Sn ∩ {0, 1}n will be called deterministic auctions. More
generally, any auction with allocation rule a ∈ N

n will be called integral .

2.2 Incentive Compatibility

From the perspective of each bidder i, the goal is to bid so that they can maximize
their own utility. In particular, this means that bidders can lie and misreport
bi �= vi. Therefore, one of the goals of mechanism design is to construct auctions
that avoid this pitfall, and which provably guarantee that truthful participation
is to each bidder’s best interest. From a game-theoretic perspective this can be
formalized by demanding that truthful bidding bi = vi is an equilibrium of the
induced Bayesian game.

This gives rise to the following constraints, known as dominant-strategy incen-
tive compatibility (DSIC): for any bidder i, any true value vi ∈ Vi, and any
bidding profile b ∈ V , it holds that

ui(vi, b−i; vi) ≥ ui(bi, b−i; vi), (DSIC)

and its more relaxed version of Bayesian incentive compatibility (BIC), involving
the interim utilities:

Ui(vi; vi) ≥ Ui(bi; vi), (BIC)

for any bidder i, true value vi ∈ Vi and bid bi ∈ Vi.

Individual Rationality. Another desired property of our mechanisms is that
no bidder should harm themselves by truthfully participating in our auction,
known as individual rationality (IR). Similarly to the truthfulness conditions
(DSIC) and (BIC), this can be formalized both in an ex-post and interim way:
ui(vi, b−i) ≥ 0 and Ui(vi; vi) ≥ 0, respectively, for all bidders i, true values
vi ∈ Vi and other bidders’ bid profile b−i ∈ V −i, respectively.

One elegant way to merge the (IR) constraints into truthfulness, is to extend
the bidding space of bidder i in (DSIC) and (BIC) from Vi to V̄i := Vi ∪ {∅}
and define

ai(∅, b−i) = pi(∅, b−i) = 0 (2)

for all bidders i and other bidders’ bids b−i ∈ V −i. Then, bidding ∅ can
be interpreted as an option to “abstain” from the auction for a utility of
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ui(∅, b−i; vi) = Ui(∅; vi) = 0. From now on we will assume that our truth-
fulness conditions (DSIC) and (BIC) are indeed extended in that way to V̄i,
thus including the (IR) constraints. An auction will be called DSIC (resp. BIC)
if it satisfies those (extended) (DSIC) (resp. (BIC)) constraints. Observe that,
since (DSIC) ⊆ (BIC), any DSIC auction is also BIC.

Optimal Auctions. The main focus of our paper is the design of optimal auctions,
for discrete value domains. That is, maximize the seller’s revenue within the
space of all feasible truthful auctions. Formally, if for a given auction M = (a,p)
we denote its expected revenue, with respect to the value priors F , by

Rev(M) := Ev∼F

[
n∑

i=1

pi(v)

]

, (3)

then our optimization problem can be stated as supM :A∧(DSIC) Rev(M), or
supM :A∧(BIC) Rev(M), depending on whether we choose the notion dominant-
strategy, or Bayesian truthfulness. An optimal solution to the former problem
will be called optimal DSIC auction, and to the latter, optimal BIC auction. Fol-
lowing the standard convention in the field (see, e.g., [12] and [16]), the term opti-
mal auction that does not explicitly specify the underlying truthfulness notion,
will refer to the optimal BIC auction. Notice that, since (DSIC) ⊆ (BIC), for
an optimal DSIC auction M and an optimal BIC auction M ′ it must be that
Rev(M) ≤ Rev(M ′).

Nevertheless, as we demonstrate in Sect. 4, our general duality approach pro-
vides for greater flexibility with respect to the optimization objective. For exam-
ple, this will allow us to instantiate our framework for a convex combination or
revenue and another important objective in auction theory, that of social welfare:

SW(M) := Ev∼F

[
n∑

i=1

ai(v)vi

]

. (4)

2.3 Locality of Truthfulness

It turns out our truthfulness constraints can be simplified, and expressed through
a set of constraints that are “local” in nature, in the sense that they only involve
deviations between adjacent values. To formalize this, recall that our value spaces
Vi are finite, so we can define the notion of predecessor and successor values for
a given bidder i and a value vi ∈ Vi:

v+
i := min {v ∈ Vi | v > vi } and v−

i := max {v ∈ Vi | v < vi } ,

if the above sets are nonempty, otherwise we define v+
i := ∅ for vi = maxVi and

v−
i := ∅ for vi = minVi.

Now we can state the local characterization of truthfulness, first for (DSIC),
but a totally analogous lemma holds for (BIC) as well – see the full version of
our paper [7, Appendix A]. This result is essentially proven in [14, Theorem 2].
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Lemma 1 (Malakhov and Vohra [14]). For any discrete, single-dimensional
auction (a,p), the (DSIC) condition is equivalent to the following set of con-
straints:

ui(v; vi) ≥ ui(v−
i ,v−i; vi) (5)

ui(v; vi) ≥ ui(v+
i ,v−i; vi) (6)

ai(v) ≥ ai(v−
i ,v−i), (7)

for all bidders i ∈ [n] and any value profile v ∈ V .

Conditions (5) and (6) are called downwards and upwards DSIC constraints,
respectively, and (7) are called monotonicity constraints.

3 The Discrete Myerson Auction: An LP Duality
Approach

In this section we begin our study of optimal single-parameter auctions, by con-
sidering the canonical single-item setting of Myerson [16], but under discrete val-
ues. That is, the feasibility set for our allocations is the simplex Sn (see Sect. 2.1),
giving rise to the following feasibility constraints:

n∑

i=1

ai(v) ≤ 1, for all v ∈ V . (8)

Our results of this section are summarized in the following main theorem:

Theorem 1 (Optimal Discrete Single-Item Auction). For any discrete,
single-item auction setting, the following hold for revenue maximization:

1. There always exists an optimal auction which is deterministic.
2. Any optimal DSIC auction is an optimal BIC auction.
3. The following deterministic DSIC auction is optimal (even within the class

of randomized BIC auctions):
• Allocate (fully) the item to the bidder with the highest nonnegative ironed
virtual value (14), breaking ties arbitrarily.1

• Collect from the winning bidder a payment equal to their critical bid (13).

Point 3 of Theorem 1 is essentially a discrete analogue of Myerson’s opti-
mal auction for the continuous case. As we mentioned in our introduction
(see Sects. 1.1 and 1.2), this result can be already derived by readily combin-
ing prior work on discrete auctions (see, e.g., [2,6]); our contribution here is
not the result itself, but the proof technique, which makes use of classical LP
1 In order to maintain determinism, this can be any fixed deterministic tie-breaking

rule; e.g., allocating the bidder with the smallest index i. Fractionally splitting the
item among bidders that tie would still ensure revenue optimality (and DSIC), but
the mechanism would be randomized.
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Fig. 1. An overview of the linear programs used in our derivation throughout Sect. 3
and the relations between their optimal values.

duality theory. This allows us to make use of powerful and transparent results
from polyhedral combinatorics, to structurally characterize optimal auctions. In
particular, we establish the optimality of DISC mechanisms, in a very general
sense (see 2), which to the best of our knowledge was not known before. This
is also enabled by our discrete optimization view of the problem, through the
use of polyhedral properties (see Sect. 3.3). Finally, observe that Point 1 can
be derived directly as a corollary of Point 3; nevertheless, we choose to state it
independently, in order to reflect the logical progression of our derivation in this
paper, which actually allows us to establish Point 1 more generally, as a result
of the polyhedral structure of our problem (see Sect. 3.2), before we determine
the actual optimal solution in Point 3.

We start our presentation by considering the revenue-maximization problem
under the more restricted DSIC truthfulness notion. We do this for reasons of
clarity of exposition, and then in Sect. 3.3 we carefully discuss how our formula-
tions adapt for the more relaxed (BIC) constraints, and the relation between the
two notions with respect to optimality, completing the picture for Theorem 1.

3.1 A Chain of Dual Linear Programs

In this section we develop the skeleton of our approach for proving Theorem 1.
It consists of a sequence of LPs, as summarized in Fig. 1. We begin by formu-
lating our single-item, revenue-maximization problem as an LP in (LP1). Next,
we dualize it in (DP1), and then restrict its constraints to derive (DP2) that
can only have a worse (i.e., higher) optimal objective. Then, we dualize again,
deriving a maximization program in (LP2). Finally, we prove (see Lemma 3)
that our original maximization program (LP1) is a relaxation of (LP2), thus
establishing a collapse of the entire duality chain, and the equivalence of all
involved LPs. This closure of the chain is exactly from where virtual values (12),
virtual welfare maximization (LP2), optimality of determinism (see Lemma 4),
and the optimal payment rule (LP2) naturally emerge.

Before we formally present and start working within the LPs, we need to fix
some notation.

LP Notation. Since our value sets are finite, for each player i we can enumerate
their support as Vi = {vi,1, vi,2, . . . , vi,Ki

}, for some positive integer Ki. For
notational convenience we denote K := [K1] × [K2] × · · · × [Kn] and K−i :=
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[K1]× · · · × [Ki−1]× [Ki−1]× · · · × [Kn]. To keep our LP formulations below as
clean as possible, we will feel free to abuse notation and use the support indices
k ∈ [Ki] instead of the actual values vi,k ∈ Vi, as arguments for the allocations
ai, payments pi, and prior cdf’s Fi and pmf’s fi. That is, e.g., we will denote
ai(k,k−i), pi(k,k−i), fi(k), and Fi(k), instead of ai(vi,v−i), pi(vi,v−i), fi(vi),
and Fi(vi), respectively, when the valuation profile v is such that vi = vi,ki

for i ∈ [n]. As all values are independently drawn from distributions Fi, the
probability of a bid profile v ∈ V being realized is given by the pmf of their
product distribution F , denoted by f(k) = f(v) =

∏
i∈[n] fi(vi,k). Analogously,

we denote f(k−i) = f(v−i) =
∏

j∈[n]\{i} fj(vj,kj
). Finally, given that we make

heavy use of duality, we choose to label each constraint of our LPs with the name
of its corresponding dual variable, using square brackets (see, e.g., (LP1)).

For our starting (LP1), we want to formulate an LP maximizing expected
revenue (3), under the single-item allocation constraints (8) of our current
section, and DSIC truthfulness, through its equivalent formulation via Lemma
1. Since we want to optimize over the space of all feasible auctions, the real-
valued variables of our LP are the allocation and payment rules of the auction,
over all possible bidding profiles, namely {ai(v), pi(v)}v∈V . Putting everything
together, we derive the following LP:

max
∑

v∈V

n∑

i=1

pi(v)f(v) (LP1)

s.t. vi,kai(k,k−i) − pi(k,k−i) ≥ vi,kai(k − 1,k−i) − pi(k − 1,k−i),
for i ∈ [n], k ∈ [Ki],k−i ∈ K−i, [λi(k, k − 1,k−i)]

vi,kai(k,k−i) − pi(k,k−i) ≥ vi,kai(k + 1,k−i) − pi(k + 1,k−i),
for i ∈ [n], k ∈ [Ki],k−i ∈ K−i, [λi(k, k + 1,k−i)]

ai(k,k−i) ≥ ai(k − 1,k−i),
for i ∈ [n], k ∈ [Ki],k−i ∈ K−i, [τi(k, k − 1,k−i)]

n∑

i=1

ai(v) ≤ 1, [ψ(v)]

for v ∈ V .

Notice how our LP can readily incorporate the no-participation IR con-
straints (2), by fixing the under-/overflowing corner cases as constants

ai(0,k−i) = pi(0,k−i) = ai(Ki + 1,k−i) = pi(Ki + 1,k−i) = 0 (9)

for all bidders i, on any bidding profile k−i of the other bidders.
According to this we formulate the dual LP (DP1). Similar to the borderline

cases (9) in the primal LP some restrictions on the dual variables are necessary
to obtain a correct dual problem formulation. There we have

λi(Ki,Ki+1,k−i) = λi(Ki+1,Ki,k−i) = λi(0, 1,k−i) = τi(Ki+1,Ki,k−i) = 0
(10)
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for all bidders i, on any bidding profile k−i of the other bidders, for constraints
that do not exist in (LP1). To ensure dual feasibility, all dual variables corre-
sponding to inequality constraints in the primal have to be non-negative, thus
all λ, ψ, τ ≥ 0. It is worth pointing out that λi(1, 0,k−i) and τi(1, 0,k−i) are
explicitly not fixed to zero as the corresponding constraints, the local downward
DSIC constraint that ensures IR, vi,1ai(1,k−i) − pi(1,k−i) ≥ 0, as well as the
monotonicity constraint that ensures the non-negativity of the allocation vari-
ables, ai(1,k−i) ≥ 0, are crucial for the problem. By that we write the dual LP
as

min
∑

v∈V

ψ(v) (DP1)

s.t. ψ(k,k−i) ≥ vi,kλi(k, k − 1,k−i) + vi,kλi(k, k + 1,k−i)
− vi,k+1λi(k + 1, k,k−i) − vi,k−1λi(k − 1, k,k−i)
+ τi(k, k − 1,k−i) − τi(k + 1, k,k−i), [ai(k,k−i)]

for i ∈ [n], k ∈ [Ki],k−i ∈ K−i,

λi(k, k − 1,k−i) + λi(k, k + 1,k−i)
− λi(k + 1, k,k−i) − λi(k − 1, k,k−i) = f(v), [pi(k,k−i)]

for i ∈ [n], k ∈ [Ki],k−i ∈ K−i.

In the same spirit as denoting the local DSIC constraints, that consider a
deviation to the lower value, as downwards constraint (5), we call the correspond-
ing dual variables λi(k, k−1,k−i) where the index in the first argument is greater
than in the second downward λ variables. The dual variables λi(k, k + 1,k−i)
corresponding to the upwards DSIC constraints (6) are the upward λ variables.
Putting together the dual borderline variables (10) and the set of equations
in (DP1) we can state the following Lemma.

Lemma 2. In any feasible solution of (DP1) all downward λ variables are
strictly positive, i.e.,

λi(k, k − 1,k−i) > 0,

for all i ∈ [n], k ∈ [Ki],k−i ∈ K−i.

This motivates us to reformulate the dual program in a certain way. Recall,
that any dual solution has to satisfy the set of equations

λi(k, k − 1,k−i) + λi(k, k +1,k−i) = f(v) + λi(k +1, k,k−i) + λi(k − 1, k,k−i).
(11)

Using this we reformulate the dual inequality constraints

ψ(v)
(11)
≥ vi,kf(v) − (vi,k+1 − vi,k)λi(k + 1, k,k−i)

+ (vi,k − vi,k−1)λi(k − 1, k,k−i) + τi(k, k − 1,k−i) − τi(k + 1, k,k−i)
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Note, that by the use of (11), i.e. exclusively equations, this is only a refor-
mulation and does not affect the set of feasible dual solutions of (DP1). Now
we unconventionally fix specific values of the λ variables. As the dual’s objec-
tive aims to minimize the sum of the ψ variables, according to the reformulated
inequality constraints it seems convenient to choose all upward λ as small and
all downward λ as large as possible. To do so we set λi(k, k + 1,k−i) = 0, for
all k ∈ [Ki], i ∈ [n] and k−i ∈ K−i. Fixing variables, essentially adding equality
constraints, can only increase the optimal value of (DP1) in terms of minimiza-
tion. As a next critical step we introduce free variables ρ and substitute the
expression

ρi(k,k−i) := λi(k, k − 1,k−i) − λi(k + 1, k,k−i)

for all bidders i with value index k ∈ [Ki], and any bidding profile k−i of the
other bidders. These variables are all bound to fixed values and by dropping
the λ variables from the problem formulation we do not lose any information
about feasible dual solutions as by λi(K + 1,K,k−i) = 0 we keep track of all
fixed values. The reformulated dual LP then is

min
∑

v∈V

ψ(v) (DP2)

s.t. ψ(k,k−i) ≥ vi,kρi(k,k−i) − (vi,k+1 − vi,k)
Ki∑

l=k+1

ρi(l,k−i)

+ τi(k, k − 1,k−i) − τi(k + 1, k,k−i), [ai(k,k−i)]
for i ∈ [n], k ∈ [Ki],k−i ∈ K−i,

ρi(k,k−i) = f(v), [pi(k,k−i)]
for i ∈ [n], k ∈ [Ki],k−i ∈ K−i.

The inequality constraints now can also be written with all explicit values of ρ
inserted. By that we obtain for a fixed bidder i and bids v−i

ψ(k,k−i) ≥ f(v)
[
vi,k − (vi,k+1 − vi,k)

1 − Fi(k)
fi(k)

+
τi(k, k − 1,k−i)

f(v)
− τi(k + 1, k,k−i)

f(v)

]
.

This gives rise to the well known definition of a sequence of values for player
i which is independent of all other bidders’ values v−i.

Definition 1 (Virtual values). The virtual values of bidder i ∈ [n] are defined
as

ϕi(k) = ϕi(vi,k) := vi,k − (vi,k+1 − vi,k)
1 − Fi(vi,k)

fi(vi,k)
for k ∈ [Ki]. (12)
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We return to the primal setting of allocation and payment variables by now
taking the dual of the dual. To get the full transparency of the gained insights
within the reformulation to (DP2) we do two things at the same time: We
insert the true values of all ρ in the inequalities and obtain the virtual values
as the coefficients of the allocation variables in the new primal objective. At the
same time we stick with ρ as free variables in the dual inequalities and obtain
the payment formula in (LP2) as the coefficients of ρ in the dual become the
coefficients of the allocation variables in the primal payment formula. Note, that
equivalently we could still maximize the expected payments in the new primal
LP without using the explicit values for ρ.

max
∑

v ∈V

n∑

i=1

ai(v)ϕi(k)f(v) (LP2)

s.t. pi(k, k−i) = vi,kai(k, k−i) −
k−1∑

l=1

(vi,l+1 − vi,l)ai(l, k−i), [ρi(k, k−i)]

for i ∈ [n], k ∈ [Ki], k−i ∈ K−i,

ai(k, k−i) ≥ ai(k − 1, k−i), [τi(k, k − 1, k−i)]

for i ∈ [n], k ∈ [Ki], k−i ∈ K−i,
n∑

i=1

ai(v) ≤ 1, [ψ(v)]

for v ∈ V .

As our interest lies in optimal auctions, we close the chain of LPs using
Lemma 2 and strong LP duality to verify that the set of optimal solutions
of (LP1) and of (LP2) are equivalent.

Lemma 3. Any optimal solution of (LP2) represents an optimal (DSIC) auc-
tion, i.e. an optimal solution of (LP1) and vice versa.

The immediate result is that the problem of finding an optimal (DSIC) auc-
tion reduces to finding an optimal solution of (LP2), i.e. a feasible, virtual welfare
maximizing, monotone allocation rule a. The optimal payments are computed
afterwards as a linear function of the allocations according to the payment rule

pi(k,k−i) = vi,kai(k,k−i) −
k−1∑

l=1

(vi,l+1 − vi,l)ai(l,k−i). (13)

3.2 Deterministic vs Randomized Auctions

In this section we essentially establish the foundation for Point 1 of Theorem 1.
We are using the property of total unimodularity [10] of the constraint matrix of
(LP2). This is enough to show that the optimal allocations of (LP1) and (LP2)
are the convex hull of optimal binary solutions.
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Lemma 4 (Optimality of determinism). The vertices of the polyhedron of
feasible allocations for (LP2) are integral, hence, binary.

Thus, determinism of optimal DSIC auctions is without loss. Also, since
the set of optimal solutions is convex, any fractional optimal solution is only a
convex combination of multiple integer solutions and for given v ∈ V represents
a probability distribution.

3.3 Dominant-Strategy Vs Bayesian Truthfulness

The optimal auction problem typically is considered in a setting where truth-
fulness constraints are a relaxed version of (DSIC) and a bidder’s truthfulness
only has to hold in expectation over all other bidders’ distributions, i.e., in the
(BIC) sense. Essentially the same steps as in Sect. 3.1 where we considered DSIC
truthfulness can be performed for the BIC formulation. A detailed analysis can
be found in the full version of our paper [7].

It appears that in the BIC setting the virtual values not only arise in the
same manner but also assume the exact same values. Furthermore, in an optimal
dual solution the τ variables uniquely can be chosen such that in combination
with the virtual values they form a non-decreasing sequence ϕ̃i(k), the ironed
virtual values. This can be done for the DSIC as well as for the BIC setting, and
even though the values for τ may be different in the two settings, ultimately the
ironed virtual values are the same and optimality transfers from DSIC to BIC.

Lemma 5 (DSIC optimality). Let (a,p) be an optimal DSIC auction, i.e. an
optimal solution of (LP2). Then (a,p) is an optimal BIC auction.

As we know by Lemma 4 about the existence of integral solutions for DSIC
auctions case and by Lemma 5 that DSIC is without loss we directly proceed to
the following.

Lemma 6 (Optimality of Determinism). The set of optimal BIC auctions
always contains a deterministic auction, and it can be computed by solving the
linear program (LP2).

Beyond formally ensuring the existence of a deterministic optimal solution,
we want to derive the explicit auction when we are given a bid profile v ∈ V .
By the complementary slackness condition

ai(k,k−i) > 0 =⇒ ψ(v) = f(v)ϕ̃i(k) = f(v)max
i∈[n]

ϕ̃i(k), (14)

and the existence of an integral solution, we essentially have shown Point 3 of
Theorem 1, i.e., receiving a bid profile v ∈ V the item is allocated fully to the
highest non-negative ironed virtual bidder, breaking ties by a fixed deterministic
rule. The corresponding payments are computed via (13) which by determinism
reduces to the critical bid, i.e., the threshold value of such that the player still
wins.
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4 General Single-Parameter Auction Design: A KKT
Approach

In general, single-parameter auctions go far beyond the single-item case. In this
section we generalize our formulation from the previous section and present a
framework for a wider range of feasibility spaces. In fact, the specialization on the
single-item setting emerges solely from the feasibility constraints (8). In a more
general single-parameter setting we want to relax feasibility while still holding
on to truthfulness, i.e., that the players have no incentive to misreport their true
values. We maintain the linearity of the truthfulness constraints that arises from
the definition of a player’s utility (1), which is natural for the single-parameter
auction design. Our framework which unites the techniques from the single-item
setting, i.e., the duality approach connected by complementary slackness, is a
KKT system formulation [13].

Unfortunately, due to space constraints, we need to defer most of our pre-
sentation and results of this section to the full version of our paper [7, Sec. 4].
Below, we summarize our results in a main theorem and provide a quick overview
of our approach and some key notions:

Theorem 2 (Optimal Single-Parameter Auction). For any discrete con-
vex single-parameter auction setting, under the objective of maximizing a linear
combination of revenue and social welfare (see (15)), the following hold:

1. If our setting is TU, then there exists an optimal auction which is integral.2
2. Any optimal DSIC auction is an optimal BIC auction.
3. The following DSIC auction is optimal (even within the class of BIC auc-

tions):
• Choose an allocation that maximizes the expected generalized virtual social
welfare (GM2).

• Collect from the allocated bidders a payment equal to their critical
bids (16).

The framework we present in [7, Sec. 4.2] allows us to assume that any fea-
sible solution of the KKT system is also an optimal solution. Within this rather
abstract formulation we are free to leave the ambiguity whether to interpret the
truthfulness constraint as DSIC or BIC. This not only shows us how similar
the two interpretations are, but the framework allows us great clearness when
drawing the connection establish Point 2. Motivated by this, in [7, Sec. 4.4] we
establish a setting where we can guarantee that the optimal auction is integral
and randomization or fractional allocation is not necessary. Even in the very
general case of Sect. 4, Point 3 gives a description of the optimal auction. We
not only are able to maintain the transition to welfare maximization (see [7,
Sec. 4.3]), but also derive the identical payment rule as in the single-item set-
ting. Although complementary slackness cannot guarantee such a clear optimal
2 Recall the definition of an integral auction from Sect. 2.1, Page 6. The definition of

a totally unimodular (single-parameter) auction setting can be found in Definition
2.
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auction as in Theorem 1, in the full version of our paper [7, Sec. 5] we give an
application to show that the auction can still be nicely described.

4.1 Notation

For the general model formulation we want to use a notation that provides
simplicity while at the same time allows to model very general settings. Still,
we frequently draw the connection to the single-item LP formulation such that
the reader can always recall this as a special case. In the following we will use a
unified notation: In both settings of truthfulness, DSIC and BIC, each allocation
and payment variable represents an outcome per given bid profile v ∈ V and per
player i ∈ [n]. We write the allocations a and payments p as vectors of dimension
N := n|V | = n · K1 · · · Kn. One entry is a single variable, e.g., ai(k,k−i). We
further define f as a vector of the same dimension. Each entry is the probability
that a specific bid profile v is realized, i.e., f(v) corresponding to the respective
allocation or payment variable ai(k,k−i) or pi(k,k−i) for all players i ∈ [n]. To
remain accurate with the dimensions of the objects that represent social and
virtual welfare, we also define ν as the quadratic N × N matrix with all values
and similarly ϕ with all virtual values corresponding to player i’s value of the
respective allocation on the diagonal and zero elsewhere.

Objective Function. With this notation we write the generalized objective, a
linear combination of expected revenue and expected social welfare, as

α Rev(M) + β SW(M) = αf�p + βf�νa, (15)

with f ,a ∈ R
N
≥0,p ∈ R

N ,ν ∈ R
N×N
≥0 and α, β ∈ R≥0.

Truthfulness. Independent of a more general feasibility space the locality of the
linear truthfulness constraints is maintained. They can be expressed by matrix
vector notation: Matrix A contains the coefficients of the allocation variables a
and B the coefficients of the payment variables p of the upward and downward
truthfulness constraints. Matrix M contains the coefficients required to model
the monotonicity constraints. Whether we consider DSIC or BIC truthfulness
then depends on the coefficients and dimensions of the matrices A,B and M ,
and we do not restrict ourselves to only one of the settings.

Feasibility Space. Besides the truthfulness conditions the allocations’ feasibility
space A is represented by a finite set of convex and continuously differentiable
constraints. We assume that for each bid profile v ∈ V , there are m ∈ N con-
straints. Each constraint gj(a) : V −→ R≥0 involves only allocation variables
corresponding to this very bid profile. That is, gj(a) = g(a1(v), a2(v), . . . , an(v))
for j ∈ [m] and some v ∈ V . To maintain ex-post feasibility the constraints are
copied for each bid profile varying over the v ∈ V such that the total number of
constraints then is M := m|V |. E.g., in the single-item case M = |V | and each
gj(a) represents the one feasibility constraint per fixed bid profile, see (8).
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Hence, an allocation a is feasible, i.e. a ∈ A, if and only if gj(a) ≤ 0 for all
j ∈ [M]. In our framework we use the notion G which can be seen as a vector
of the gj functions,

G(a) =

⎛

⎜
⎝

g1(a)
...

gM(a)

⎞

⎟
⎠ , (G(a))�ψ = 0 ⇐⇒ g1(a)ψ1 = 0, . . . , gM(a)ψM = 0.

∇aG(a) is the corresponding Jacobian matrix of G(a) where column i contains
all functions’ derivatives with respect to player i for a given bid profile v. Note,
that we can always hide the non-negativity of the allocations within these con-
straints.

We now give a definition of an auction setting with sufficient conditions for
obtaining an integral auction (see Point 1 of Theorem 2).

Definition 2 (TU setting). A (single-parameter) auction setting will be called
totally unimodular (TU), if the allocation feasibility constraints are given by a
TU matrix. More precisely, if there exists a TU matrix G and an integral vector
b such that

A = {a | Ga ≤ b}.

Notice how this implies that several single-parameter auction settings have
integral solutions also in the BIC setting. Examples are, of course, the single-
item auction, but also the k-unit auction, the digital good auction, and in gen-
eral combinatorial auctions where all constraints can be described via a totally
unimodular matrix G. We dive deeper in such a combinatorial auction in the
application presented in the full version of our paper [7, Sec. 5].

4.2 General Virtual Welfare Maximization

A key contribution in the full version of our paper (see [7, Sec. 4] for an appro-
priate presentation and all details) is showing that the problem of finding an
optimal single-parameter auction, in the general setting of the current Sect. 4,
essentially reduces to solving the following optimization problem

max f�(αϕ̃ + βν̃)a (GM2)
s.t. p = Ca,

G(a) ≤ 0,

where
(αϕ̃ + βν̃)f := αϕf + βνf − M�τ

are the ironed generalized virtual values (see the full version of our paper [7,
Sec. 4.3]), and matrix C is such that (see [7, Lemma 9])

p = Ca. (16)
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Abstract. We consider the assignment problem, where n agents have
to be matched to n items. Each agent has a preference order over the
items. In the serial dictatorship (SD) mechanism the agents act in a
particular order and pick their most preferred available item when it is
their turn to act. Applying SD using a uniformly random permutation
as agent ordering results in the well-known random serial dictatorship
(RSD) mechanism. Accurate estimates of the (expected) efficiency of its
outcome can be used to assess whether RSD is attractive compared to
other mechanisms. In this paper, we explore whether such estimates are
possible by sampling a (hopefully) small number of agent orderings and
applying SD using them. We consider a value setting in which agents
have values for the items as well as a metric cost setting where agents
and items are assumed to be points in a metric space, and the cost
of an agent for an item is equal to the distance of the corresponding
points. We show that a (relatively) small number of samples is enough
to approximate the expected social welfare of RSD in the value setting
and its expected social cost in the metric cost setting despite the #P-
hardness of the corresponding exact computation problems.

1 Introduction

We consider assignment problems in which a set of n agents must be assigned
(matched) to a set of n items. In an assignment instance each agent has a prefer-
ence ranking over the items. According to the most straightforward mechanism
known as serial dictatorship (SD), the agents are asked to act in a predefined
order, and when it is their turn to act, they are assigned to their favourite item
that has not been selected by other agents in previous steps.

SD achieves several desirable properties. For example, the interaction with
the mechanism is minimal and intuitive from an agent’s perspective. Also, SD is
strategyproof and probably the most natural representative in the field of mech-
anism design without money [21,23]. Furthermore, it produces Pareto-efficient
assignments when the agent preferences are expressed via strict rankings [1]. Still,
it may produce unfair outcomes as agents who act early have a clear advantage
over agents who act later. The obvious way to fix the fairness issue without

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Schäfer and C. Ventre (Eds.): SAGT 2024, LNCS 15156, pp. 184–201, 2024.
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harming the other two properties is to have the agents act in a uniformly ran-
dom order. This gives us the well-known random serial dictatorship (RSD) or
random priority mechanism [1,9].

In addition to the abstract setting of assignment problems in which agents
have ordinal preferences for the items, we consider two settings which use addi-
tional cardinal information. In the first one (the value setting), we assume that
agents have values for the items and the items of higher value for an agent appear
higher in their preference ranking. In the second one (the metric cost setting),
agents and items are assumed to be points in a metric space, and each agent has
cost for an item equal to the distance of the corresponding points. Now items of
lower cost for an agent are those which appear higher in the preference ranking.
In the two settings, we would like to compute matchings with high social welfare
and low social cost, respectively, defined as the sum of the values in the former
case and costs of the agents for their assigned items in the latter.

Even though RSD can neither optimise the social welfare nor the social cost
(e.g. see [10,15]), it could be attractive compared to alternatives that do not have
its other favourable properties. To explore whether this is the case, we need to be
able to assess the outcome of RSD in terms of efficiency. In our two settings, this
translates to computing the expected social welfare or the expected social cost of
RSD, which in turn requires knowledge of the RSD lottery matrix. This matrix
consists of the probabilities for all agent-item pairs that an agent is assigned to
an item by RSD. Unfortunately, computing even a single entry of this matrix
is a #P-complete problem [3,22]. Still, approximations of the expected social
welfare and cost would be sufficient to compare RSD with other mechanisms.

So, can we compute —in reasonable time— accurate estimates of the
expected social welfare and expected social cost of RSD when applied to assign-
ment instances in the value and metric cost settings, respectively? This is the
question we study in the current paper.

1.1 Our Contribution

We first give a formal argument (in Sect. 3) explaining how the previous #P-
hardness results of Aziz et al. [3] and Sabán and Sethuraman [22] for computing
the RSD lottery matrix for a given assignment instance in the abstract setting
imply the #P-hardness of computing the expected social welfare and expected
social cost of the RSD outcome in the value and metric cost setting, respectively.
Specifically, given an assignment instance in the abstract setting, we show how
to construct equivalent instances in the value and metric cost setting so that
the binary representations of the expected social welfare and expected social
cost have polynomial size (in terms of n), and furthermore contain the binary
representation of the probabilities in the RSD lottery matrix. Then, the existence
of a polynomial-time algorithm for computing the expected social welfare/cost
in the value/metric cost setting would imply the existence of a polynomial-time
algorithm for computing the RSD lottery.

We then consider a simple algorithm which randomly samples a number of
agent orderings, applies the serial dictatorship using each of them, and returns
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the average social welfare (or average social cost) in the computed matchings. In
spite of our #P-hardness result, we show that Θ

(
n
ε2 ln 1

δ

)
samples are sufficient

and necessary so that the value returned by the algorithm when applied to
assignment instances in the value setting with n agents/items approximates the
expected social welfare of RSD within a factor of 1± ε with probability at least
1 − δ. These results are presented in Sect. 4. To prove the upper bound, we use
Bernstein’s inequality, which allows us to use a simple bound on the variance
that depends on the relation of the expected social welfare of RSD to the optimal
social welfare. The lower bound follows by a reverse Chernoff bound.

Unfortunately, in the metric cost setting, the same algorithm needs a much
higher number of samples to obtain similar guarantees. Specifically, we show
that in order to approximate the expected social cost of RSD within a factor of
1± ε with probability at least 1− δ for all values of parameters n, ε, and δ, the
number of samples this algorithm uses should depend exponentially on either
n or ln 1

δ . To bypass this barrier, we prove a non-trivial bound on the variance
of the social cost of RSD. This is the most technically interesting among our
results and yields that, using only O

(
n3

ε2

)
samples, the algorithm approximates

the expected social cost within 1 ± ε with (sufficiently high) constant proba-
bility. Then, using an idea from approximate counting and taking the median
of values returned by O

(
ln 1

δ

)
executions of the averaging algorithm, we obtain

the desired approximation guarantee using at most O
(

n3

ε2 ln 1
δ

)
samples in total.

These results are presented in Sect. 5.
We continue with a discussion on the literature. A quick overview of the

sharp concentration bounds we use in our proofs is presented in Sect. 2, together
with our notation and definitions. We conclude with Sect. 6.

1.2 Further Related Work

House allocation has been the generic assignment problem; Abdulkadiroğlu and
Sönmez [1], Bogomolnaia and Moulin [9], Crès and Moulin [13], and Sönmez
and Ünver [25] discuss further applications. Besides its simplicity, the SD mech-
anism has already received considerable attention. For example, in the economic
literature, Svensson [24] characterized it as the only deterministic assignment
mechanism that is strategy-proof, non-bossy and neutral. Several authors (e.g.
Abdulkadiroğlu and Sönmez [1], Abraham et al. [2]) have observed that a solution
to the assignment problem is Pareto-optimal if and only if it can be produced
by SD with an appropriate agent ordering. In the computer science literature,
SD has been studied in the metric cost setting, where it has been proved to
be highly inefficient in the worst-case but very efficient under resource augmen-
tation assumptions [10,18]. Recently, Caragiannis and Rathi [12] consider the
problem of optimizing the agent ordering so that SD yields good results not
only in assignment problems but in combinatorial optimization more generally.

The properties of RSD are discussed extensively by Abdulkadiroğlu and Sön-
mez [1] and Bogomolnaia and Moulin [9], where it is also compared to other
mechanisms such as the probabilistic serial mechanism and the mechanism of
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Hylland and Zeckhauser [17]. The complexity of computing the RSD lottery
matrix is studied by Aziz et al. [3] and Sabán and Sethuraman [22], who prove
that it is #P-complete; see [16] for an introduction to the complexity class #P.
On the positive side, Aziz and Mestre [5] present fixed-parameter tractable and
polynomial-time algorithms that compute the RSD lottery for restricted assign-
ment instances. In the metric cost model, RSD has been proved to be highly
superior to SD, approximating the optimal social cost within a factor that is
at most n and at least n0.29 [10]. We remark that we use some of the results
from [10] and [18] in our proofs for the metric cost setting.

Sampling techniques have found important applications in social choice.
Indicative works include their use in deciding the winning alternative accord-
ing to voting rules or estimates of notions like the distortion [11] or margin of
victory [8]. More related in spirit to our work are papers aiming at estimating
the Shapley value in cooperative games [4] or the Banzhaf index in voting [6].

2 Preliminaries

An assignment instance consists of n agents and n items. We will use the set
[n] := {1, 2, ..., n} to represent both the set of agents and the set of items.

In the abstract setting usually considered in the literature, each agent i ∈ [n]
has a strict preference ranking of all items. In this paper, we consider two
more settings. In the first one, called the value setting, the agents have val-
ues for the items. For an agent i ∈ [n] and item g ∈ [n], we denote by
vi(g) the (non-negative) value agent i has for item g. A (perfect) matching
M = (M1,M2, ...,Mn) is an assignment of the items to the agents so that each
item is assigned to one agent, and each agent gets one item. The social welfare of
a matching is the total value the agents have for the items they are assigned, i.e.
SW(M) =

∑
i∈[n] vi(Mi). For an assignment instance I, we denote by OPT(I)

the maximum social welfare among all possible matchings in I.
In the second setting, called the metric cost setting, the agents have costs

for the items. For an agent i ∈ [n] and item g ∈ [n], we denote by ci(g) the
(non-negative) cost agent i has for item g. We assume that the agents and
items correspond to points in a metric space, and the cost ci(g) is the distance
between the points corresponding to agent i and item g. Thus, the costs satisfy
the triangle inequality, e.g. for agents i1 and i2 and items g1 and g2, the triangle
inequality implies that ci1(g1) ≤ ci1(g2) + ci2(g2) + ci2(g1). The social cost of a
matching is the total cost the agents have for their allocated items, i.e. SC(M) =∑

i∈[n] ci(Mi). For an assignment instance I, we slightly abuse notation and also
use OPT(I) to denote the minimum social cost among all possible matchings in
I.

The serial dictatorship mechanism (or SD for short) takes an assignment
instance I and an ordering π of the agents as input and computes a matching
of items and agents as follows. The mechanism considers the agents one by one
according to the ordering π. Whenever an agent is considered, they select their
most preferable item that has not been selected by an agent until that point.
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This will be the agent’s highest-ranked item in their preference ranking in the
abstract setting, their most valuable item in the value setting, or their least costly
item in the metric cost setting. We denote by SD(I, π) the matching computed
by the SD mechanism when applied on instance I using the agent ordering π.

The random serial dictatorship mechanism (or RSD for short) applies SD
using an ordering π that has been selected uniformly at random among all agent
orderings. The RSD lottery is an n × n matrix P (I) (or simply P ) in which the
entry Pi,g denotes the probability that item g is assigned to agent i when RSD is
applied on instance I. We use RSD(I) to denote both the expected social welfare
in the value setting and the expected social cost in the metric cost setting of the
matching returned by RSD, when applied on instance I. For ε > 0, we say that
a quantity Q is an ε-approximation of RSD(I) if |Q−RSD(I)| < ε ·RSD(I). We
sometimes use the terms over and under ε-approximation to refer to a quantity
Q satisfying Q < (1 + ε) · RSD(I) and Q > (1 − ε) · RSD(I), respectively.

In the following, we present some inequalities and bounds that we use later
on. The Bernstein inequality is the first one.

Lemma 1 (Bernstein inequality, e.g. see [14], page 9). Let X1, X2, ...,
Xk be independent random variables satisfying |Xi| ≤ α for i ∈ [k], with mean
0 and variance σ2(Xi). Then

Pr

[∣
∣
∣
∣
∣

k∑

i=1

Xi

∣
∣
∣
∣
∣
≥ t

]

≤ 2 exp

⎛

⎜
⎜
⎜
⎝

− 3t2

6
k∑

i=1

σ2(Xi) + 2αt

⎞

⎟
⎟
⎟
⎠

Knowing the mean as well as upper and lower bounds for a random variable,
we can use the Bhatia-Davis inequality to bound its variance.

Lemma 2 (Bhatia-Davis inequality [7]). Consider a random variable X that
takes values from the interval [α, β] and has expectation μ. Then, its variance is

σ2 ≤ (β − μ)(μ − α).

In addition to the Bernstein inequality, we will use the
Chebyshev-Cantelli inequality and the Chernoff bound for proving (one-sided)
concentration bounds.

Lemma 3 (Chebyshev-Cantelli inequality, e.g. see [20], page 64). Let X
be a random variable with expectation μ and variance σ2. Then, for t > 0, it
holds

Pr [X − μ ≥ tσ] ≤ 1
1 + t2

.

Lemma 4 (Chernoff bound, e.g. see [20], page 68). Let X1,X2, . . . , Xk be
independent random variables taking values in {0, 1} and X =

∑k
i=1 Xi be their

sum with expectation E[X] = μ. Then, for η > 0, it holds

Pr (X ≥ (1 + η)μ) ≤
(

eη

(1 + η)1+η

)μ

.
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Moreover, we will use an anti-concentration bound, also known as the
reverse Chernoff bound.

Lemma 5 (Reverse Chernoff bound, Klein and Young [19]). Let
X1,X2, . . . , Xk be independent and identically distributed Bernoulli random vari-
ables with expectation p ∈ (0, 1/2]. Then, for every η ∈ (0, 1/2] so that η2pk ≥ 3,
it holds

Pr

[
1
k

k∑

i=1

Xi ≥ (1 + η)p

]

≥ exp
(−9η2pk

)
.

3 #P-Hardness of Random Serial Dictatorship

Before presenting our estimation results, let us explain how the #P-hardness of
computing the RSD lottery [3,22] for a given assignment instance implies the
#P-hardness of computing the expected social welfare or the expected social
cost in the value or metric cost setting, respectively.

The above-mentioned papers deal with assignment instances in abstract form.
For j ∈ [n], let ri(j) denote the j-th most preferred item of agent i ∈ [n]. Given
such an instance in abstract form, we show how to construct equivalent instances
in the value and metric cost settings, in the sense that the outcome of RSD
applied to the three instances, and consequently their RSD lotteries, coincide.

Given the preference orderings ri of each agent i ∈ [n], we define consistent
agent values vi and metric costs ci as follows:

– In the value setting, we define the value of agent i for item ri(j) to be
2(in−j)�log (n!+1)�.

– In the metric cost setting, we define the cost of agent i for item ri(j) to be
2n2�log (n!+1)� + 2((i−1)n+j−1)�log (n!+1)�. Notice that all agent costs differ by
less than a multiplicative factor of 2 and, thus, they define a metric.

Also, notice that the number of bits in the representation of values and costs is
at most O(n3 log n). Hence, the construction of the instances in the value and
metric cost setting takes only polynomial time.

Let P be the RSD lottery and L be the n × n matrix with entry Lij being
the number of different agent orderings π so that SD(I, π) assigns item ri(j) to
agent i. Clearly, Lij = n! · Pi,ri(j) for every i, j ∈ [n].

In the value setting, we have

∑

j∈[n]

Pij · vi(j) =
∑

j∈[n]

Pi,ri(j) · vi(ri(j)) =
1
n!

·
∑

j∈[n]

Lij · vi(ri(j))

for agent i ∈ [n]. Thus, we have

n! · E[SW(SD(I, π))] = n! ·
∑

i∈[n]

∑

j∈[n]

Pij · vi(j) =
∑

i∈[n]

∑

i∈[n]

Lij · vi(ri(j)),
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i.e. the quantity n! ·E[SW(SD(I, π))] is a non-negative integer. Now, recall that
vi(ri(j)) = 2(in−j)�log (n!+1)�, and thus the binary representation of the integer
Lij · vi(ri(j)) has the binary representation of Lij in bit positions1 from (in −
j) �log (n! + 1)� to (in − j + 1) �log (n! + 1)� − 1 and 0s everywhere else. Notice
that these bit positions are disjoint for different pairs of i and j in [n]; indeed,
�log (n! + 1)� bits are enough to encode Lij , which can take (integer) values
between 0 and n!. Thus, the binary representation of n! · E[SW(SD(I, π))] has
the binary representation of Lij in bit positions from (in − j) �log (n! + 1)� to
(in − j + 1) �log (n! + 1)� − 1 for every i, j ∈ [n].

Similarly, in the metric cost setting, we have

∑

j∈[n]

Pij · ci(j) =
1
n!

·
∑

i∈[n]

Lij · ci(ri(j)),

and, hence,

n! · E[SC(SD(I, π))] = n! ·
∑

i∈[n]

∑

j∈[n]

Pij · ci(j) =
∑

i∈[n]

∑

i∈[n]

Lij · ci(ri(j)),

i.e. the quantity n! ·E[SC(SD(I, π))] is again a non-negative integer. Now, recall
that ci(ri(j)) = 2n2�log (n!+1)� +2(i−1)n+j−1)�log (n!+1)�, and thus the binary rep-
resentation of the integer Lij ·ci(ri(j)) has the binary representation of Lij in bit
positions from ((i − 1)n+ j − 1) �log (n! + 1)� to ((i − 1)n+ j) �log (n! + 1)� − 1,
1 in bit position n2 �log (n! + 1)�, and 0s everywhere else. Thus, the binary rep-
resentation of n! · E[SC(SD(I, π))] has the binary representation of n2 in the⌈
log(n2)

⌉
bit positions from n2 �log (n! + 1)� to n2 �log (n! + 1)�+ ⌈

log(n2)
⌉−1,

and the binary representation of Lij in the bit positions from ((i − 1)n + j −
1) �log (n! + 1)� to ((i − 1)n + j) �log (n! + 1)� − 1 for every i, j ∈ [n].

From the discussion above we conclude that any polynomial-time algorithm
that computes the expected social welfare in the value setting or the expected
social cost in the metric cost setting can be used to compute the entries of
the matrix L in polynomial time, and thus the RSD lottery of the assignment
instance. The following statement summarises the discussion above.

Theorem 1. Given an assignment instance I in the value or metric cost setting,
computing the expected social welfare or expected social cost of the outcome of
RSD when applied on I is #P-hard.

4 Approximating the Expected Social Welfare

We now consider a simple algorithm (Algorithm 1) that estimates (approximates)
the expected social welfare of RSD. Given an assignment instance I in the value
setting, Algorithm 1 samples k agent orderings (uniformly at random and with

1 We number the bit positions by assuming that the least significant bit is at position
0.
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replacement), computes k matchings by applying SD on I using each of the
sampled agent orderings, and returns the average of the social welfare of these
matchings as output. We will present upper and lower bounds on k so that
Algorithm 1 returns an ε-approximation of RSD(I) with probability at least
1 − δ.

Algorithm 1 . Approximating the expected social welfare of Random Serial
Dictatorship

Input: An assignment instance I with n agents/items and an integer k ≥ 1
Output: A non-negative number

1: Select independently k uniformly random orderings π1, π2, . . . , πk

2: return 1
k

k∑

i=1

SW(SD(I, πi))

We start with a simple lemma that relates the maximum social welfare and
the expected social welfare of the RSD outcome. This will come in handy in the
proof of Theorem 2 below.

Lemma 6. For every assignment instance I with n agents/items in the value
setting, it holds OPT(I) ≤ n · RSD(I).
Proof. Let M = (M1,M2, . . . , Mn) be the matching of maximum social welfare
in the assignment instance I. For i ∈ [n], denote by gi the item of maximum
value for agent i. Notice that the RSD mechanism allocates item gi to agent i
with a probability of at least 1/n. Then,

RSD(I) ≥ 1
n

·
n∑

i=1

vi(gi) ≥ 1
n

·
n∑

i=1

vi(Mi) = OPT(I)/n,

as desired. ��
We are now ready to prove our upper bound. The key ideas in the proof are

the use of the Bhatia-Davis inequality (Lemma 2) to bound the variance of the
social welfare of the matching returned by RSD and the application of Bernstein
inequality (Lemma 1).2

Theorem 2. Let n ≥ 1 be an integer and δ, ε ∈ (0, 1]. For k ≥ 8n
3ε2 ln 2

δ ,
the output of Algorithm 1, when applied on the assignment instance I with n
agents/items in the value setting, is an ε-approximation to the expected social
welfare of the RSD mechanism with probability at least 1 − δ.
2 Readers familiar with probabilistic analysis may wonder why we do not use the

simpler Hoeffding inequality to prove (a statement similar to) Theorem 2. We have
verified that such an analysis yields a weaker bound of O

(
n2

ε2
ln 1

δ

)
on k. The main

reason for this weaker result is the lack of information about the variance, something
that the Bernstein inequality exploits.
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Proof. For i ∈ [k] and a uniformly random ordering πi of the agents in [n],
notice that the random variable SW(SD(I, πi)) takes values in [0,OPT(I)] and
has expectation RSD(I). By the Bhatia-Davis inequality (Lemma 2), we have
that the variance of the random variable SW(SD(I, πi)) is

σ2(SW(SD(I, πi))) ≤ (OPT(I) − RSD(I)) · RSD(I)
≤ OPT(I) · RSD(I). (1)

Now, for i ∈ [k], define the random variable Zi as Zi := SW(SD(I, πi)) −
RSD(I). We have that the probability that the output of Algorithm 1 is not an
ε-approximation of RSD is

Pr

[∣
∣
∣
∣
∣
1
k

k∑

i=1

SW(SD(I, πi)) − RSD(I)
∣
∣
∣
∣
∣
≥ ε · RSD(I)

]

= Pr

[∣
∣
∣
∣
∣

k∑

i=1

Zi

∣
∣
∣
∣
∣
≥ εk · RSD(I)

]

. (2)

To complete the proof, we will bound the RHS of Eq. (2). By the definition of the
random variable Zi, its variance is equal to the variance of the random variable
SW(SD(I, πi)), i.e. by Eq. (1), it holds that

σ2(Zi) ≤ OPT(I) · RSD(I).
Furthermore, Zi takes values in [−OPT(I),OPT(I)] and has expectation 0.

We now apply Bernstein inequality (Lemma 1) for the random variable∑k
i=1 Zi using t = εk · RSD(I) and α = OPT(I). By the discussion above,

we have
∑k

i=1 σ2(Zi) ≤ k · OPT(I) · RSD(I). Thus,

Pr

[∣
∣
∣
∣
∣

k∑

i=1

Zi

∣
∣
∣
∣
∣
≥ εk · RSD(I)

]

≤ 2 exp
(

− 3ε2k2 · RSD(I)2
6k · OPT(I) · RSD(I) + 2εk · OPT(I) · RSD(I)

)

≤ 2 exp
(

−3ε2 · k · RSD(I)
8 · OPT(I)

)
≤ 2 exp

(
−3ε2 · k

8n

)
. (3)

The second inequality follows since ε ≤ 1 and the third one by Lemma 6. By
Eq. (2) and Eq. (3), we conclude that for k ≥ 8n

3ε2 · ln 2
δ , we have

Pr

[∣
∣
∣
∣
∣
1
k

k∑

i=1

SW(SD(I, πi)) − RSD(I)
∣
∣
∣
∣
∣
≥ ε · RSD(I)

]

≤ δ,

as desired. ��
We now prove our lower bound for the value setting, by applying the reverse

Chernoff bound (Lemma 5).
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Theorem 3. Let n ≥ 2 be an integer, ε ∈ (0, 1], δ ∈ (0, e−27), and k be such
that 3n

ε2 ≤ k < n
9ε2 ln 1

δ . Then, there exists an assignment instance I with n
agents/items in the value setting, so that the output of Algorithm 1 when applied
on I is an ε-approximation to the expected social welfare of the RSD mechanism
with probability smaller than 1 − δ.

Proof. Let I be the instance in which agent 1 has value 1 for item 1 and 0 for any
other items. All other agents have a valuation of 0 for all items. All ties regarding
the item an agent picks under SD are resolved in favour of the minimum-index
item. Thus, the serial dictatorship returns a matching of social welfare 1 when
applied with an ordering that has agent 1 first and social welfare 0 otherwise. So,
for a uniformly random ordering π of the agents, SW(SD(I, π)) is a Bernoulli
random variable with expectation 1/n. Thus, RSD(I) = 1/n. We will use the
reverse Chernoff bound (Lemma 5) to bound the probability that Algorithm 1
computes an ε-approximation of RSD(I) from below.

We apply Lemma 5 to the random variables X1,X2, . . . , Xk denoting the
k independent copies of the random variable SW(SD(I, π)) used by Algorithm
1. Notice that we have p = 1/n, meaning that the lower bound on k in the
statement of the theorem guarantees that ε2pk ≥ 3, and hence the conditions of
Lemma 5 are satisfied. We obtain that the probability that the quantity returned
by Algorithm 1 is not an ε-approximation is

Pr

[∣
∣
∣
∣
∣
1
k

k∑

i=1

SW(SD(I, πi)) − RSD(I)
∣
∣
∣
∣
∣
≥ ε · RSD(I)

]

≥ Pr

[
1
k

k∑

i=1

Xi ≥ (1 + ε)RSD(I)
]

≥ exp
(

−9ε2k
n

)
> δ,

implying that the probability that the output of Algorithm 1 is an ε-
approximation to the expected social welfare of random serial dictatorship is
less than 1 − δ. ��

5 Approximating the Expected Social Cost

To approximate the expected social cost of RSD in the metric cost setting, we
can modify Algorithm 1 by changing SW with SC in Line 2, i.e. the algorithm
now returns the average social cost of the k matchings returned by executing SD
with each of the k random agent orderings. We will refer to this modification as
Algorithm 1 as well.

Unfortunately, as we show in Sect. 5.1, to return an ε-approximation with
probability at least 1−δ for all assignment instances and all values of parameters,
Algorithm 1 must use a value for k that depends exponentially on either n or
ln 1

δ . To bypass this issue, we use a technique from the literature on approximate
counting (see [26, Chapter 28]) by executing Algorithm 1 several times and
taking the median value returned in these executions. This is implemented in
Algorithm 2 below.
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Algorithm 2. Approximating the expected social cost of Random Serial Dic-
tatorship

Input: An assignment instance I with n agents/items and integers k, λ ≥ 1
Output: A non-negative number

1: for j ← 1, 2, . . . λ do
2: ξj ← Algorithm1(I, k)
3: end for
4: return median(ξ)

For the analysis of Algorithm 2, we will need upper bounds on the variance
of RSD. Unfortunately, while 0 and OPT(I) are natural bounds on the social
welfare of a matching returned by RSD when applied on an assignment instance
I in the value setting, the corresponding bounds for the social cost in the metric
cost setting are much further apart, and the Bhatia-Davis inequality is not useful
anymore in bounding the variance. Instead, we prove a new bound on the vari-
ance of the social cost returned by RSD, which we present in Sect. 5.2. Finally,
in Sect. 5.3, we prove bounds on the parameters k and λ used by Algorithm 2 so
that it computes an ε-approximation of RSD.

5.1 A Lower Bound for Algorithm 1

We begin our study of the metric cost setting by showing an exponential lower
bound on the number of samples needed by Algorithm 1.

Theorem 4. If Algorithm 1 returns an ε-approximation to the expected social
cost of the RSD mechanism with probability at least 1−δ on input any assignment
instance in the metric cost setting with n agents/items and for every δ, ε ∈ (0, 1),
then k should depend exponentially on either n or ln 1

δ .

Proof. We use a family of assignment instances that are very similar to the
worst-case instances used by Caragiannis et al. [10] (see also [18]) to prove lower
bounds on the performance of serial dictatorship in the metric cost setting.

For n ≥ 1, the assignment instance In is defined as follows. There are n
agents at locations 1, 2, 4, . . . , 2n−1 and n items at locations −1, 2, 4, . . . , 2n−1

on the real line. Notice that the assignment which matches the agent at location
1 to the item at location −1 and, for i = 1, ..., n − 1, the agent at location 2i to
the item at the same location has a social cost of 2. Thus, OPT(In) ≤ 2.

Now, consider the agent ordering π∗
n = 〈1, 2, ..., n〉 and observe that the

execution of serial dictatorship on instance In using this agent ordering returns
the assignment in which, for i = 1, 2, ..., n − 1, the agent at location 2i−1 is
matched to the item at location 2i, and the agent at location 2n−1 is matched
to the item at location −1. Thus, SC(SD(In, π∗

n)) =
∑n−1

i=1 2i−1+2n−1+1 = 2n.
For n ≥ 1, consider the instance In of the above family with n agents/items.

Let δ = 1
2n! and ε ∈ (1/2, 1), and assume, for the sake of contradiction, that
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k ≤ 2n

4n . The probability that Algorithm 1 does not return an ε-approximation
on input instance In is

Pr

[∣
∣
∣
∣
∣
1
k

k∑

i=1

SC(SD(In, πi)) − RSD(In)

∣
∣
∣
∣
∣
≥ ε · RSD(In)

]

≥ Pr

[
1
k

k∑

i=1

SC(SD(In, πi)) ≥ 2 · RSD(In)

]

≥ Pr

[
k∑

i=1

SC(SD(In, πi)) ≥ 4kn

]

≥ Pr

[
k∑

i=1

SC(SD(In, πi)) ≥ 2n

]

. (4)

The first inequality follows since ε < 1, the second one from the result of Cara-
giannis et al. [10], stating that RSD(In) ≤ n · OPT(In) ≤ 2n, and the third
inequality follows since k ≤ 2n

4n .
Now, recall that SC(SD(In, π∗

n)) ≥ 2n; thus, the probability in the last line
of derivation (4) is lower-bounded by the probability that the ordering π∗

n is
selected as one of the k orderings used by Algorithm 1 which in turn is at least
1/n! > δ. Thus,

Pr

[∣
∣
∣
∣
∣
1
k

k∑

i=1

SC(SD(In, πi)) − RSD(In)

∣
∣
∣
∣
∣
≥ ε · RSD(In)

]

> δ,

which implies that Algorithm 1 returns an ε-approximation of RSD(In) with
probability at least 1−δ only when k > 2n

4n . In this case, k depends exponentially
on either n or ln 1/δ < n2. The theorem follows. ��

5.2 Bounding the Variance of Social Cost

We will shortly turn our attention to Algorithm 2. For its analysis, we will prove
an upper bound on the variance of the social cost of RSD, or more precisely, on
the expectation of the square of its social cost; we do so in the following lemma.

Lemma 7. For every assignment instance I with n agents/items in the metric
cost setting, it holds that

E[SC(SD(I, π))2] ≤ n3 · OPT (I)2 ,

where π is a uniformly random ordering of the agents.

Proof. We will prove the statement using induction on n. Observe that the
statement holds trivially if n = 1 since there is a single perfect matching in
this case. Assuming the statement holds for all assignment instances with n − 1
agents/items in the metric cost setting, we show that this is true for instances
with n agents/items as well.

We make use of some additional notation throughout the proof. For any
i ∈ [n], we denote by ri the item that agent i prefers the most (breaking



196 I. Caragiannis and S. Homrighausen

ties arbitrarily). Also, for any i ∈ [n], given an assignment instance I with
n agents/items, we denote by I−i the assignment instance obtained by I after
removing agent i and item ri. We also use π−i to denote a uniformly random
ordering of the agents in [n] \ {i}. We can view the execution of RSD as a
uniformly random selection of the first agent i who picks their most preferred
item ri followed by running the RSD mechanism on the reduced instance I−i.
Therefore, we have

E
[
SC(SD(I, π))2

]
=

1
n

n∑

i=1

E

[
(ci(ri) + SC(SD(I−i, π−i)))

2
]

=
1
n

n∑

i=1

ci(ri)2 +
2
n

n∑

i=1

ci(ri) · E [SC(SD(I−i, π−i))]

+
1
n

n∑

i=1

E

[
SC (SD(I−i, π−i))

2
]

. (5)

We proceed by presenting two lemmas which will be useful to upper-bound
the two final terms of the RHS in Eq. (5).

Lemma 8. For every assignment instance I with n agents/items in the metric
cost setting, it holds that

∑n
i=1 ci(ri) ≤ OPT(I) and ∑n

i=1 ci (ri)
2 ≤ OPT(I)2.

Proof. Consider any perfect matching M for the assignment instance I. Clearly,
for every i ∈ [n], the cost of agent i for the item she is matched to in M is
at least ci(ri). Thus, OPT(I) ≥ ∑n

i=1 ci(ri) and OPT(I)2 ≥ (
∑n

i=1 ci(ri))
2 ≥

∑n
i=1 ci (ri)

2, as desired. ��
The next lemma follows from Caragiannis et al. [10], who proved that the

expected social cost of the outcome of RSD on any assignment instance with
n agents/items in the metric cost setting is at most n times the optimal social
cost.

Lemma 9. For every assignment instance I with n agents/items in the metric
cost setting and every agent i ∈ [n], it holds that E [SC(I−i, π−i)] ≤ (n − 1) ·
OPT(I−i).

By the induction hypothesis, we have

E

[
SC (SD(I−i, π−i))

2
]

≤ (n − 1)3 · OPT(I−i)2 . (6)

Using Lemma 8 and Lemma 9 as well as Eq. (6), Eq. (5) yields

E

[
SC (SD(I, π))2

]
≤ 1

n
· OPT(I)2 +

(
2 − 2

n

) n∑

i=1

ci(ri) · OPT(I−i)

+
(n − 1)3

n

n∑

i=1

OPT(I−i)2 . (7)

We now use a lemma that has also been used by Caragiannis et al. [10]. The
proof has been included here for the sake of completeness.
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Lemma 10. For every assignment instance I with n agents/items in the metric
cost setting and every agent i ∈ [n], it holds that OPT(I−i) ≤ OPT(I) + ci(ri).

Proof. Let M be a matching of minimum social cost on instance I. If agent i is
matched to item ri in M , then the restriction of M that does not include the
pair (i, ri) is a matching of I−i of social cost at most OPT(I), and the statement
follows. Assume now that agent i is matched to some item g different from ri in
M , while some agent j �= i is matched to item ri. The set of agent-item pairs
consisting of pair (j, g) and the restriction of M not including the pairs (i, g)
and (j, ri) is a matching for instance I−i of social cost

OPT(I) − ci(g) − cj(ri) + cj(g) ≤ OPT(I) + ci(ri) .

The inequality follows from applying the triangle inequality which states that
cj(g) ≤ cj(ri) + ci(ri) + ci(g). ��
Using Lemma 8 and Lemma 10, the sum in the second term of the RHS of Eq.
(7) becomes

n∑

i=1

ci(ri) · OPT(I−i) ≤
n∑

i=1

ci(ri) · (OPT(I) + ci(ri))

= OPT(I) ·
n∑

i=1

ci(ri) +
n∑

i=1

ci(ri)2 ≤ 2 · OPT(I)2 . (8)

Similarly, making use of Lemma 8 and Lemma 10 once more, the sum in the
third term of the RHS of Eq. (7) results in

n∑

i=1

OPT(I−i)2 ≤
n∑

i=1

(OPT(I) + ci(ri))
2

= n · OPT(I)2 + 2OPT(I) ·
n∑

i=1

ci(ri) +
n∑

i=1

ci(ri)2

≤ (n + 3) · OPT(I)2 . (9)

Finally, using Eq. (8) and Eq. (9), Eq. (7) yields

E

[
SC (SD(I, π))2

]
≤

(
1
n
+ 2

(
2 − 2

n

)
+

(n − 1)3

n
(n + 3)

)
· OPT(I)2

=
(

n3 − 6
n
(n − 1)2

)
OPT(I)2 ≤ n3 · OPT(I)2 ,

as desired. This completes the proof of Lemma 7. ��

5.3 The Upper Bound for Algorithm 2

We are now ready to present bounds on the parameters k and λ so that Algorithm
2 computes an ε-approximation of RSD with probability at least 1 − δ. This
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requires sampling only O
(

n3

ε2 ln 1
δ

)
agent orderings and running RSD according

to them. The proof has two parts. First, in Lemma 11, we exploit our bound
on the variance of the social cost of RSD from Lemma 7 to prove that the
probability that an execution of Algorithm 1 does not return an over or an under
ε-approximation is at most 1/4. This is enough to conclude (using a Chernoff
bound argument in the proof of Theorem 5) that the median of the social cost
values returned by all executions of RSD provides the desired ε-approximation
with high probability.

Lemma 11. Let n ≥ 1 be an integer and ε ∈ (0, 1]. For k ≥ 3n3

ε2 , the probability
that the output of Algorithm 1, when applied on the assignment instance I with
n agents/items in the metric cost setting, is not an over (respectively, not an
under) ε-approximation to the expected social cost of RSD is at most 1

4 .

Proof. By Lemma 7, for i ∈ [k], the random variable SC(SD(I, πi)) has vari-
ance at most n3 · OPT(I)2. Thus, the random variable 1

k

∑k
i=1 SC(SD(I, πi))

has expectation RSD(I) and variance σ2 ≤ n3

k · OPT(I)2, since the random
orderings πi are independent for i ∈ [k]. We will now apply the Chebyshev-
Cantelli’s inequality (Lemma 3) to the random variable 1

k

∑k
i=1 SC(SD(I, πi))

with t =
√

k·ε·RSD(I)
σ . Notice that using the condition on k as well as the fact

that OPT(I) ≤ RSD(I), we get

t2 =
k · ε2 · RSD(I)2

σ2
≥ k · ε2 · RSD(I)

n3 · OPT(I) ≥ k · ε2

n3
≥ 3.

Lemma 3 then yields

Pr

[
1
k

k∑

i=1

SC(SD(I, πi)) ≥ (1 + ε) · RSD(I)
]

≤ 1
4

.

Hence, the probability that the output of Algorithm 1 is an over ε-
approximation to RSD(I) is at least 1

4 , as desired. The proof for it being an
under ε-approximation follows along the same lines by considering the random
variable − 1

k

∑k
i=1 SC(SD(I, πi)) instead of 1

k

∑k
i=1 SC(SD(I, πi)). ��

We are now ready to prove our main statement for Algorithm 2.

Theorem 5. Let n ≥ 1 be an integer and δ, ε ∈ (0, 1]. For k ≥ 3n3

ε2 and λ ≥
4

ln 4/e
ln 2

δ , the output of Algorithm 2 when applied to the assignment instance
I with n agents/items in the metric cost setting is an ε-approximation to the
expected social cost of RSD with probability at least 1 − δ.

Proof. We will show that the probability that median(ξ) returned by Algorithm
2 is not an upper ε-approximation (respectively, a lower ε-approximation) of
RSD is at most δ/2. Theorem 5 then follows by applying a simple union bound.

We first bound the probability that median(ξ) is not an upper ε-
approximation of RSD. Notice that the values ξ1, . . . , ξλ computed in line 2
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of Algorithm 2 are independent random variables with expectation RSD(I).
For j = 1, 2, . . . , λ, we define Zj as the Bernoulli random variable that indicates
whether ξj as computed in line 2 of Algorithm 2 is not an upper ε-approximation
of RSD(I), i.e.

Zj =

{
1 if ξj ≥ (1 + ε) · RSD(I)
0 otherwise

.

By Lemma 11, we have that Pr [Zj = 1] ≤ 1
4 , and hence the random variable Z =

∑λ
j=1 Zj indicating the number of ξj values that are not upper ε-approximations

of RSD(I) has expectation at most λ
4 . Then, the median(ξ) exceeds (1 + ε) ·

RSD(I) when the random variable Z has value at least λ
2 . We obtain that

Pr [median(ξ) ≥ (1 + ε) · RSD(I)] = Pr [Z ≥ 2E[Z]] ≤
(e

4

)λ
4 ≤ δ

2
,

as desired. The first inequality follows by applying the Chernoff bound (Lemma
4) for the random variable Z (recall that the random variables Z1, . . . , Zλ are
independent) with η = 1 and the last inequality follows due to the choice of λ.

To bound the probability that median(ξ) is not a lower ε-approximation of
RSD is almost identical; the only change required is in the definition of the
random variable Zj which should use ξj ≤ (1 − ε) · RSD(I) instead. ��

6 Conclusion

We have presented a formal statement showing that earlier #P-hardness results
on computing the RSD lottery matrix in the abstract setting imply the #P-
hardness of computing both the expected social welfare and the expected social
cost of assignment instances in the value and metric cost settings, respectively.
Furthermore, we have presented bounds on the number of samples sufficient
and necessary to approximate these expectations with simple algorithms. Even
though our analysis of Algorithm 1 for the expected social welfare is asymp-
totically tight, for Algorithm 2 and the expected social cost there seems to be
some room for improvement. We believe that such improvements can benefit
from better bounds on the expectation and variance of the social cost in terms
of n and OPT(I), compared to the linear bound of Caragiannis et al. [10] (see
also Lemma 9) and our polynomial bound in Lemma 7, respectively. Regard-
ing extensions of the techniques, it would be interesting to consider scenarios
with more items than agents and the round-robin algorithm. We believe that
our analysis for the value setting carries over to this scenario but more detailed
arguments are needed for the metric cost setting.
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Abstract. During 2023, two interesting results were proven about the
limit behavior of game dynamics: First, it was shown that there is a
game for which no dynamics converges to the Nash equilibria. Second,
it was shown that the sink equilibria of a game adequately capture the
limit behavior of natural game dynamics. These two results have created
a need and opportunity to articulate a principled computational the-
ory of the meaning of the game that is based on game dynamics. Given
any game in normal form, and any prior distribution of play, we study
the problem of computing the asymptotic behavior of a class of natu-
ral dynamics called the noisy replicator dynamics as a limit distribution
over the sink equilibria of the game. When the prior distribution has
pure strategy support, we prove this distribution can be computed effi-
ciently, in near-linear time to the size of the best-response graph. When
the distribution can be sampled—for example, if it is the uniform dis-
tribution over all mixed strategy profiles—we show through experiments
that the limit distribution of reasonably large games can be estimated
quite accurately through sampling and simulation.
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Fig. 1. The better-response graph of the 3 × 3 × 3 game depicting the hitting proba-
bilities of the pure profiles as pie charts.
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1 Introduction

The Nash equilibrium has been the quintessence of Game Theory. The field
started its modern existence in 1950 with Nash’s definition and existence the-
orem, and the Nash equilibrium remained for three quarters of a century its
paramount solution concept—the others exist as refinements, generalizations,
or contradistinctions. During the past three decades, during which Game The-
ory came under intense computational scrutiny, the Nash equilibrium has lost
some of its appeal, as its fundamental incompatibility with computation became
apparent. The Nash equilibrium has been shown intractable to compute or
approximate in normal-form games [10,16,17], while its other well-known defi-
ciency of computational nature—the ambiguity of non-uniqueness and the quag-
mire of equilibrium selection [23]—had already been known.

A long list of game dynamics—that is, dynamical systems, continuous- or
discrete-time, defined on mixed strategy profiles—proposed by economists over
the decades are all known to fail to converge consistently to the Nash equilibrium.
This included Nash’s own discrete-time dynamics used in his proof, the well-
known replicator dynamics treated in this paper, and many others. Given this,
the following question acquired some importance:

Question 1: We know that every game has a Nash equilibrium. But does
every game have a dynamics that converges to the Nash equilibria of the
game?

A negative answer would be another serious setback for the Nash equilib-
rium, and impetus would be added to efforts (see for example [34,39]) to elevate
the limit behavior of natural game dynamics as a proposed “meaning of the
game,” an alternative to the Nash equilibrium. An important obstacle to these
efforts was that the nature of the limit behavior of natural dynamics in general
games had been lacking the required clarity. It had been known for 40 years
since Conley’s seminal work [14] that the right concept of limit behavior in a
general dynamical system is a system of topological objects known as its chain
recurrent components. However, this concept is mathematically intractable for
general dynamical systems: there can be infinitely many such sets, of unbounded
complexity.

Question 2: Is there a concrete characterization, in terms of familiar game-
theoretic concepts, of the chain recurrent sets in the special case of natural
game dynamics in normal-form games?

During this past year, there was important progress on both questions.

1. It was proven in [31] that the answer of Question 1 above is negative: there is a
game for which no game dynamics can converge to the Nash equilibria—that
is, there is no dynamics such that the fate of all initial strategy profiles are
the Nash equilibria, and the Nash equilibria are themselves fixed points of the
dynamical system. Thus, the Nash equilibrium is fundamentally incapable of
capturing asymptotic player behavior.
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2. Biggar and Shames establish a useful characterization of the chain recurrent
sets of natural recurrent dynamics [8]: it was shown that each chain recurrent
component of a game under the replicator dynamics contains the union of one
or more sink equilibria of the game. Sink equilibria, first defined by Goemans
et al. [21] in the context of the price of anarchy, are the sink strongly connected
components of the better response graph of the game.

We believe that these two results open an important opportunity to articulate
a new approach to understanding a normal-form game. Instead of considering it,
as game theorists have been doing so far, as the specification of an intractable
equilibrium selection problem, we propose to see it as a specification of the
limit behavior of the players. According to this point of view [39], a game is
a mapping from a prior distribution over mixed strategy profiles (MSPs) to
the resulting limit distribution if the players engage in an intuitive and well
accepted natural behavior called noisy replicator dynamics, which is related to
multiplicative weight updates and will be defined soon. This is the quest we are
pursuing and advancing in this paper.

Our Contributions

– We propose a concrete, unambiguous, and computationally tractable concep-
tion of a game as a mapping from any prior distribution over MSPs to the sink
equilibria of the game, namely the limit distribution of the noisy replicator
dynamics when initialized at the prior.

– We initiate the study of the efficiency of its computation. As a baby step,
in the next section we show that the sink equilibria can be computed in
time linear in the description of the game. We also point out that they are
intractable for various families of implicit games.

– We prove that the mapping from a prior to a distribution over sink equilibria
can be calculated explicitly and efficiently (near linear in the size of the game
description) when the prior has pure strategy support. This is highly nontriv-
ial because the better response graph of the game may contain many directed
cycles of length two with infinitesimal transition probability ε, corresponding
to tie edges; the analysis must be carried out at the ε → 0 limit. The algorithm
involves a number of novel graph-theoretic concepts and techniques relating
to Markov chains, and the deployment of near-linear algorithms for directed
Laplacian system solving as well as a dynamic algorithm for incrementally
maintaining the strongly connected components (SCCs) of a graph.

– We also show through extensive experimentation that the general case (arbi-
trary prior) can be solved efficiently for quite large games.

Related Work

Non-convergence of Learning Dynamics in Games. The difficulty of learn-
ing dynamics to converge to Nash equilibria in games is punctuated by a plethora



208 R. Hakim et al.

of diverse negative results spanning numerous disciplines such as game theory,
economics, computer science and control theory [1,2,4,5,11,15,20,24,26,27,30,
39,48,49]. Recently, [31] capped off this stream of negative results with a general
impossibility result showing that there is no game dynamics that achieve global
convergence to Nash for all games, a result that is independent of any com-
plexity theoretic or uncoupledness assumptions on the dynamics. Besides such
worst case theoretical results, detailed experimental studies suggest that chaos is
commonplace in game dynamics, and emerges even in low dimensional systems
across a variety of game theoretic applications [6,12,29,36,37,41,44,45].

Dynamical Systems for Learning in Games. This extensive list of non-
equilibrating results has inspired a program for linking game theory to dynamical
systems [38,39] and Conley’s fundamental theorem of dynamical systems [14].
These tools have since been applied in multi-agent ML settings such as devel-
oping novel rankings as well as training methodologies for agents playing games
[33–35,43]. Finally, Peyton Young’s paper on conventions [40] is an important
precursor of our point of view in the Economics literature, focusing in the special
case of games in which the sink SCCs are pure strategy equilibria.

Sink Equilibria. The notion of sink equilibrium, a strongly connected com-
ponent with no outgoing arcs in the strategy profile graph associated with a
game, was introduced in [21]. They also defined an analogue to the notion of
Price of Anarchy [28], the Price of Sinking, the ratio between the worst case
value of a sink equilibrium and the value of the socially optimal solution. The
value of a sink equilibrium is defined as the expected social value of the steady
state distribution induced by a random walk on that sink. Later work estab-
lished further connections between Price of Sinking and Price of Anarchy via the
(λ, μ)-robustness framework [42]. A number of negative, PSPACE-hard complex-
ity results for analyzing and approximating sink equilibria have been established
in different families of succinct games [19,32].

Finally, [25] compute the limiting stationary distribution of an irreducible
MC with vanishing edges; their technique can be used in our framework to solve
for the time averaged long run behavior within a sink SCC.

2 Preliminaries

We assume the standard definitions of a normal-form game G with p players with
pure strategy sets {Si}, and their utilities Ui. We denote by |G| the size of the
description of G. The better-or-equal response graph B(G) has the pure strategy
profiles as nodes, and an edge from u to v if u and v differ in the strategy of only
one player i, and Ui(v) ≥ Ui(u). Let E be the set of edges of B(G). Notice that,
because of the tie edges and the transitive edges, the number of edges in the
response graph can be much larger than the size of the description of the game,
i.e., |E| = Ω(|G|). The sink equilibria of G are the sink strongly connected
components (sink SCCs) of B(G), that is, maximal sets of nodes with paths
between all pairs, such that there is no edge leaving this set. We shall define
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many other novel graph-theoretic concepts for this graph in the next section.
Our first theorem delineates the complexity of finding the sink equilibria of a
game:

Theorem 1. The sink equilibria can be computed in time near-linear in the
description of the game presented in normal form, whereas computing them in a
graphical game is PSPACE-complete.

Proof. The first claim follows from the fact that, even though (as pointed out in
the preceding paragraph) B(G) has more edges than the size of the description
of the game, there is an equivalent graph of linear size with the same transitive
closure (and therefore strongly connected components) obtained as follows: For
each player and each pure strategy profile for other players, consider the subgraph
of only the nodes that correspond to the strategy profile for the other players
together with some action for the player. Sort the nodes by their outcome for the
player. For each node in order from lowest to highest outcome, create an edge to
the next node in increasing order as well as the last node of the same outcome if
the next node has a higher outcome (only if this would not be a self-loop). This
preserves transitive closure as compared to B(G) and each node has at most
outgoing 2 edges (it sums to ≤ 3/2 edges per node on average in the worst case).
Besides sorting this can be done in linear time.

The second claim follows from known results [18]; the result holds for other
forms of succinct descriptions of games, such as Bayesian or extensive form
games.

Next we define the noisy replicator dynamics on G [39], a noisy generalization
of the classical replicator dynamics [46]. It is a function mapping the set of MSPs
of G to itself as follows:

– φ(x) = ∂G(x + η · BRx + Nx(0, δ)), where
– BRx is the unit best response vector at x projected to the subspace of x—that

is, containing zeros at all coordinates in which x is zero; this ensures that the
support of x never increases;

– N (0, δ)x is Gaussian noise, also projected;
– the function ∂G maps (x+η ·BRx+N (0, δ))x either to itself, if it is inside the

domain of the game’s MSPs, or to the closest point in the support’s boundary,
otherwise;

– and δ, η > 0 are important small parameters.

Justification. The replicator dynamics [46,47] has been for four decades the stan-
dard model for the evolution of strategic behavior. In connection with Economics
and Game Theory, it has the important advantage of invariance under positive
affine changes in the players’ utilities. For our purposes, it is approximated via
the noisy version of Multiplicative Weights Update (MWU) [3]. Projecting the
noise to the support of the current MSP x is motivated by evolution and extinc-
tion, and is instrumental for fast convergence. This precise dynamics has been
used extensively in reinforcement learning for game play, see for example [34,35].
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Finally, we define a dynamics on the pure strategy profiles (that is, a Markov
chain), called the Conley-Markov Chain of G, or CMC(G) [21,39]. If (u, v) is
an edge of B(G) corresponding to a defection of player i, its probability in
CMC(G) is proportional to Ui(v) − Ui(u), with the edges out of each node u
normalized to one. It is not hard to see that this is the limit of the noisy replicator
dynamics as the noise goes to zero and the MSP goes to u. Importantly, however,
CMC(G) also has an infinitesimal probability ε for each tie edge. (Note that this
probability is used symbolically as it descends to zero, and, in the interest of
clarity, it does not affect the normalization at u.) This treatment of tie edges
reflects two things: First, it was shown in [7] that tie edges must be included in
the calculation of the sink equilibria for their theorem to hold; and second, to
incorporate tie edges in a way compatible with Conley’s theorem [14] is to think
of them as conduits of a balanced random walk on the undirected edge between
the two nodes in which the MSP is changing via tiny steps of σ at a time, so
that it will take Θ(1/σ2) steps for the transition to be completed, justifying its
infinitesimal transition probability.

3 A Combinatorial Algorithm for the Hitting
Probabilities

We start by collapsing all sink SCCs of CMC(G) to single absorbing nodes. Our
main goal is to compute the hitting probabilities from each node i of CMC(G)
to each of the absorbing nodes—that is, the probability that a path starting from
i will end up in the node—albeit in the limit as ε → 0. The hitting probabilities
can be defined in two equivalent ways, both of which we will use in our proofs.
Define hiS to be the hitting probability of node i to sink S, that is, the probability
that a path from i will eventually be absorbed by S. Let pij be the transition
probability of node i to node j (the weight of the edge (i, j) or 0 if there is no
edge). Then the hitting probabilities are the smallest non-negative numbers that
satisfy the following system of equations.

hiS =

⎧
⎨

⎩

∑

j∈nodes
pijhjS , if i �∈ S.

1, if i ∈ S
(1)

If we define ΨiS as the (potentially infinite) set of paths that start at i and
end at some node in S, then we equivalently have the following set of equations.

hiS =
∑

p∈ΨiS

Pr[p] (2)

In this section we prove the following:

Theorem 2. The limit hitting probabilities of CMC(G) can be computed in time
O(|E|1+δ), where E is the set of edges of CMC(G) and δ > 0.
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Significant progress has been made in solving linear systems associated with
weighted directed graphs such as Eq. 1 faster than the time required to solve
arbitrary linear systems. Two problems can now be solved in almost-linear time
in the size of the graph: computing the stationary distribution of an irreducible
Markov chain (hence abbreviated MC); and computing the escape probabilities
[13]. The computation of escape probabilities in a random walk maps directly to
the problem of computing hitting probabilities in a MC. So we have fast algo-
rithms for our problem in the case of no tie edges. However, the introduction of
tie edges creates an ill-conditioned problem, and we are interested in its solution
as ε → 0. A possible approach would be to solve the system of equations given
in Eq. 1 symbolically and then take limits as ε → 0; however, solving large sys-
tems of equations symbolically is intractable. Instead, we take a combinatorial
approach to transform any given CMC(G) into a simpler MC that preserves
the limit hitting probabilities of the original CMC(G) but eventually has no tie-
edges. The hitting probabilities of this simplified MC can be computed in almost
linear time as mentioned above.

3.1 Outline of the Algorithm

1. The input to the algorithm is CMC(G)—actually, it could be any ε-MC M
with absorbing nodes. The output is the list of hitting probabilities {hiS},
the probabilities that the sink SCCs of the graph will be reached by each of
the nodes in the rest of the graph.

2. We start by collapsing the sink SCCs of M .
3. We calculate the SCC’s of M without the ε-edges, called rSCC’s. This makes

sense since ε edges are traversed at a far slower rate than the rest.
4. Next we must handle a phenomenon called a pseudosink, an rSCC that only

has ε-edges outgoing. Within a pseudosink, the MC achieves convergence
to a steady state before exiting, and therefore all of its nodes have the same
hitting probabilities. The pseudosinks are identified one by one and collapsed,
with their outgoing ε-edges replaced by regular edges in accordance with
Definition 6. A simple disjoint set data structure can track the original vertices
through the collapses.

5. A complication is that the collapsed pseudosinks acquire new regular edges
to the rest of the graph, and as a result the rSCCs of the graph must be
recalculated. This procedure may also create new pseudosinks, so steps 3 and
4 are repeated until no more pseudosinks exist.

6. Once all pseudosinks have been removed this way, any remaining ε-edges do
not affect the hitting probabilities and can therefore be deleted. At this point,
the hitting probabilities can be computed in almost linear time.

3.2 Definitions

Definition 1. ε-Markov Chain: A ε-Markov Chain (ε-MC) is a Markov
chain that has two types of edges: regular edges which have weights cr − creε
for constants cr > 0 and cre ≥ 0 and ε edges which have weights ceε for constant
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ce > 0. Thus, the CMC(G) is an ε-MC. As the values of the coefficients cre in
the regular edges do not affect the limiting hitting probabilities we shall ignore
them.

Definition 2. Sink SCC: A sink SCC S is a maximal set of nodes that are
strongly connected (including connected via ε-edges) that has no outgoing edges.

Definition 3. rSCC: A rSCC is a maximal set of nodes that is strongly con-
nected via regular edges. An rSCC may contain ε-edges between nodes within
the rSCC, but every node is reachable from every other node without requiring
ε-edges.

Definition 4. Pseudosink: A pseudosink P is a rSCC that has at least one
outgoing ε-edge and no outgoing regular edges.

Definition 5. Order: The order of a node i, Order(i), is the minimum num-
ber of tie edges that exist on a path from i to any sink SCC. The maximum order
of the current MC, MaxOrder(M), is our gauge of progress in the algorithm.

Definition 6. The weight of a new regular edge from a collapsed pseudosink
to node y is as follows (here O is the set of outgoing ε-edges from the pseudosink
P ).

W (P, y) =

∑
e∈O:e=(x,y) ceπP [x]

∑
e′=(x′,y′)∈O ce′πP [x′]

,

where πP [x] is the steady-state probability of x within P , computed using only
regular edges.

3.3 Algorithm Correctness

Throughout the algorithm, we maintain a MC that we denote M , initially the
MCM(G) with all sink SCCs collapsed. There are two aspects to validate. The
first is that the algorithm progresses until M has no remaining ε-edges. The
second is that M maintains the property that at all stages the limit hitting
probabilities of the original nodes are maintained through collapsing pseudosinks
(step 2) and deleting ε-edges (step 6).

Algorithm Progression

Lemma 1. If MaxOrder(M) ≥ 1 then M contains a pseudosink.

Proof. Consider the set of all nodes i that achieve Order(i) = MaxOrder(M).
By definition, from this set of nodes, the MC cannot reach any other nodes
without using ε-edges. Consider the rSCC decomposition of this set of nodes.
The regular edges between rSCCs induce a directed acyclic graph on this set of
nodes. Every finite DAG has at least one leaf, defined as a vertex that has no
outgoing edges. Each leaf is a rSCC with no outgoing regular edges and therefore
is a pseudosink.
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Lemma 2. Collapsing all pseudosinks in M reduces the maximum order of M
by at least 1.

Proof. Again, consider the set of all nodes i that have Order(i) equal to
MaxOrder(M) and the DAG representing the rSCC structure of this set. Each
leaf of the DAG is a pseudosink. From each pseudosink, there exists a path to
some sink SCC that achieves the order MaxOrder(M). Collapsing the pseu-
dosink replaces all outgoing ε-edges with regular edges and therefore this same
path must now achieve the order MaxOrder(M)− 1. Since every rSCC in the
DAG is either a leaf or has a regular path to a leaf, all nodes that previously
achieved i will now have Order(i) ≤ MaxOrder(M) − 1. So the maximum
order of M is reduced by at least 1.

Combining these two lemmas means that at each stage of our algorithm we will
find one or more pseudosinks and collapse them, decreasing the maximum order
by at least 1. So the algorithm will progress until the maximum order reaches 0,
at which point we delete all remaining ε-edges and are left with a Markov Chain
with only regular edges.

Pseudosink Collapse

Lemma 3. Let P be a pseudosink and NP be the node set of P . Let O be the
set of outgoing ε-edges from P . Finally, let Le be the event that a Markov chain
started at any i ∈ NP will take (e = (x, y)) ∈ O, where WM (e) = ceε is the
weight in M of edge e. Then

lim
ε→0

Pr[Le] =
ceπP [x]

∑
e′∈O ce′πP

This immediately implies that W (P, y) from Definition 6 is the probability that
y is the first node outside of P that a chain started at any i ∈ NP will travel to.

Proof Sketch. The key idea behind the proof is that, with high probability, the
chain converges to its stationary distribution within the pseudosink P before
taking it’s first outgoing epsilon edge. Therefore, the probabilities are dependent
on the stationary distribution on P as well as the weights on the ε-edges.

Lemma 4. Let P be a pseudosink, and let the stationary distribution on P
without ε-edges be denoted by πP . The hitting probabilities to sink SCCs of the
overall graph are not affected by collapsing P to a single node AP with outgoing
edges corresponding to W (AP , y).

Proof Sketch. We analyze the probability of all paths between nodes in M by
dividing up the set of paths by the number of times each path enters pseudosink
P . We then use Lemma tie edge coefficient to match up these paths with paths
in M ′ (where M ′ is the MC after collapsing P ) that have equal probability.

The proofs of Lemmas 3 and 4 are in the full version of the paper [22].
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Deletion of ε-Edges at the Final Step

Lemma 5. If for all nodes i ∈ NM have a regular path (only using regular edges)
to an absorbing state, then ∀i, limε→0 P [Vi] = 1 where Vi is the event that the
MC started at i is absorbed before taking any ε-edges.

Proof. Consider the set of regular edges of M which have weights of the form
cr −creε. Set ε ≤ min(cr)

2max cre
, so that every regular edge has weight at least wmin =

min(cr)/2. Now set Cmin = w
|NM |
min . Note that Cmin is a constant independent of

ε. For every node i there exists a regular path piS of length at most |NM | to an
absorbing state, which must have probability at least Cmin. In addition, recall
that Lmax is a constant defined in Lemma 3, such that Lmaxε upper bounds the
probability of taking an ε-edge at any timestep.

We will calculate P [Vi] by analyzing a new MC M ′ that depends on M .
This new MC begins in the “start” state, with the original MC at some node
i′ which is not an absorbing state (initially this node is i). One step of M ′ is
as follows: It evolves the M from i′ for len(p) steps, where p is the path from
i′ to an absorbing state that has probability ≥ Cmin. If M ends up at some
absorbing state (one way to do this is to take path p) then M ′ moves to the
absorbing “success” state. If M takes any ε transitions during this evolution,
then M ′ moves to the absorbing “failure” state. If neither of these happen, M
will be at some non-absorbing state i′ and M ′ will stay in the start state.

Observe that the probability that M ′ reaches the success state is exactly
P [Vi], since M ′ reaches the success state if and only if M reaches some absorbing
state before taking any ε-edges. Denote the event that M ′ reaches the success
state by V ′

S . The edge from the start state to the success state has probability
at least Cmin. The edge from the start state to the failure state has probability
at most F (ε) = 1 − (1 − Lminε)|NM |. This is because there are len(p) ≤ |NM |
steps of M taken by a single step of M ′ and the chance of taking an ε transition
at each of those steps is upper bounded by Lmaxε.

We can use these bounds on the probabilities of the edges of M ′ to compute
that:

Pr[V ′
S ] ≥ (1 · Cmin) + (0 · F ) + (Pr[V ′

S ] · (1 − Cmin − F ))

≥ Cmin

Cmin + F (ε)

Since limε→0 F (ε) = 0, limε→0 P [V ′
S ] = 1 and therefore limε→0 P [Vi] = 1.

Lemma 6. If MaxOrder(M) = 0, deleting all ε-edges (that are not within a
sink SCC) does not affect the hitting probabilities.

Proof. By definition of order, if MaxOrder(M) = 0, every node in M has a
regular path to an absorbing state, so we can apply Lemma 5 to get that for
all states i, limε→0 P [Vi] = 1 where Vi is the event that M transitions from i to
some absorbing state without taking any ε-edges.
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Let M ′ be the graph with all ε-edges removed and all edge weights of the
form cr + creε set to cr. Let h′

iS be the hitting probability from i to absorbing
state S in M ′. Define Ψr to be the set of paths in M that only use regular edges,
and Ψ ′

r to be the analogous set for M ′. Then ΨiS ∩ Ψr is the set of paths in M
that go from i to S only using regular edges. Define P as the set of all paths in
M , we have that ΨiS ∩ (Ψ\Ψr) is the set of paths in M that go from i to S using
one or more ε-edges.

hiS(ε) =
∑

p∈(ΨiS∩Ψr)

Pr[p] +
∑

p∈(ΨiS∩(Ψ\Ψr))

Pr[p]

The probability of taking a path from i to S that has one or more ε-edges must
be less than the probability of taking a ε-edge before absorption (since the first
event is a subset of the second).

∑

p∈(ΨiS∩(Ψ\Ψr))

Pr[p] ≤ 1 − Pr[ViJ ]

lim
ε→0

∑

p∈(ΨiS∩(Ψ\Ψr))

Pr[p] ≤ lim
ε→0

(1 − Pr[Vi]) = 0

We can plug this limit into the hitting probability equation and use the prop-
erty that, since the only structural difference between M and M ′ is the ε-edges,
PiS ∩ Pr = P ′

iS ∩ P ′
r. In addition, for all regular edges e ∈ EM we have that

limε→0 WM (e) = WM ′(e) due to our renormalization. Note that we can inter-
change limits because each weight on an regular edge converges to a positive
constant.

lim
ε→0

hiS(ε) = lim
ε→0

∑

p∈(ΨiS∩Ψr)

Pr[p] =
∑

p∈(ΨiS∩Ψr)

∏

e∈p

lim
ε→0

WM (e)

=
∑

p∈(Ψ ′
iS∩Ψ ′

r)

∏

e∈p

WM ′(e) = h′
iS

Deleting the ε edges and re-normalizing the regular edges therefore has no effect
on the limiting hitting probabilities.

3.4 Running Time of the Algorithm

Only steps 4, 5, and 6 of the algorithm have superlinear complexity. For 4 we
need to calculate the steady-state probabilities of the nodes of the pseudosink,
because they are needed in the calculation of the weights of the edges leaving
the collapsed pseudosink. For 6, we need to compute the hitting probability in
an ordinary graph (no ε-edges). Both of these problems can be solved in time
O(|E|1+δ) for all δ > 0 [13]. In Step 5, we do incremental maintenance of (r)SCCs.
The fastest known algorithms for incremental SCC maintenance take amortized
time O(E1+δ) [9].
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4 Experiments

We have implemented our algorithm and experimented with random games with
various values of the parameters p (players) and s (strategies per player) rang-
ing for both parameters from 2 to 12. In the next subsection, we present certain
examples that exhibit interesting behavior viz. our algorithm. Since our main
message is a new way to view a game as a algorithmic map from a prior to a pos-
terior distribution, in the second subsection we demonstrate how this works for
various reasonably large games. Given a prior distribution (typically the uniform
distribution over all MSPs), we sample from this distribution and then simulate
the noisy replicator. We repeat until our convergence criteria are satisfied, and
output the posterior distribution. This accomplishes our overarching goal, the
empirical computation of the meaning of the game. We repeat this experiment
for larger and larger games, taking this simulation to its practical laptop limits.
The code used to generate the entire section is available at https://jasonmili.
github.io/files/gd_hittingprobabilities_code.zip.

4.1 Some Interesting Games and Their Better-Response Graphs

We use the following plotting conventions: in each better-response graph, every
node of every sink SCC will be colored with a unique color. Other pure profile
nodes of the graph will be depicted as a “pie” graph with colored areas that
indicate the hitting probabilities towards each of the sink SCCs it reaches, as
identified by the former colors (of the sink SCCs). Tie edges (ε edges) appear in
the graph as bidirectional “0.00” edges; this is only for plotting convenience.

3 × 3 Game. We start with a modified version of a game presented by [39]
that exhibits two sink SCCs: a directed cycle of length four (corresponding to a
periodic orbit in the replicator space) and another that is a single pure profile
(corresponding to a strict pure NE); see Fig. 2.

Fig. 2. 3× 3 game. Left: the better-response graph. Right: the game utilities.

https://jasonmili.github.io/files/gd_hittingprobabilities_code.zip
https://jasonmili.github.io/files/gd_hittingprobabilities_code.zip
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Fig. 3. Tie game. The profile (3, 3) is order 1. Left: the better-response graph. Right:
the game utilities.

Game with Order 1 Profile. We construct a game, depicted in Fig. 3 with two
sink SCCs, and a pure profile of order 1 (which is also a pseudosink SCC) that
needs exactly one tie edge to reach any sink SCC. Notice that the presence of this
pure profile affects the hitting probabilities towards the sink SCCs, as described
in Sect. 3. This example shows that there are cases where a pure NE may not be
a sink SCC, or as a matter of fact, not even inside any sink equilibrium. That
is, this NE is not stochastically stable in the terminology of [40].

3×3×3 Game. The utilities for this game can be found in our code. See Figs. 1
and 4.

4.2 Convergence Statistics

Methodology. We generate games of various sizes and random utilities (see the
figures below), and we carry out a number of independently-randomized experi-
ments of running noisy replicator dynamics (RD) on each. For each sampled point
of the prior distribution (typically uniform), we run multiple independently-
randomized instances of the noisy RD to obtain an empirical distribution. We
consider the outcome of the game as the empirical last-iterate distribution, i.e.,
the average of all obtained distributions after run T . We keep track of the total
variation (TV) distance between the running average distribution (e.g., at time
t < T ) and the ex-post empirical last-iterate (average at time T ). We consider
that a distribution has achieved good enough convergence when the TV distance
is less than 1%—we found that this is roughly the accuracy that is feasible in a
laptop-like experimental setup. All calculations in this section were performed on
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Fig. 4. The 3× 3× 3 game. (Color figure online)

an Apple M2 processor with the use of multi-threading with 8 parallel threads.
All graphs can be found in the full version of the paper [22]; here, we present
only the final aggregate in Fig. 5.

Fig. 5. Convergence of our algorithm with total size of the game.
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5 Discussion and Open Questions

We have proposed that a useful way of understanding a game in normal form is
as a map between a prior distribution over mixed strategy profiles to a distribu-
tion over sink equilibria; namely, the distribution induced by the noisy replicator
dynamics if started at the prior. We showed that this distribution can be com-
puted quite efficiently starting from any pure strategy profile, through a novel
algorithm that handles the infinitesimal transitions associated with tie edges. By
implementing this algorithm and dynamical system we conducted experiments
which we believe demonstrate the feasibility of this approach to understanding
the meaning of a game.

There are many problems left open by this work.

– In our simulations we approximated the meaning of the game for quite large
games. We believe that more sophisticated statistical methods can yield more
informative results for larger games. Another possible front of improvement
in our simulations would be a better theoretical understanding of the trade-
off between the parameters δ and η of the dynamics—the length of the jump
and the intensity of the noise.

– Under which assumptions do the sink equilibria coincide with the chain recur-
rent components of the replicator dynamics (the solution concept suggested
by the topological theory of dynamical systems)? Sharpening the result of
Biggar and Shames in this way is an important open problem. On the other
hand, a counterexample showing that it cannot be sharpened would also be
an important advance; we note that experiments such as the ones in this
paper are a fine way of generating examples of systems of sink equilibria
which could eventually point the way to a counterexample. Another question
in the interface with the topological theory is, does the time average behavior
within a sink SCC correspond to the behavior within a chain component of
the replicator?

– It would be very interesting to try—defying PSPACE-completeness—to com-
pute sink equilibria and simulate the noisy replicator on succinct games such
as extensive form, Bayesian, or graphical.
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Abstract. The core is a dominant solution concept in economics and
cooperative game theory; it is used for profit—equivalently, cost or
utility—sharing. Starting with the classic work of Shapley and Shubik
[25] on the assignment game, the cores of several natural games have
been characterized using total unimodularity. The purpose of our paper
is two-fold:

1. We give the first game for which total unimodularity does not hold
and total dual integrality is needed for characterizing its core.

2. We demonstrate the versatility of the notion of core by proposing
a completely different use: in a so-called investment management
game, which is a game against nature rather than a cooperative
game.

Our game has only one agent, whose strategy set is all possible ways
of distributing her money among investment firms. The agent wants to
pick a strategy such that in each of exponentially many future “scenar-
ios”, sufficient money is available in the “right” firms so she can buy an
“optimal investment” for that scenario. Such a strategy constitutes a core
imputation under a broad interpretation—though traditional mathemat-
ical framework—of the core.

Our game is defined on perfect graphs, since the maximum stable set
problem (which plays a key role in this game) can be solved in polynomial
time for such graphs. We completely characterize the core of this game,
analogous to Shapley and Shubik’s characterization of the core of the
assignment game. A key difference is that whereas their characterization
follows from total unimodularity, ours follows from total dual integrality.

Keywords: Core of a game · Total unimodularity · Total dual
integrality · Perfect graphs · Games against nature

1 Introduction

The core is a dominant solution concept in economics and game theory. Its ori-
gins lie in the 19th century book of Edgeworth [6] in which it was referred to
as the contract curve and was first used in general equilibrium theory. In 1959,
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Gillies [10] gave an improved definition which started being used in coopera-
tive game theory for “fair” profit sharing. Since then, the stature of this solu-
tion concept grew considerably and today it is considered the gold standard for
profit—equivalently, cost or utility—sharing. Indeed, it is considered much more
desirable than other notions, e.g., least core and nucleolus1.

The assignment game forms a paradigmatic setting for studying the notion
of core of a transferable utility (TU) market game, in large part because of the
work of Shapley and Shubik [25]; in particular, they completely characterized
the core of this game, see Sect. 3. The key to this characterization is that the
polytope defined by the constraints of LP (1) is integral; in turn, this follows from
the fact that the constraint matrix of this LP is totally unimodular (TUM), see
Definition 7. As observed in [4,5,30], TUM underlies the characterization of the
cores of several natural games which involve finding optimal integral solutions,
e.g., matchings and flows. As is well known, there is a more general condition
than TUM which leads to integrality, namely total dual integrality (TDI), see
Definition 8. These facts raise the following questions.

1. Are there natural games whose constraint matrix is not TUM and the integral-
ity of its polytope follows from TDI? If so, can TDI lead to a characterization
of the core of this game?

2. How versatile is the solution concept of core, i.e., can it find applications
outside of profit—equivalently, cost or utility—sharing?

This paper provides positive answers to both these questions. In order to
give a context for the second question, let us consider Nash equilibrium, which
is perhaps the most important solution concept in game theory. Even for the
special case of bimatrix games, it provides deep insights in a rich milieu of situa-
tions, each having its own special character, e.g., Prisoner’s Dilemma, Matching
Pennies, Battle of the Sexes, and Rock-Paper-Scissor; the last game is in fact
zero-sum. Indeed, most “big” solution concepts tend to be similarly multi-faceted.
In contrast, within game theory, the core has been used for profit—equivalently,
cost or utility—sharing only.

This paper shows that the notion of core is more versatile than previously
believed. We will do so in the context of the investment management game, in
which the notion of core is not used for profit sharing. Obviously, in studying
the core of this game, we must leave the mathematical formulation of core, given
in Sect. 3, unchanged. However, we will need to reinterpret the meaning of the
mathematical terms in order to move them away from a profit-sharing setting to
the setting at hand and we will also provide more appropriate names for these
terms. The correspondence with the traditional names is given in Remark 2 in
Sect. 4.

Definition 1 introduces the investment management game2, whose core we
will characterize. Interestingly, it is not a cooperative game; in fact, it has only
1 Some drawbacks of these two notions are mentioned in [28].
2 The game given in Definition 1 may not seem realistic. However, we note that the

purpose of our paper is not immediate applicability—its purpose is to make a con-
ceptual advance on a fundamental solution concept.
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one agent. Our game is best viewed as a game against nature, i.e., a game against
a player whose pay-offs, as well as probability distribution over strategies, are
unknown. The origin of this name comes from the experience of farmers from a
time when weather prediction and irrigation systems were not well developed,
making it difficult for them to predict the best choice of crops and forcing them
to play in complete ignorance [1]. Our game has exactly this character, see
Definition 1. The saving grace is that in our game, a core imputation helps
salvage the situation by enabling the agent to invest in such a way she is able to
respond to every strategy of nature optimally!

After defining our game, in Remark 1 we draw a clear distinction between
the manner in which the core is applied in cooperative game theory and in
our game. In Sect. 4, we define our game on a graph. The main computational
problem that arises in it is to find a maximum weight independent set, which is
NP-hard in arbitrary graphs. However, the restriction of this problem to perfect
graphs (Sect. 5) is in P [11]; this will be the setting for our game3.

In Sect. 5 we characterize the core of this game. A good way of describing this
result is by drawing an analogy with the classic paper of Shapley and Shubik
[25] which characterized the core of the assignment game. They showed that
the core of this game is precisely the set of optimal solutions to the dual of
the LP-relaxation of the maximum weight matching problem in the underlying
bipartite graph, see Sect. 3. As observed in [4,5,30], at the heart of the Shapley-
Shubik proof lies the fact that the polytope defined by the constraints of this
LP is integral, see Definition 6. In turn, integrality follows from the fact that the
constraint matrix of this LP is totally unimodular (TUM), see Definition 7. The
underlying reason for this requirement of integrality is an inherent indivisibility
in the game, e.g., in a cooperative game, such as the assignment game, agents
are indivisible.

Integrality holds for the maximum weight independent set problem for perfect
graphs as well. However, the underlying reason is not TUM, but the more general
condition of total dual integrality (TDI), see Definition 8. Building on this fact, we
show that the set of core imputations of our game is precisely the set of optimal
solutions to the dual of the LP-relaxation of the maximum weight independent
set problem for perfect graphs. Ours appears to be the first work which uses TDI
for characterizing the core of a game; previous characterizations were based on
TUM, see Sect. 2.

Another novelty of our work is the following: In cooperative games, the profit
of a sub-coalition under an imputation was defined via a bottom-up process in
which the worth of the game was distributed among agents and the profit of a
sub-coalition was simply the sum of profits of agents in it. In our game there is
only one agent and the natural process is top-down, as described in Sect. 4 and
summarized in Remark 3.

Definition 1. The investment management game involves one agent, a set V of
assets with a cost function w : V → Q+, and a set M of investment firms. For
3 Many classes of perfect graphs are known by now, including bipartite graphs, line

graphs and chordal graphs [11].
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concreteness, assume that assets are shares of specific companies, each worth
a specific dollar amount; obviously, the number of shares in an asset changes
according to the going price. Assume further that, much like a mutual fund, each
investment firm specializes in holding shares of specific types of companies, e.g.,
Internet companies, software companies, computer hardware companies, auto-
mobile companies, etc. The difference is that whereas each share of a mutual
fund represents a collection of assets in some predetermined proportions, in our
setting, the agent can buy individual assets from a firm.

The set of assets sold by a specific firm f ∈ M is denoted by Qf ⊆ V .
The same asset, such as “five thousand dollars worth of Microsoft”, may be sold
by more than one firm, e.g., this asset may be sold by a firm specializing in
Internet companies as well as a firm specializing in software companies. Each
subset S ⊆ V of assets is called a scenario; hence there are exponentially many,
namely 2|V |, scenarios.

Two or more assets which are sold by the same firm have obvious correla-
tions and therefore do not constitute a low-risk investment. On the other hand,
a set of assets which picks at most one asset from any investment firm consti-
tutes a diversified portfolio—it avoids correlations and is therefore considered a
“healthy” investment. An optimal investment for a scenario S is a largest pos-
sible diversified portfolio in it; formally, it is defined to be a maximum cost set
S′ ⊆ S which picks at most one asset from any investment firm.

The total money, T ∈ Q+ of the agent is just sufficient to buy an optimal
investment in scenario V . The strategy set of the agent is all possible ways
of distributing money T among the firms; each strategy will also be called an
imputation. The rules of this game dictate that the money allocated to a firm
f ∈ M is available for use at any asset v ∈ Qf . Note that this money need not
be used for buying v; it is simply available at v. Therefore, the money available
in scenario S is the sum of money allocated to all firms which have at least one
asset in S. Clearly, our game is a transferable utility (TU) game.

The game is the following: Find an imputation such that when, at a certain
time in the future, nature picks a strategy, i.e., a scenario S ⊆ V , the money
available in S is sufficient to buy an optimal investment in S. Such an imputation
is said to be in the core of the game. Thus a core imputation enables the agent
to invest T money in firms in such a way she is able to respond to every strategy
of nature optimally.

Remark 1. In light of Definition 1, a clear distinction can be given between the
manner in which the core is applied in cooperative game theory and in our game.
Whereas in the former, a core imputation defines payoffs of all players that results
in the stability of the grand coalition, in the latter, a core imputation captures
an investment strategy of the unique player, that encapsulates risk aversion (for
the stated definition of “risk”) under every future scenario.
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2 Related Works

Results characterizing cores of natural Transferable Utility (TU) games are given
below. First, we mention the stable matching game, defined by Gale and Shapley
[13], in which preferences are ordinal, i.e., it is an NTU game. The only coalitions
that matter in this game are ones formed by one agent from each side of the
bipartition. A stable matching ensures that no such coalition has the incentive
to secede and the set of such matchings constitute the core of this game. Vande
Vate [27] and Rothblum [22] gave linear programming formulations for stable
matchings; the vertices of their underlying polytopes are integral and are stable
matchings. Interestingly enough, Kiraly and Pap [16] showed that the linear
system of Rothblum is in fact TDI.

A core imputation has to ensure that each of the exponentially many sub-
coalitions is “satisfied”—clearly, that is a lot of constraints. As a result, the core is
known to be non-empty only for a handful of games, some of which are mentioned
below; total unimodularity plays a key role in these results.

Deng et al. [5] observed the role of integrality in the Shapley-Shubik The-
orem and used this insight to distilled its underlying ideas to obtain a general
framework which helps characterize the cores of several games that are based on
fundamental combinatorial optimization problems, including maximum flow in
unit capacity networks both directed and undirected, maximum number of edge-
disjoint s-t paths, maximum number of vertex-disjoint s-t paths and maximum
number of disjoint arborescences rooted at a vertex r.

The survey of Demange and Deng [4] on the notion of balancedness of Bon-
dareva and Shapley [3,24] explored the role of integrality in depth. Towards
the end of their paper, they note that TDI of a linear system is a very general
condition that leads to integrality and therefore non-emptyness of the core and
balancedness. However, they did not give a specific game for which TUM does
not hold and TDI had to be invoked for establishing integrality.

A natural generalization of the assignment game is the b-matching game
in bipartite graphs. Biro et al. [2] showed that the core non-emptiness and core
membership problems for the b-matching game are solvable in polynomial time if
b ≤ 2 and are co-NP-hard even for b = 3. More recently, Vazirani [29] showed that
if b is the constant function, then core imputations are precisely optimal solutions
to the dual LP; this is analogous to the Shapley-Shubik theorem. Furthermore,
Vazirani [29] showed that if b is arbitrary, then every optimal solutions to the
dual LP is a core imputations; however, there are core imputations that are not
optimal solutions to the dual LP.

We next describe results for the facility location game. First, Kolen [15]
showed that for the unconstrained facility location problem, each optimal solu-
tion to the dual of the classical LP-relaxation is a core imputation if and only if
this relaxation has no integrality gap. Later, Goemans and Skutella [14] showed
a similar result for any kind of constrained facility location game. They also
proved that in general, for facility locations games, deciding whether the core is
non-empty and whether a given allocation is in the core is NP-complete.
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Samet and Zemel [26] study games which are generated by linear program-
ming optimization problems; these are called LP-games. For such games, It is
well known that the set of optimal dual solutions is contained in the core and
[26] gives sufficient conditions under which equality holds. These games do not
ask for integral solutions and are therefore different in character from the ones
studied in this paper.

Granot and Huberman [8,9] showed that the core of the minimum cost span-
ning tree game is non-empty and gave an algorithm for finding an imputation in
it. Koh and Sanita [17] settle the question of efficiently determining if a spanning
tree game is submodular; the core of such games is always non-empty. Nagamochi
et al. [21] characterize non-emptyness of core for the minimum base game in a
matroid; the minimum spanning tree game is a special case of this game.

3 Definitions and Preliminary Facts

In this section, we will give the standard definition of core in the setting of a
cooperative game. For completeness, we will also formally state the characteriza-
tion of the core of the assignment game given by Shapley and Shubik. In Sect. 4
we will modify some of these definitions, and appropriately rename others, so
that the notion of core can be used to study the investment management game.

We will study transferable utility (TU) games, i.e., a games in which utilities
of the agents are stated in monetary terms and side payments are allowed. For
an extensive coverage of these notions, see the book by Moulin [20].

Definition 2. A cooperative game consists of a pair (N, c) where N is a set of n
agents and c is the characteristic function; c : 2N → R+, where for S ⊆ N, c(S)
is the worth that the sub-coalition S can generate by itself. N is also called the
grand coalition.

Definition 3. An imputation gives a way of dividing the worth of the game,
v(N), among the agents. It can be viewed as a function x : N → Q+. For each
sub-coalition S ⊆ N , we will define its profit as profit(S) =

∑
i∈S x(i).

Definition 4. Let x be an imputation and S ⊆ N a sub-coalition. We will say
that x satisfies S if its profit is at least as large as its worth, i.e., profit(S) ≥
worth(S).

Definition 5. An imputation x is said to be in the core of the game if it satisfies
each sub-coalition S ⊆ N .

The assignment game, consists of a bipartite graph G = (U, V,E) and a
weight function w : E → Q+. The agents of this game are U ∪ V and for each
sub-coalition (Su ∪ Sv), with Su ⊆ U and Sv ⊆ V , its worth is defined to be the
weight of a maximum weight matching in G(Su ∪ Sv), where the latter is the
subgraph of G induced on the vertices (Su ∪ Sv).

Linear program (1) gives the LP-relaxation of the problem of finding such a
matching. In this program, variable xij indicates the extent to which edge (i, j)
is picked in the solution.
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max
∑

(i,j)∈E

wijxij

s.t.
∑

(i,j)∈E

xij≤ 1 ∀i ∈ U (1)

∑

(i,j)∈E

xij≤ 1 ∀j ∈ V

xij≥ 0 ∀(i, j) ∈ E

Taking ui and vj to be the dual variables for the first and second constraints
of (1), we obtain the dual LP:

max
∑

i∈U

ui +
∑

j∈V

vj

s.t. ui + vj≥ wij ∀(i, j) ∈ E (2)
ui≥ 0 ∀i ∈ U

vj≥ 0 ∀j ∈ V

The constraint matrix of LP (1) is totally unimodular (TUM), see Definition
7, and therefore the polytope defined by its constraints is integral, see Definition
6 and [19]. This integrality is the key to proving Theorem 1.

Theorem 1. (Shapley and Shubik [25]) The imputation (u, v) is in the core of
the assignment game if and only if it is an optimal solution to the dual LP, (2).

Definition 6. We will say that a polytope is integral if its vertices have all
integral coordinates.

Definition 7. Let Ax ≤ b be a linear system where A is an m × n matrix and
b an m-dimensional vector, both with integral entries. A is said to be totally
unimodular (TUM) if every submatrix of A has determinant 0, 1 or −1. If so,
the polytope of this linear system is integral.

Definition 8. Let Ax ≤ b be a linear system where A is an m×n matrix and b
an m-dimensional vector, both with rational entries. We will say that this linear
system is totally dual integral (TDI) if for any integer-valued vector cT such
that the linear program

max{cx : Ax ≤ b}
has an optimum solution, the corresponding dual linear program has an integer
optimal solution. If so, the polytope of this linear system is integral.
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Note that TDI is a more general condition than TUM for integrality of poly-
hedra. If A is TUM then the polyhedron of the linear system Ax ≤ b is integral
for every integral vector b. However, even if A is not TUM, for specific choices of
an integral vector b, the polytope of the linear system Ax ≤ b may be integral,
and TDI may apply in this situation. It is important to remark that TDI is not
a property of the polytope but of the particular linear system chosen to define
it. See [11,23] for further details.

4 The Investment Management Game Defined
on a Graph

As stated in the Introduction, the investment management game, which is
described at a high level in Definition 1, is a game against nature and it is
not a cooperative game; in fact it has only one agent. A natural setting for this
game is a graph, as described below. This is a TU game: the money available at
a firm can be used to buy assets from other firms, as specified below.

In studying the core of the investment management game, we will leave the
mathematical formulation of core, given in Sect. 3, unchanged. However, we will
need to reinterpret the meaning of the mathematical terms in order to move them
away from a profit-sharing setting to the setting being studied. In the process
we will also provide more appropriate names for these terms; the correspondence
with the traditional names will always be explicitly stated, see Remark 2.

Let G = (V,E) be a graph whose vertices are assets; let |V | = n. The function
w : V → Q+ defines the cost of each asset. Every maximal clique4 in G is an
investment firm; let M denote the set of all firms. For each firm f ∈ M, the
assets sold by f are represented by the vertices in its clique, Qf ⊆ V . As stated
in Definition 1, each investment firm specializes in holding shares of a specific
type of companies. As a result, two or more assets held by the same firm will
have obvious correlations.

We now explain why investment firms are defined to be cliques, via the
following analogy. Consider all the ATMs in the US of a certain bank. Since
the money deposited in this bank, or in an ATM of this bank, can be withdrawn
from any of its ATMs, the set of all ATMs of this bank can be viewed as a
clique, interconnected via a network. Similarly, since the money allocated to an
investment firm is available for use at any of its assets, as stated in Definition 1,
we have defined the investment firm to be a clique—over its assets.

Every set S ⊆ V is called a scenario, i.e., scenario plays the same role as sub-
coalition in a cooperative game. Let G(S) denote the subgraph of G induced on
vertices in S. As required by Definition 1, an optimal investment in scenario S
is defined to be any maximum cost independent set5 in G(S); clearly, this is a
4 It is easy to see that our result will hold even if we had defined every clique to be an

investment firm. However, under that formulation, there would be numerous pairs
of firms f, f ′ with Qf ′ ⊂ Qf , making firm f ′ redundant. Restricting to maximal
cliques avoids this deficiency in the formulation.

5 An independent set is also called a stable set, see Definition 11.
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diversified investment since it picks at most one asset from any investment firm.
Let OS ⊆ S denote such an investment and define

cost(S) :=
∑

v∈OS

wv.

Note that cost plays the same role as worth in Definition 2 and the function
cost : 2V → Q+ plays the same role as the characteristic function. The total
money of the agent is defined to be T = cost(V ), i.e., just sufficient to buy an
optimal investment in G.

A function y : M → Q+ where
∑

Q∈M yQ = T is called an imputation, i.e.,
it is a way of distributing T money among the investment firms. The set of all
such functions y can also be viewed as the strategy set of the unique agent in the
game. For any scenario S, the money available for buying assets in S is defined
to be the sum of money in all investment firms which contain at least one asset
from S, i.e.,

money(S) :=
∑

Q∈G(S): Q∩S �=∅
yQ,

where “Q ∈ G(S)” is short for “clique Q in G(S)”. Strictly speaking, the sum-
mation should be over maximal cliques, but since for a non-maximal clique Q,
yQ can be assumed to be zero, this distinction can be dropped. Notice that
money(S) plays the role of profit of S in a cooperative game.

Remark 2. So far we have renamed three important terms. The correspondence
between the traditional names and the new names is:

– sub-coalition ≡ scenario
– worth ≡ cost
– profit ≡ money

We now use the correspondence stated in Remark 2 to reinterpret Definitions
4 and 5. By Definition 4, scenario S is satisfied by imputation y if money(S) ≥
cost(S) and by Definition 5, imputation y is said to be in the core of this game
if it satisfies every scenario, i.e.,

∀S ⊆ V, money(S) ≥ cost(S).

Remark 3 and points out an important difference between our setting and
the setting of cooperative games.

Remark 3. In a cooperative game, an imputation distributes the total worth of
the game among agents and the profit of a sub-coalition is defined to be the
sum of the profits of its agents; the latter can be viewed as a bottom-up process.
Clearly these processes do not apply to our game, since it has a unique agent
and the notion of a “sub-coalition” is replaced by that of a scenario.

The natural way of defining an imputation and the money available in a
scenario can be summarized as follows: an imputation distributes the total money
of the game among “large” objects—the firms, which are maximal cliques—and
the money available in a scenario is defined via a top-down process, by summing
the money of all cliques which intersect this scenario.
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4.1 Limitations of This Model, and Desired Properties

The problem of computing a maximum cost independent set in an arbitrary
graph is NP-hard, even if all vertex costs are unit. This NP-hardness also indi-
cates that the game defined above lacks structural properties that could lead
to an understanding of its core. In sharp contrast, the assignment game is in P
and its LP-relaxation supports integrality of the underlying polytope, therefore
leading to a characterization of its core. Hence, the model defined above, on an
arbitrary graph, is too general to be useful.

To be useful, the model should allow for:

1. A characterization of the core; in particular, determine if the core is non-
empty.

2. Efficient computation of T , and cost(S) for any scenario S.
3. An efficient algorithm for computing an imputation in the core.

In the next section, we show that restricting the game to perfect graphs gives
all these properties.

5 The Investment Management Game on Perfect Graphs

In this section, we will study a restriction of the investment management game
to perfect graphs. In Sect. 5.1 we give the required definitions and facts from
the (extensive) theory of perfect graphs. We will not credit individual papers
for these facts; instead, we refer the reader to Chap. 9 of the book [11] as well
as the remarkably clear and concise exposition of this theory, presented as an
“appetizer” by Groetschel [12]. In Sect. 5.2 we will use these facts to characterize
the core of this game.

5.1 Definitions and Preliminaries

Definition 9. Given a graph G = (V,E), ω(G) denotes its clique number, i.e.,
the size of the largest clique in it and χ(G) denotes its chromatic number, i.e.,
the minimum number of colors needed for its vertices so that the two endpoints
of any edge get different colors.

Definition 10. A graph G = (V,E) is said to be perfect if and only if the clique
number and chromatic number are equal for each vertex-induced subgraph of G,
i.e.,

∀S ⊆ V, ω(G(S)) = χ(G(S)).

Let G denote the complement of G, i.e., G = (V,E), where E is the comple-
ment of E, with ∀ u, v ∈ V, (u, v) ∈ E if and only if (u, v) /∈ E. A central fact
about perfect graphs is that G is perfect if and only if G is perfect.
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Definition 11. Set S ⊆ V is said to be a stable set in G, also sometimes
called an independent set, if no two vertices of S are connected by an edge, i.e.,
∀ u, v ∈ S, (u, v) /∈ E. Let w : V → Q+ be a weight function on the vertices of
G.

Let G be an arbitrary graph. Clearly any clique in G can intersect a stable
set in at most one vertex, and therefore the constraint in LP (3) is satisfied by
every stable set; note that variable xv indicates the extent to which v is picked in
a fractional stable set. LP (3) contains such a constraint for each clique in G and
is an LP-relaxation of the maximum weight stable set problem in G. However,
LP (3) has exponentially many constraints, one corresponding to each clique in
G; moreover, it is NP-hard to solve in general [11].

max
∑

v∈V

wvxv

s.t. x(Q)≤ 1 ∀ clique Q in G (3)
xv≥ 0 ∀v ∈ V

The situation is salvaged in case G is a perfect graph: with the help of the
Lovasz theta function, one can can show that LP (3) can be solved in polynomial
time using the ellipsoid algorithm [11,12].

Below is the dual LP, which is obtained by taking yQ to be the dual variable
for the constraint of LP (3). The dual LP is solving a clique covering problem.

max
∑

cliqueQ in G

yQ

s.t.
∑

Q�v

yQ≥ wv ∀v ∈ V (4)

yQ≥ 0 ∀ clique Q in G

A key fact for our purpose is that the linear system of LP (3) is totally dual
integral (TDI), see Definition 8, for perfect graphs [11,12]. We provide a proof
sketch below.

By Definition 9, if G is perfect, ω(G) = χ(G). Next, consider the complement
of G, namely G; two vertices are adjacent in G if and only if they are not adjacent
in G. Denote by α(G) and χ(G) the size of the largest stable set and the minimum
number of disjoint cliques needed to cover all vertices of G, respectively. Clearly,
ω(G) = α(G) and χ(G) = χ(G). Furthermore, since the complement of a perfect
graph is also perfect, we get that for a perfect graph G, α(G) = χ(G).

Consider LP (3) and its integer programming formulation for the case that
the weight function w ∈ {0, 1}n, and let Lp(w) and Ip(w) denote their optimal
objective function values. For the same restriction on w, let Ld(w) and Id(w)
denote the optimal objective function values of LP (4) and its integer program-
ming formulation. Now,

Ip(w) ≤ Lp(w) = Ld(w) ≤ Id(w),
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where the equality follows from the LP-duality theorem, and the inequalities
follow from the relation between integral and fractional solutions.

For w ∈ {0, 1}n, let G′ be the subgraph of G induced on vertices v for which
wv = 1. Since G′ is also perfect, Ip(w) = α(G′) and Id(w) = χ(G′). Since
α(G′) = χ(G′), we get that Ip(w) = Id(w) and hence equality holds for all four
programs defined above.

To show that LP (3) is TDI we must show that for every weight function
w ∈ Zn

+, the optimal objective function value of the dual is integral. Since
Ld(w) = Id(w), this is the case if w ∈ {0, 1}n. Finally, via Fulkerson [7] and
Lovasz [18] we get that this integrality implies integrality of the optimal dual
even if w ∈ Zn

+. Therefore the linear system of LP (3) is TDI and hence the
polytope defined by it is integral; the vertices of this polytope are stable sets.

5.2 Characterizing the Core of the Game

Since the firms in the investment management game are maximal cliques, we first
restrict the constraint in LP(3) to maximal cliques only to obtain LP (5). Observe
that if Q is a clique in G and Q′ is a sub-clique of Q, then the constraint in LP
(3) corresponding to Q′ is redundant and can be removed, since it is implied by
the constraint corresponding to Q. Continuing in this manner, we are left with
constraints corresponding to maximal cliques only. Therefore, the two LPs are
equivalent.

max
∑

v∈V

wvxv

s.t. x(Q)≤ 1 ∀ maximal clique Q in G (5)
xv≥ 0 ∀v ∈ V

The dual of LP (5) is given below.

max
∑

clique Q in G

yQ

s.t.
∑

Q�v

yQ≥ wv ∀v ∈ V (6)

yQ≥ 0 ∀ maximal clique Q in G

We next show that the linear system of LP (5) is also TDI. This is not imme-
diate, since as stated after Definition 8, TDI is not a property of the polytope
but of the particular linear system chosen to define it.

Lemma 1. The linear system of LP (5) is TDI.

Proof. Let Q be a maximal clique in G, Q′ be its sub-clique and x be a vector of
variables xv for each vertex v ∈ V . For any x whose coordinates have been set to
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non-negative numbers, if x(Q) ≤ 1 then x(Q′) ≤ 1, i.e., the latter constraint is
redundant. Therefore the linear system of (5) is obtained by removing redundant
constraints from the linear system of (3). Hence the two primal LPs (3) and (5)
are equivalent.

Since the linear system of LP (3) is TDI, for any integer-valued cost vector
w such that the linear program (3) has an optimum solution, the dual linear
program (4) has an integer optimal solution. We will use this fact to show that
the same holds for LPs (5) and (6) as well.

Let w be an integer-valued cost vector such that the linear program (3) has
an optimum solution and let y be the corresponding integer optimal solution to
LP (4). Since the two primal LPs given above are equivalent, LP (5) also has an
optimum solution for w.

Use y to construct a dual solution y′ for LP (6) repeating the following
operation: Suppose yQ′ > 0, where Q′ is not a maximal clique. Let Q be any
maximal clique of which Q′ is a sub-clique. Let yQ′ = α; now decrease yQ′ by
α and increase yQ by α. Since y is integral, the new dual, y′, is also integral;
moreover, its objective value remains unchanged and it is feasible for LP (4)
since for each vertex v,

∑
Q�v yQ remains unchanged.

Repeat this operation until yQ > 0 only if Q is a maximal clique. Call the
resulting dual y′. Clearly, y′ is an integral optimal dual for LP (6). Therefore LP
(5) is TDI.

In our setting, an optimal dual distributes the worth of the game among the
maximal cliques of G. However, dividing the money yQ, given to clique Q, among
the vertices in the clique in not very meaningful, see Example 1 for a detailed
explanation. As described in Theorem 2, in our game, the money available to a
any scenario is defined via a different process, see also Remark 3.

Example 1. The 3× 3 Paley graph, which is a perfect graph, is shown in Fig. 1.
It has three disjoint maximum stable sets of size three each, one of each color,
and three disjoint maximal cliques, one of which is shown in bold. Under unit
cost for each asset, the worth of the investment management game on this graph
is 3 and the optimal dual assigns 1 to each of the three cliques. Consider three
scenarios, each consisting of a maximum stable set. The optimal investment in
each scenario is to buy all three of its assets, requiring 3 units of money. If the
cliques were to distribute their unit money to the assets, then at most one of
these scenarios can be satisfied: by each clique allocating its money to a different
colored asset of the same scenario. Therefore, the dual on a clique cannot be
distributed among its vertices.

Theorem 2. An imputation y is in the core of the stable set game over a perfect
graph if and only if it is an optimal solution to the dual LP(6).

Proof. (⇐) Let y be an optimal solution to the dual LP(6). By Lemma 1, the
linear system of LP(5) is TDI and therefore a maximum cost stable set in G is
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Fig. 1. The 3 × 3 Paley graph for Example 1

an optimal solution to this LP. This fact together with the LP-duality theorem
give:

T = cost(V ) =
∑

Q∈G

yQ = money(V ),

Where cost(V ) is the optimal value of LP (5). Therefore y is an imputation.
Consider a scenario S ⊆ V . By Definition 3,

money(S) :=
∑

Q∈G: Q∩S �=∅
yQ.

Clearly Q∩S is a clique in G(S). Next, we will define a function, z, on cliques
in G(S) as follows: For a clique Q′ in G(S), define

zQ′ :=
∑

Q∈G: Q∩S=Q′
yQ.

Since each clique Q of G which has a non-empty intersection with S will con-
tribute to exactly one clique in G(S), namely Q ∩ S, we get

money(S) =
∑

Q′∈G(S)

zQ′ .

Next, we observe that z is a feasible solution to the restriction of LP (4) to
G(S) because

∀v ∈ S :
∑

Q′∈G(S): Q′�v

zQ′ =
∑

Q∈G: Q�v

yQ ≥ wv,
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where the last inequality holds because y is a feasible solution to LP 6. Since
the subgraph of a perfect graph is also perfect, G(S) is a perfect graph and the
restriction of LP (3) to G(S) satisfies TDI. Therefore a maximum cost stable set
in G(S) is an optimal solution to the latter LP. This fact together with weak
duality give us

cost(S) ≤
∑

Q∈G(S)

zQ = money(S),

i.e., imputation y satisfies scenario S. Therefore y is a core imputation.

(⇒) Next, assume that y is a core imputation of the investment management
game over a perfect graph G.

For v ∈ V , consider the scenario S = {v}. Since y is in the core, by Definition
5,

money(S) =
∑

Q∈G: Q∩S �=∅
yQ ≥ cost(S) = wv.

Therefore, y is a feasible solution for LP (6).
By Definition 3,

money(V ) =
∑

Q∈G

yQ = T = cost(V ).

Therefore by the TDI of LP (5), the objective function value of y is the same as
that of the optimal value of the primal. This together with the feasibility of y
establishes that y is an optimal solution to the dual LP (6).

Corollary 1. The core of the stable set game over a perfect graph is non-empty.

6 Discussion

Remark 1 draws a clear contrast between the way the core is used in cooperative
game theory and in our game. Are there other ways of interpreting and using
the notion of core, without taking liberties with its formal framework?

A simple way of defining the game presented in this paper would use the
graph-theoretic language of stable sets and cliques. Definition 1 moves a step
towards modeling an economic situation. There is no doubt that our model falls
short of providing a solution concept for a realistic economic situation; however,
that was not the intent of this paper. We simply wanted to provide evidence that
the beautiful solution concept of core is more versatile than previously envisaged.
We hope other researchers will be able to build on this viewpoint to find realistic
applications of the notion of core outside of cooperative game theory.
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Abstract. We consider zero-sum games in which players move between
adjacent states, where in each pair of adjacent states one state dominates
the other. The states in our game can represent positional advantages
in physical conflict such as high ground or camouflage, or product char-
acteristics that lend an advantage over competing sellers in a duopoly.
We study the equilibria of the game as a function of the topological
and geometric properties of the underlying graph. Our main result char-
acterizes the expected payoff of both players starting from any initial
position, under the assumption that the graph does not contain certain
types of small cycles. This characterization leverages the block-cut tree of
the graph, a construction that describes the topology of the biconnected
components of the graph. We identify three natural types of (on-path)
pure equilibria, and characterize when these equilibria exist under the
above assumptions. On the geometric side, we show that strongly con-
nected outerplanar graphs with undirected girth at least 4 always support
some of these types of on-path pure equilibria. Finally, we show that a
data structure describing all pure equilibria can be efficiently computed
for these games.

Keywords: Zero-sum repeated game · Hotelling model · Graph
movement game

1 Introduction

Consider two players moving among the vertices of a graph G, where at each
timestep both players simultaneously move to a neighbor of their current vertex,
or remain. The game ends with some constant probability (1−δ) ∈ ]0; 1[ at each
timestep. The edges of the graph are undirected for movement but directed for
payoff: at the conclusion of the game, each player receives a payoff of 1 if they are
at a parent of the other player, −1 if the other player is at one of their parents,
and 0 if their vertices are not neighbors (or if they are at the same vertex).

This setting is a general way of constraining how players change actions
between rounds in a repeated symmetric zero-sum game: each vertex of the
graph G is a possible action, the edges of the graph describe the payoffs of the
game (the symmetric zero-sum game matrix is seen as an adjacency matrix) and
players can only move between similar actions between rounds (i.e. actions that
have an edge between them).
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These games model aspects of physical conflict in which adjacent vertices
represent positions where adversaries can engage. For instance, terrain features
such as high ground or easy camouflage may yield an advantage to one of the
adjacent positions. These games also model aspects of duopoly markets in which
each vertex of the graph represents a set of features of a product manufactured
by two competing firms. The firms can only incrementally change their product,
by moving along the edges of the graph. Adjacent sets of features compete for
the same consumers, with the direction of the edge indicating which product
is more profitable to sell when these two products are on the market (as a
function of consumer preference, production prices and selling prices). On the
other hand, products further away from each other in the graph have features
that appeal to sufficiently different segments of consumers that they have no
discernible advantage over one another. In turn, this can be seen as a dynamic
variant of discrete Hotelling models [9] (recall location in Hotelling models
is often interpreted as product differentiation), an area of interest in economics
and algorithmic game theory [4,5,15].

We focus on characterizing the payoff that each player can obtain from any
given initial position in a Nash equilibrium of the game. We study the conditions
under which one player has a winning strategy, namely a strategy that gives the
player strictly positive expected payoff, as well as how much payoff this player
can obtain in expectation. We also study the conditions under which both players
have safe strategies, namely strategies where they do not incur strictly negative
payoff.

We identify three types of on-path pure Nash equilibria (meaning players do
not mix unless a player has deviated) in safe strategies that are extremal equi-
libria in cycle graphs Cn (for n ≥ 4). The first type is the k-chase equilibrium,
in which one player follows k steps behind the other player, without ever reach-
ing them. The second type is the walking together equilibrium, in which both
players start at the same vertex and always deterministically move together to
a same vertex at each round, ensuring a stalemate. The third type is the static
equilibrium, where both players remain static at a distance from each other. We
provide characterizations under which k-chase, walking together and static equi-
libria exist on certain classes of graphs. These characterizations imply sufficient
conditions for the existence of on-path pure Nash equilibria in safe strategies in
general.

We also consider the existence of these types of equilibria in planar graphs.
These graphs are important as possible models of maps of geographical locations,
and because as our results will imply in Sects. 6 and 7, nonplanarity plays a role in
ensuring the existence of the above equilibria. We provide sufficient conditions
on outerplanar graphs, a particular class of planar graphs, such that walking
together and 2-chase equilibria exist.
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1.1 Results and Techniques

Main Result. Our main result characterizes the value of the game for any given
initial position, under the assumption that the graph does not contain certain
types of small cycles as a subgraph.

Theorem 1 (Informal version of Theorem 4). In any graph of undirected
girth at least 4 that does not contain small unbalanced cycles, a player is in a
losing position if and only if there is a unique way of cutting the graph halfway
between the two players, and the resulting connected component of this player is
an (out)-directed rooted tree, rooted at the vertex where the graph was cut.

An unbalanced cycle is a cycle with edges oriented such that there is exactly
one maximal vertex (with no incoming edges) and one minimal vertex (with no
outgoing edges). The excluded cycles in this theorem are all 3-cycles, and the
four unbalanced cycles of length 4 or 5. In particular, our characterization holds
for trees and more generally all graphs of (undirected) girth at least 6.

The key concept in this characterization’s precise formulation is the position
of the players in the block-cut tree of the (undirected) graph. The block-cut tree of
a graph is the tree whose vertices are the maximal biconnected components and
the cut vertices of the graph, with edges between each biconnected component
and all of its cut vertices. The block-cut tree is important because we establish
that players have a safe strategy as long as they find themselves in a biconnected
component. Intuitively, if cutting the graph halfway between the players leaves
a player with biconnected components (or other types of safe positions) in their
half, they can reach this safe position before the other player reaches them.

Static and Cycle-Based Equilibria. We then characterize the existence
of walking together, 2-chase, and static equilibria. Under the same topologi-
cal assumptions as above we show that walking together and 2-chase equilibria
exist if and only if the graph contains a directed cycle – the weakest possible
condition we could hope for. We also provide an exact characterization of graphs
with static equilibria under these assumptions (Proposition 2). We then show the
importance of small unbalanced cycles for these characterizations by presenting
constructions that contain some small unbalanced cycles, verify our character-
ization above, and yet do not admit these equilibria – despite being strongly
connected and of girth 5 (see Sect. 6 for the constructions).

We provide another sufficient condition using graph geometry rather than
topology, showing that any strongly connected outerplanar graph with undi-
rected girth at least 4 supports a 2-chase and a walking together equilibrium
(Theorem 8). An outerplanar graph is a planar graph in which all of the vertices
belong to the outer face of the graph (for some planar embedding of the graph).
Intuitively, this result holds for two reasons. One, such a graph has a face whose
edges form a directed cycle, which gives a player some safety from the other
player’s deviations when they remain on it. Two, because of outerplanarity, a
player who exits that directed cycle from some vertex v can only reenter it at a
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vertex that is either v or its neighbors on the cycle. Therefore, the player who
does not deviate can remain at a safe distance from the deviator at all times.
This result falls into the larger context of the existence of static and cycle-based
equilibria in planar graphs. We conjecture in Sect. 7 that all strongly connected
planar graphs with girth at least 4 have a static or cycle-based equilibrium, given
our result on outerplanar graphs and that our constructions without cycle-based
equilibria are nonplanar.

Computational Aspects. We show that a data structure describing all pure
equilibria can be computed efficiently, despite the number of pure equilibria
potentially being exponential. Computing all mixed equilibria in the game (for
all starting positions) results from a straightforward application of Bellman’s
equations and value iteration algorithms.

Roadmap. The remainder of this section contains related work. In Sect. 2 we
define our game formally, and characterize equilibria in cycle graphs to intro-
duce important definitions and lemmas. Section 3 characterizes winning positions
in trees and Sect. 4 characterizes all equilibria in graphs of girth at least 6. The
results from these two sections are combined to obtain our main results in Sect. 5
for graphs with no small unbalanced cycles. Section 6 contains our strongly con-
nected constructions without cycle-based or static equilibria. Section 7 contains
our results for outerplanar graphs, and finally Sect. 8 presents our algorithm to
efficiently compute pure equilibria.

1.2 Related Work

Pursuit-Evasion Games. The branch of research conceptually closest to ours
is pursuit-evasion games on graphs, also known as cops and robbers problems,
originally introduced by Quilliot [14]. In this game, a robber player chooses a
vertex in a finite graph, after which k cops choose positions in the graph. Then,
turn by turn, the robber and cops move along the edges in the graph, until either
a cop reaches the same vertex as the robber or until a configuration repeats twice.
In the latter case, the robber manages to evade the cops and wins, whereas if
a cop reaches the robber, the robber loses. In the original paper, Quilliot [14]
characterizes the graphs in which one cop is sufficient to capture the robber, and
a long line of work followed on finding bounds on the cop number of a graph
(the number of cops necessary to capture the robber) [2,3,11].

Bonato and Nowakowski [3] provide a general survey of variants of cops and
robbers. Several variants have some similarities to our setting. Konstantinidis
and Kehagias [11] study simultaneous-move cops and robbers and show that the
(appropriately defined) cop number of a graph is unchanged relative to the clas-
sical cops and robbers. Hamidoune [7] introduces a variant on directed graphs,
however the direction of edges has a different meaning than in our game: play-
ers are constrained to follow edges only in one direction, and the goal of the
cops is still to reach the same vertex as the robber. Bonato, Chiniforooshan and
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Prałat [2] introduce capture from a distance, where cops win if any one of them
comes within a certain distance of the robber. As cops and robbers has tradition-
ally been studied from a graph-theoretical or combinatorial point of view, some
works investigate game-theoretic formulations, such as the recent work of Keha-
gias and Konstantinidis [10], and the survey by Luckraz [13] of game-theoretic
formulations.

There are several important differences between the game of cops and robbers
and our model: (i) in our model the players are symmetric whereas in cops and
robbers there is a pursuer and an evader; (ii) the winning condition in our model
is to reach a parent vertex of the other player, whereas in standard cops and
robbers it is to reach the same vertex (and edges are undirected); (iii) our model
is simultaneous move whereas standard cops and robbers take turns. This means
that results from cops and robbers do not apply in our setting. In particular,
players can find themselves mixing between situations where they have strictly
positive, zero and strictly negative payoff (whereas in usual cops and robbers
there are no draws – one player can force a win by Zermelo’s theorem – see
Remark 1 for a simple example). Moreover, no player can win with probability 1
in our model and players randomize to evade capture (see Remark 3 for a simple
example and Proposition 3 for a proof). In contrast, even in simultaneous cops
and robbers, the cop number is defined as the minimum number of cops such that
the robber is captured with probability 1 [11], significantly altering the analysis.
The main idea in simultaneous cops and robbers is for the cop to guess the next
move of the robber, and play as if their guess is correct – with probability 1,
they will eventually guess correctly for sufficiently long that they will capture the
robber. Such a strategy is not viable in our game since it requires that for every
pair of positions, the cop can win against the robber in the usual turn-based cops
and robbers. Since our players are symmetric, if one player has a superior position
to the other then the converse cannot be true, and a guessing strategy can lead
the player in a superior position to end up in an inferior position by misguessing.
The optimal strategies in our setting can therefore ensure positive expected
payoff at best, but never capture with probability 1 as in cops and robbers and
its variants – and they very well can lead a player with strictly positive expected
payoff to obtain strictly negative payoff with non-zero probability.

More importantly, beyond our characterization of winning positions in the
game, many of our results concern properties of 0-payoff equilibria the players
can be in, characterizing player behavior when neither player has an advantage
over the other. To the best of our knowledge this has not been explored for cops
and robbers, where most work only focuses on characterizing when one player
has an advantage over the other (in particular through the cop number) [13].

Stochastic Games. Our game is an instance of a stochastic game [16], i.e. an
extensive-form game with a state that is affected by the actions of both players
(and potentially also external randomness, but not in our case) and which affects
the players’ payoffs. However, it has much more added structure which makes
our analysis possible: the state space is a cartesian product (of the set of the
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graph’s vertices with itself), each player affects only one component of the state,
and the payoff is related to the allowed transitions (through the graph edges).
To our knowledge, there are no results in this area concerning games with this
structure.

Discrete Hotelling Models. Finally, as mentioned earlier, our model has
similarities with discrete Hotelling models, such as those presented in Serra
and Revelle [15]. These games are sometimes also called Voronoi games on
graphs or competitive facility location games when the players can only locate at
vertices (similarly to our model). In these models, two players choose a vertex
of a graph (or sometimes a position along an edge of a graph) and then are
rewarded as a function of the quantity of vertices or edges (sometimes weighted)
that are closer to them than to the other player [5]. The fundamental difference
between these models and ours is that only adjacent vertices in the graph have an
advantage over one another in our model, whereas in Voronoi games it is likely
that most pairs of distinct vertices have unequal payoff. Moreover, to the best of
our knowledge, these models are static and do not model dynamics of relocation
like ours. Some works analyze best response dynamics in these games [4], but
with no restrictions on where players can move.

2 Preliminaries

Let G = (V,E) be a connected oriented graph. An oriented graph is a directed
graph with no loops or parallel edges, they are the graphs obtained by assigning
an orientation to each edge in an undirected graph. If (u, v) ∈ E, we often write
(u → v) ∈ E or simply u → v when E is clear from context. We write u − v
to say that there is an edge u → v or v → u in the graph. For convenience, we
denote Ê = {(v, u) | (u, v) ∈ E} the reversed set of edges.

Definition 1. A path in G is a list of at least 2 distinct vertices u0 → u1 →
· · · → uk with directed edges, whereas an undirected path is a list of at least 2
distinct vertices u0 − u1 − · · · − uk with edges in either direction. We denote G̃
the undirected graph underlying G. An undirected cycle in G is a cycle in G̃,
i.e. an undirected path of length at least 3 such that the last vertex is a neighbor
of the first. The ball of radius r centered at vertex u is,

Br (u) = {v ∈ V | ∃k ∈ �0; r�, ∃v0, . . . , vk, (u = v0)−v1−· · ·−vk−1− (vk = v)}.

g(G̃) denotes the undirected girth of G, i.e. the length of a shortest cycle in
G̃. We refer to it as g when G is clear from context.

The game is defined by the graph G and initial positions for both players
(x0, y0) ∈ V 2. At each timestep t ∈ N, we denote (xt, yt) the positions of the
players in the graph. The strategies of the players are mappings from their cur-
rent positions (xt, yt) to a distribution over their neighborhoods B1 (xt) and
B1 (yt). We denote ϕx : V 2 → Δ(V ) the strategy of player x and ϕy for player y,
where Δ(V ) is the simplex over the vertices of G. For a given initial state (x0, y0),
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a distribution over histories of play (ht)t∈N is naturally induced by ϕx and ϕy:
we write h ∼ (ϕx, ϕy) for a random variable h following this distribution when
(x0, y0) is clear from context. Note the game is defined in such a way that the
strategies are memoryless: they only depend on the current state and not on the
history of play.

The game ends with probability (1 − δ) at the end of each round, for some
fixed parameter δ ∈ ]0; 1[. At that point, the payoff of each player is 1 if they are
at a parent of the other player, −1 if they are at a child of the other player, and
0 otherwise (in particular, if both players are at the same vertex). The game is
a zero-sum game, and the expected payoff of player x can be written,

ux(ϕx, ϕy) = (1 − δ)Eh∼(ϕx,ϕy)

[∑
t∈N

δt
(
1ht∈E − 1ht∈Ê

)]
. (1)

As is often done in the repeated games literature and in order to simplify analysis,
we often interpret Eq. (1) as the payoff of a discounted game: the game is then
always infinite, and payoff at round t is multiplied by a factor δt. We also refer
to the sum starting at t = 1 in Eq. (1) as the continuation payoff of player x.

Definition 2. A pair of strategies is called a Nash equilibrium if neither player
can increase their expected payoff by changing strategies. Note that by the minmax
theorem, there always exists a Nash equilibrium. We call the value of a vertex u
over a vertex v the minmax equilibrium value of player x when the players start
at (u, v). A strategy is called safe for a player if its expected payoff is (weakly)
positive, and winning if its expected payoff is strictly positive.

2.1 Cycle-Based and Static Equilibria

We begin by considering cycle graphs, in which we characterize all equilibria
and identify three particular types of extremal pure equilibria. This leads us
to define the three types of equilibria we investigate in general graphs in the
following sections. We also introduce important definitions and lemmas for the
rest of the paper by studying the directed 3-path.

Fig. 1. Example graphs
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3-Cycle. In Fig. 1a the directed 3-cycle is shown: on this graph, our game
reduces to (repeated) rock-paper-scissors game, as the players are unconstrained
in which actions they can choose at each round. Therefore, there exists a unique
Nash equilibrium where both players uniformly mix over all three possible move-
ments (stay or move to one of their two neighbors).

Remark 1. Note this example highlights a fundamental difference with cops and
robber games: both players are mixing between outcomes that have strictly pos-
itive, zero, or strictly negative value for them, meaning players need to take a
chance of capturing and a risk of being captured. This cannot occur in cops
and robbers for several reasons: the moves are not simultaneous and the roles
are asymmetric (the cop cannot be captured). In simultaneous cops and rob-
bers [11], it would be a cop-win graph since the cop will eventually collide with
the robber with probability 1 regardless of starting positions.

4-Cycle. The directed 4-cycle in Fig. 1b has more equilibria. If both players
start opposite from each other, their optimal strategy is to randomize between
their two neighbors with any distribution that puts at most 1/2 probability on
their parent. Indeed, if one player moves counterclockwise to their parent with
probability strictly more than 1/2, the other player can ensure strictly positive
payoff by remaining at their current vertex; if one player puts any probability on
staying at their vertex then the other player can ensure strictly positive payoff
by moving to their child (clockwise).

If both players start at the same vertex, the optimal strategies are similar:
any mixing between their two neighbors that puts at most 1/2 probability on
their child is optimal. In both starting positions the minmax one-round expected
payoff is 0 for both players, and by induction the overall minmax expected payoff
is also 0. The set of equilibria consists of all distributions that satisfy the above
conditions, therefore the players will find themselves either at the same vertex
or at opposite vertices at every round if they start in one of these positions.
Note two particular extremal equilibria in this graph are: (i) both players are
at the same vertex and move deterministically counterclockwise to the parent
(together) and (ii) both players are opposite from each other and move deter-
ministically clockwise to their child at each round.

In a longer cycle, more strategies exist: when players are far from each other,
all actions are equivalent, whereas when the players are at distance 2 or 3 from
each other, one player will have to avoid the other (by moving in the opposite
direction). In particular, another type of on-path pure equilibrium arises when
the cycle is of length at least 6: both players can remain static at vertices that
are distance at least 3 from one another. The following definition generalizes the
three extremal equilibria we have seen in cycles so far.
Definition 3. A walking together equilibrium (WT) is an equilibrium such
that for every t ∈ N, xt = yt and xt+1 �= xt with probability 1. A k-chase
equilibrium, for k ∈ �2;+∞�, verifies xt+k = yt for all t ∈ N. A static
equilibrium is such that with probability 1, there is a t0 and vertices x∞, y∞ ∈ V
such that for every t ≥ t0, (xt, yt) = (x∞, y∞).
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Before our final example, we define an important property of certain graphs
that simplifies analysis of equilibria. In all generality, having negative payoff at
a given round could still lead to compensations later on, for instance a player
could accept one immediate round of negative payoff to ensure many rounds of
positive payoff later on. We define edges and graphs for which this does not have
an effect on winning strategies.

Definition 4. For a given value of δ, an edge u → v is called decisive if the
value of a player at u over a player at v is strictly positive. A graph G is called
edge-decisive for a given δ if all of its edges are decisive. δ will be omitted when
clear from context.

Remark 2. In an edge-decisive graph, a walking together equilibrium always
steps towards parents: ∀t, (xt+1 → xt) ∈ E. This is because when walking
together to a child, either player could make a profitable deviation by not moving.
Inversely, a 2-chase equilibrium in an edge-decisive graph always steps towards
children: ∀t, (yt → yt+1) ∈ E (otherwise the chased player can stop after having
taken an edge in the opposite direction). In particular, both types of equilibria
correspond to a directed cycle in the graph G.

3-Path. To illustrate cases where one player has an advantage over the other,
we look at the directed 3-path example illustrated in Fig. 1c, when one player lies
at T and the other at B. The one-step game is equivalent to matching pennies
(where the two sides of the pennies are ‘move’ or ‘stay’): the top player wins if
exactly one of them moves to M whereas the bottom player wins if either both
or neither of them move. However, the two outcomes where the bottom player
wins the one-shot game are not equivalent: if they both move, the continuation
payoff is 0, since both players will simply move to T in the next round. If neither
moves, the game repeats and the top player has some chance of winning again.
Similarly, if just the top player moves then they gain payoff 1 and the game
repeats (since the players have the same two actions each, the top player going
to B is dominated). If just the bottom player moves, the game ends at the
next round with both players reaching T . Regardless, the top player has strictly
positive expected payoff starting from the initial condition. The proof of the
following lemma is deferred to the full version of the paper [1, Lemma 2.5].

Lemma 1. In the 3-path illustrated in Fig. 1c, a player at T has strictly positive
payoff over a player at B.

Remark 3. Note that unlike cops and robbers, the bottom player always has
some probability of avoiding capture, by randomizing between moving to the
middle vertex and staying. This is true of any position in the graph: if a player
randomizes between all of their parents and staying at their current vertex, the
other player cannot ensure capture in one round (and ensuring capture in one
round has higher payoff than any strategy that does not, hence even in minmax
play capture is never ensured).
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3 Trees

A simple generalization of the ideas behind the case of a single path is a tree,
where we find a characterization of positions that have positive minmax value
for a player. We first define some useful notions to express our results.

Definition 5. For a tree T rooted at r and a vertex v, let Tv be the subtree
of T rooted at v. In a rooted tree, a directed edge u → v is said to be pointing
upwards if u �= r and v is on the (undirected) path from u to r – otherwise,
it is a downwards edge. A rooted directed tree is called outgoing if all of its
edges are downwards edges.

The main intuition behind the characterization is to root the tree at the
midpoint of the path between the two players’ positions. If either player can
reach an upwards edge in the tree without going through the root, they are safe
– it ensures the other player would have to go through their child to reach them.
Otherwise, the other player can reach the root and then start chasing them down
(all edges go downwards) until they reach a leaf, and Lemma 1 for Fig. 1c shows
they can obtain strictly positive payoff. Figure 2 shows the two situations where
player y has a winning strategy over player x. The proof of the following theorem
is deferred to the full version [1, Theorem 3.2].

Fig. 2. The two winning configurations for player y in a tree

Theorem 2. For a given initial position (x0, y0) in a tree, player y has strictly
positive payoff over player x if and only if,

1. The path between x and y is of even length, has the form x0 − · · · − l ←
m ← r − · · · − y0, where d(x0,m) = d(y0,m) and the subtree Tl (containing
player x) of T rooted at m has no upwards edges (left tree in Fig. 2); or

2. The path between x and y is of odd length, has the form x0 − · · · − l ← m1 ←
m2 − r − · · ·− y0, where d(x0,m1) = d(y0,m2) and the subtree Tl (containing
player x) of T rooted at m2 has no upwards edges (right tree in Fig. 2).
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4 Girth at Least 6

The first extension of our results on trees (acyclic connected graphs) are graphs
with high girth (only big cycles). We show that with strong connectivity, players
are essentially always safe from one another – unless one player is at a parent
of the other player in the initial position. The proof of the following theorem is
deferred to the full version of the paper [1, Theorem 4.1]. The intuition is that
both players are always on a long cycle, therefore they can maintain distance
from one another by moving on such a cycle away from the other player.

Theorem 3. If G is strongly connected and g ≥ 6, the minmax value of a pair
of vertices is 0 if and only if they are not neighbors. For neighboring vertices,
the player at the child of the other has payoff in the range

[
− 4(1−δ)

4−δ ;−(1 − δ)
]
.

In particular, there is a static equilibrium at any pair of vertices at distance 3
from each other, a 2-chase equilibrium for any starting vertices with a (directed)
2-path from one to the other, and a WT equilibrium starting at every vertex.

Corollary 1. In a strongly connected graph with g ≥ 6 and initial positions
(x0, y0) with no edge between them, the set of Nash equilibria is the set of
mixed strategies (ϕx, ϕy) such that at each round, x puts 0 probability on going
to a child of B1 (yt) and vice versa.

Proof. We first note such distributions always exist: if x0 = y0 then any parent
of the vertex verifies the condition, and otherwise d(x0, y0) ≥ 2 and Theorem 3
proves the existence of such a move.

If at round t player x puts non-zero probability on such a vertex v, then a
possible move of player y is to go to a parent u of v deterministically. This gives
y strictly positive expected payoff, as we showed in Theorem 3 the graph is edge-
decisive. Therefore, every Nash equilibrium has the property above. Conversely,
any pair of distributions that verifies this property is clearly a Nash equilibrium
since if a player deviates, they can never reach a parent of the other player by
definition of their strategy. ��

5 Graphs with No Unbalanced Small Cycles

For our main result, we combine the results of the two previous section on trees
and graphs with girth at least 6. We remove the strong connectivity assumption
and replace it with an analysis of the block-cut tree of the graph: biconnected
components will be analogous to the strongly connected graphs of Theorem 3
(though they are not always strongly connected), whereas cut vertices will behave
more like tree vertices seen in Theorem 2. This results in weakening the assump-
tions from the previous section in two ways: strong connectivity is no longer
required, and we replace the assumption g ≥ 6 with the assumption g ≥ 4 and
the absence of small unbalanced cycles as subgraphs of the graph. Let us begin
by defining these concepts.



Edge-Dominance Games on Graphs 251

Definition 6. An (x, y)-cut vertex of G for x, y ∈ V is a cut vertex of G such
that removing it separates x and y into two distinct connected components.

Definition 7 ([6,8]). For an undirected graph G = (V,E) define its block-cut
tree as the tree containing a vertex for each maximal biconnected component of
G, a vertex for each of its cut vertices, and an edge connecting each cut vertex to
the biconnected components it belongs to. We call the thinned block-cut tree
of G, denoted T (G), the following transformation of its block-cut tree: for each
maximal biconnected component of size 2 containing two cut vertices, remove its
vertex from the tree and add an edge between its two cut vertices; for all other
biconnected components of size 2, remove its vertex and replace it with a vertex
labeled by its non-cut vertex. A biconnected component remaining in the thinned
block-cut tree (equivalently, a biconnected component with strictly more than 2
vertices) is called a nontrivial biconnected component.

Notice each vertex in the thinned block-cut tree is labeled either by a maxi-
mal nontrivial biconnected component or a vertex of the graph, and all vertices
labeled by a vertex of the graph are either cut vertices or leaves of the block-
cut tree. The proof of the following lemma is deferred to the full version of the
paper [1, Lemma 5.3].

Lemma 2. Along any shortest undirected path between x and y, the indices con-
taining (x, y)-cut vertices are always the same, and each index always contains
the same cut vertex. Moreover, in all shortest undirected paths the indices that do
not contain (x, y)-cut vertices correspond to a vertex in the common biconnected
component of the previous and next (x, y)-cut vertices in the path.

Fig. 3. The four small unbalanced cycles, with their minimal vertex highlighted

Definition 8. Let Ck
a,b be the length k undirected cycle with a consecutive edges

in one direction and the remaining b edges in the opposite direction. We call the
small unbalanced cycles the four cycles C5

4,1, C
5
3,2, C

4
2,2 and C4

3,1, illustrated
in Fig. 3.

In the full version of the paper [1, Appendix A], we show the remaining
4-cycles and 5-cycles are not unbalanced.

We now characterize winning positions in graphs with no small unbalanced
cycles. The proof of the following theorem is deferred to the full version [1,
Theorem B.1], we offer a proof sketch here.
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Theorem 4. Suppose G satisfies g ≥ 4 and does not contain any of the small
unbalanced cycles as subgraphs (in particular, this is verified when g ≥ 6). Con-
sider the thinned block-cut tree T (G̃) of G. For a given initial position (x0, y0)
in G, player y has strictly positive payoff over player x if and only if there exists
a shortest path between x and y which is either,

1. of even length, of the form x0 − · · · − l ← m ← r − · · · − y0, where
d(x0,m) = d(y0,m), the midway vertex m is an (x, y)-cut vertex of G and
the subtree Tl (containing player x) of T (G̃) rooted at m has no nontrivial
biconnected components or upwards edges; or

2. of odd length, of the form x0 − · · · − l ← m1 ← m2 − r − · · · − y0, where
d(x0,m1) = d(y0,m2), the vertex m1 is an (x, y)-cut vertex of G and the sub-
tree Tl (containing player x) of T (G̃) rooted at m1 has no nontrivial bicon-
nected components or upwards edges.

Proof (sketch). First note that by Lemma 2 the criteria are well-defined, i.e.
they do not depend on the chosen shortest path. The main idea is to show that
both players have a safe strategy when they are both in a nontrivial biconnected
component and at distance at least 2 from one another.

Indeed, suppose player x is at distance exactly 2 from player y. For staying at
their current node or moving towards y not to be safe strategies, there must be a
directed 2-path from y to x. Moreover, x must have some other neighbor in the
biconnected component than the one between x and y: moving to this neighbor
not being safe must mean y is a parent of that neighbor or is adjacent to a
parent of that neighbor. The constructed edges so far create a 4 or 5 cycle with
some orientations fixed: one can check that no orientations for the remaining
edges avoid creating a small unbalanced cycle. The reasoning when y is outside
of the biconnected component is similar, because y can only enter the component
through a unique cut vertex.

The rest of the characterization is similar to Theorem 2, with the added
subtlety of the case where the root is part of a nontrivial biconnected component.
In these cases, we show that before reaching the midpoint, both players will enter
its biconnected component, and be distance at least 2 from one another. Since
we have shown these are both safe positions, we deduce that for a player to
have a winning strategy, the root must be a cut vertex. From there, we have
shown that nontrivial biconnected components are safe, therefore the connected
component containing the losing player must be composed of only cut vertices,
which makes it a tree. By similar reasoning to Theorem 2 once more, we show
this tree must be outdirected from the midway point. ��

We now characterize the presence of cycle-based equilibria under the assump-
tions of Theorem 4. We show the weakest necessary condition one could hope for
(under edge decisiveness, which we show holds here) is necessary and sufficient:
cycle-based equilibria exist if and only if a directed cycle is present. The proof
of the following proposition is deferred to the full version [1, Proposition 5.6].

Proposition 1. If G satisfies g ≥ 4 and does not contain any of the small unbal-
anced cycles as subgraphs, G has a WT equilibrium and a 2-chase equilibrium if
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and only if there is a directed cycle in G. In particular, G always has either a
cycle-based or a static equilibrium.

We state a necessary and sufficient condition under the previous assumptions
for there to be a static equilibrium, albeit for concision we state it in negative
form. The proof of the following proposition is deferred to the full version of the
paper [1, Proposition B.2].

Proposition 2. If G satisfies g ≥ 4 and contains no unbalanced cycles, G has
no static equilibria if and only if the following are all true,

1. G has exactly one nontrivial biconnected component B;
2. The thinned BC-tree is an outdirected tree rooted at B (all edges go down-

wards);
3. B is of diameter exactly 2 and all pairs of distance-2 vertices have a common

neighbor that is a parent of one of the two;
4. Every vertex in B has a parent.

We finally show that up to added outgoing branches, the only graph with
no static equilibria with no small unbalanced cycles and g ≥ 5 is the directed
5-cycle. The proof of the following proposition is deferred to the full version [1,
Corollary B.3].

Corollary 2. If g ≥ 5 and small unbalanced cycles are forbidden, the only
graphs with no static equilibria are composed of a directed 5-cycle with outgoing
edges from its nodes forming a directed outgoing tree rooted at the cycle. In par-
ticular, all graphs with g ≥ 5 and no small unbalanced cycles either have a static
equilibrium or both a 2-chase and a WT equilibrium.

6 Constructions with No Cycle-Based or Static Equilibria

We now argue that unbalanced cycles play an important role in the existence of
cycle-based equilibria by exposing constructions without cycle-based or static
equilibria. We show that even under strong connectivity (a much stronger
assumption than before, meaning all vertices are part of a nontrivial bicon-
nected component and of a directed cycle) and the absence of any 4-cycles,
these equilibria do not always exist. Exhibiting such counter-examples is subtle
since ensuring strong connectivity often creates many new directed cycles, which
creates opportunities for cycle-based equilibria.

We first show that a constant upper bound on δ along with a girth assumption
ensures the edge-decisiveness of a graph, which will be used in the proofs in this
section. The proof of the following proposition is deferred to the full version [1,
Proposition C.1]. The intuition is to lower bound the number of rounds necessary
for the losing player to reach a parent of the winning player, which leads to an
upper bound on the discount factor for all future positive payoffs.

Lemma 3. Let γa be the unique positive root of γa−2 + γ − 1 = 0 for a ≥ 4. If
g(G) ≥ a, then G is edge-decisive for all δ < γa.
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Fig. 4. Constructions without static or cycle-based equilibria

In particular, when g = 5, G is edge-decisive for all δ < γ5 ≈ 0.68233.
We begin with a construction (Fig. 4a) that supports no static equilibria,

whilst only containing one type of small unbalanced cycles (C5
3,2) and no cycles

of length 4. To be relevant, this construction must violate at least one item of
Proposition 2: we show it violates all of them but the last, which cannot be
violated by any such construction (a vertex with no parents always has a static
equilibrium). We note that unlike the other constructions, this construction is
not strongly connected: it can easily be made to be by removing the white
vertices while preserving its properties (except it would no longer violate item 1
of Proposition 2). The proof of the following theorem is deferred to the full
version [1, Theorem C.2].

Theorem 5. The graph in Fig. 4a has g ≥ 5, only contains C5
3,2 of the small

unbalanced cycles and has no static equilibria for every δ ∈ ]0; 1[. Moreover, it
violates every condition of Proposition 2 except for item 4 (which clearly is a
necessary condition).

We now show a construction (Fig. 4b) that supports no WT equilibria for all
δ < γ5 (in this case the construction is edge-decisive). This construction is more
involved as it contains many directed cycles and deviations take more rounds to
be profitable. Intuitively, it supports no WT equilibria because it has a central
vertex (vertex 1 in the figure) that has many parents. No matter which parent
the WT equilibrium prescribes to go to, there is always a parent to which a
deviator can profitably deviate. We then show that every directed cycle that
does not go through 1 verifies a similar property with vertex 2. The proof of the
following theorem is deferred to the full version [1, Theorem C.3].

Theorem 6. The graph in Fig. 4b is strongly connected, satisfies g ≥ 5, and has
no WT equilibria for every δ < γ5 ≈ 0.68233.
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We conclude this section with a construction (Fig. 4c) that supports no 2-
chase equilibria. It is based on two C5

4,1 cycles offering profitable deviations in
all directed cycles, at vertices 6 and 3. The proof of the following theorem is
deferred to the full version of this paper [1, Theorem 6.4].

Theorem 7. The graph in Fig. 4c is strongly connected, satisfies g ≥ 5, only
contains C5

4,1 of the small unbalanced cycles and has no 2-chase equilibria for
every δ < γ5 ≈ 0.68233.

Observe that the graphs in Figs. 4b and 4c are nonplanar by Kuratowski’s
theorem [12]: Fig. 4b contains a subdivision of K3,3 (the complete bipartite graph
with 3 vertices on each side) with the vertices 1, 2, 4 and 3, 6, 8 on the two sides
of K3,3; Fig. 4c contains a subdivision of K3,3 with the vertices 1, 4, 7 and 3, 6, 9
on the two sides of K3,3.

7 Outerplanar Graphs

Say that G is outerplanar if it is planar and all of its vertices are part of the
unbounded face of G. In this section we prove that all strongly connected out-
erplanar graphs with g ≥ 4 have both a WT and a 2-chase equilibria. We note
that they do not necessarily have static equilibria, for example the 4-cycle. The
proof is deferred to the full version [1, Lemma 7.1, Theorem 7.2].

Suppose that G is outerplanar and strongly connected. Fix some outerplanar
embedding of G. As a planar graph, G consists of bounded faces C1, . . . , Ck

(which we also call minimal (undirected) cycles). These cycles are minimal in
the sense that each Ci bounds exactly one face.

We now prove that G contains a well-directed minimal cycle. The proof of this
property works for any planar graph. The idea is to start from some well-directed
cycle, and carve out parts of it, while keeping the cycle at hand well-directed,
until reaching a well-directed face.

Lemma 4. All strongly connected planar graphs have a well-directed face.

To prove the existence result, we pick a well-directed minimal cycle C that
corresponds to a well-directed face, which exists by Lemma 4, and we define
both the WT and 2-chase strategies of the players on C.

Theorem 8. If G is outerplanar and strongly connected then it supports both a
WT and a 2-chase equilibria.

In light of this result and given the constructions of Sect. 6, we conjecture
the following,

Conjecture 1. All strongly connected planar graphs with g ≥ 4 have either a
static, a 2-chase or a walking together equilibrium.
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8 Computing Equilibria

For every pair of vertices, the value of minmax play when the players are situated
at these vertices must verify a system of Bellman equations:

Vx(u, v) = max
sx∈Δ(B1(u))

min
sy∈Δ(B1(v))

E(u′,v′)∼sx×sy
[(1 − δ)rx(u′, v′) + δVx(u′, v′)] ,

(2)
where we define rx(u, v) = 1(u,v)∈E −1(u,v)∈Ê . This can be computed using value
iteration [16], thus leading to efficient computation of optimal player strategies.
Once Vx is computed for all pairs of vertices, all mixed equilibria can be deduced
by computing the set of all minmaxes satisfying Eq. (2) for each state.

We now show that the same can be said of pure equilibria, using Algorithm 1.
Recall the strong product graph G̃�G̃ is defined as the graph with vertices V 2

and edges E′ such that ((u, v), (u′, v′)) ∈ E′ if and only if u = v and (u′, v′) ∈ G̃
or (u, v) ∈ G̃ and u′ = v′ or (u, v) ∈ G̃ and (u′, v′) ∈ G̃.

Algorithm 1. Algorithm computing pure equilibria
Require: The strong product graph G̃ � G̃.
Ensure: A subgraph F∞ of G̃ � G̃ indicating possible states in a pure equilibrium.
Ensure: A labeling � : V 2 → V for each state of possible moves.

t ← 0
�(u, v) ← B1 (u) for (u, v) ∈ V 2

F0 ← Ê
while Ft �= Ft−1 do

Ft+1 ← Ft

for (u, v) ∈ V 2 \ Ft+1 do
for u′ ∈ �(u, v) do

if ∃v′ ∈ B1 (v) | (u′, v′) ∈ Ft then
�(u, v) ← �(u, v) \ {u′}

end if
end for
if �(u, v) = ∅ then

Ft+1 ← Ft+1 ∪ {(u, v)}
end if

end for
t ← t + 1

end while
return F∞ = Ft−1 ∪ {(v, u) | (u, v) ∈ Ft−1}

Algorithm 1 computes a subgraph F∞ of the strong product graph G̃ � G̃,
and pure equilibria are exactly the trajectories in the complementary of F∞.1
The proof of the following proposition is deferred to the full version [1, Propo-
sition 8.1].
1 A trajectory is a list of pairwise distinct nodes except for the last node. It is a path

that ends with a cycle.
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Proposition 3. Pure Nash equilibria all have payoff 0 at every round after the
initial condition, and can be computed using Algorithm 1.
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Abstract. The seminal result of Nash in game theory states that any
normal-form game has a Nash equilibrium if each player can random-
ize their strategy. The assumption that players can randomize arbitrar-
ily is non-trivial, as true randomness might be scarce or costly and
humans are known to have difficulty generating truly random sequences.
In a repeated game, the assumption that players are unconstrained in
their capability to randomize their strategies is particularly strong if the
amount of random bits required to play the repeated game scales linearly
with the number of repetitions.

We identify conditions on a normal-form game under which, if play-
ers have a limited capability to randomize, certain Nash equilibria of
its finitely repeated version cannot be played. We provide a complete
characterization of normal-form games for which there exists Nash equi-
libria of its finitely repeated version using O(1) randomness, closing an
open question posed by Budinich and Fortnow [3] (EC ’11) and Hubáček,
Naor and Ullman [8] (SAGT ’15, TCSys ’16). Moreover, we prove a 0–1
law for randomness in repeated games, showing that any repeated game
either has O(1)-randomness Nash equilibria, or all of its Nash equilib-
ria require Ω(n) randomness. Our techniques are general and naturally
characterize the payoff space of sublinear-entropy equilibria, and could
be of independent interest to the study of players with other bounded
capabilities in repeated games.

Keywords: Randomness · Repeated games · Bounded entropy

1 Introduction

Randomization is a fundamental concept in computer science, and the necessity
of randomness is an important question in several areas of the field (for instance,
P ?= BPP). The seminal result of Nash in game theory states that any normal-
form game has a Nash equilibrium if each player can randomize their strategy.
As noted in previous work [3,7,8], the assumption that players can random-
ize arbitrarily is non-trivial, as true randomness might be scarce or costly and
humans are known to have difficulty generating truly random sequences.

Some Nash equilibria of a repeated game require large amounts of entropy
from the players to execute. For instance, a straightforward Nash equilibrium
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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of any repeated game is to repeat a Nash equilibrium of the stage game at each
round, irrespective of the outcomes of previous rounds. When the chosen Nash
equilibrium of the stage game requires a player to randomize, this equilibrium
requires this player to use an amount of entropy that grows linearly with the
number of repetitions. However, not all equilibria of the repeated game are of
this form: in some cases, the repeated game has equilibria in which all players
use only constant randomness. From here, several natural questions arise,

Question 1. When do there exist Nash equilibria of the repeated game in which
all players use sublinear entropy?

Question 2. When do all equilibria of the repeated game require all players to
use linear entropy?

Question 3. What are the answers to the two previous questions when only
restricting the entropy used by a subset of the players?

Question 4. How does restricting randomization affect the payoffs of the Nash
equilibria of the repeated game?

Budinich and Fortnow [3] first studied the question of equilibria with bounded
randomness in repeated games in the case of the two-player matching pennies
game. They find that each player needs n independent random bits to play any
equilibrium of the repeated game, where n is the number of repetitions. This
further motivates Questions 1 and 2 above: it shows that matching pennies fits
in the case specified by Question 2 and shows there are simple games where the
answer to Question 1 is negative.

Hubáček, Naor and Ullman [8] further extend this study to general repeated
games with any number of players. They identify a sufficient condition on the
stage game for there to exist an equilibrium of the repeated game requiring O(1)
entropy for all players, therefore providing a sufficient condition for Question 1.
They also identify a sufficient condition under which all Nash equilibria of the
repeated game require Ω(n) entropy for each player, therefore providing a suffi-
cient condition for Question 2. This latter condition is satisfied by all two-player
zero-sum games where all Nash equilibria require all players to randomize, in
particular the matching pennies game.

These results show that there are at least two regimes for the required entropy
to play a Nash equilibrium of a repeated game (constant or linear). Moreover,
both Budinich and Fortnow [3] and Hubáček, Naor and Ullman [8] posed the
open question of whether a characterization of games satisfying Question 1 can
be found.

1.1 Our Results

We close an open question posed by Budinich and Fortnow [3] and Hubáček,
Naor and Ullman [8] by completely characterizing normal-form games for which
there are Nash equilibria of the repeated game in which all players use O(1)
randomness as a function of the number of repetitions (Theorem 6).
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As an important consequence of our proof of this characterization, we show
that when O(1) randomness is not sufficient, then in all equilibria at least one
player uses Ω(n) entropy. As such, the existence of sublinear-randomness Nash
equilibria of a repeated game implies the existence of O(1)-randomness Nash
equilibria, meaning that Question 1 and its analog for constant-randomness
equilibria always have the same answer. The only previously known result on
sublinear-entropy Nash equilibria in general repeated games assumes that one-
way functions do not exist and that players are computationally bounded [8].

This closes Question 1 above. While precise statements require more defini-
tions, we informally summarize the stated results so far.

Theorem 1 (Informal version of Theorem 6). For a normal-form game
G, there are constant-randomness Nash equilibria (or equivalently, sublinear-
randomness Nash equilibria) of its repeated games if and only if there exists
a subset S′ of the pure strategy profiles of G and a convex combination γs for
s ∈ S′ such that,

1. the payoff vector
∑

s∈S′ γsu(s) is at least the pure-strategy minmax of each
player;

2. and for each player j ∈ A, either
(a) j is best responding in every strategy profile in S′;
(b) or j can be punished by a finite number of repetitions of G.

We also close Question 1 in the case of repeated games with observable
distributions (Theorem 5), a setting in which the distribution chosen by each
player to randomize their actions is revealed after reach round (Definition 9).
Regarding Question 3, for any subset B of the players, we provide a sufficient
condition and a necessary condition for there to exist a Nash equilibrium of the
repeated game in which all players in B use O(1) entropy (Theorem 7). Another
consequence of our results is that they naturally characterize the set of payoffs to
which the average payoff of a sublinear-entropy Nash equilibrium can converge,
closing Question 4.

Two-Player Games. For two-player games, our characterization of Question 1
(Theorem 3) only requires testing the feasibility of a polynomial-size linear pro-
gram over the stage game G and testing for the existence of a Nash equilibrium
of G satisfying certain linear inequalities. This means the condition is decidable
and is even in NP (this is also true for the observable distributions case with any
number of players mentioned above).

Theorem 2 (Informal version of Theorem 3). For a two-player game G,
there are constant-randomness Nash equilibria of G’s repeated game (or equiva-
lently, sublinear-randomness Nash equilibria) if and only if G has a pure Nash
equilibrium or there exists a convex combination γs over pure strategy profiles s
of G such that,

1. the payoff vector
∑

s γsu(s) is at least the pure-strategy minmax of each
player;
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2. and G has a Nash equilibrium that is strictly better than the minmax of one
of the players.

Still in the case of two-player games, we also close Questions 2, 3 and 4: we
provide a complete characterization of two-player games in which both players
each require Ω(n) entropy to play any equilibrium (Theorem 4), a complete char-
acterization of two-player games in which one player only needs sublinear entropy
(in the full version [1, Theorem D.2]) and a characterization of asymptotically
achievable payoffs (Corollary 2). All of these conditions are in NP.

Note above that Budinich and Fortnow [3] deal with random bits whereas
Hubáček, Naor and Ullman [8] bound entropy. We work with entropy (Defini-
tion 5) as in Hubáček, Naor and Ullman [8]. In Subsect. 2.1 we introduce a
computational model that precisely relates the expected random bits used by
an algorithm implementing a player’s strategy and the entropy as defined by
Hubáček, Naor and Ullman [8]. A difference between Hubáček, Naor and Ull-
man [8] and our results is the distinction between effective entropy and total
entropy of an equilibrium, which is explained in Subsect. 1.3. We extend our
main result to effective entropy in the full version of the paper [1, Theorem F.4].

Roadmap. The remainder of this section contains an overview of our techniques
and further related work. Section 2 contains the main definitions and introduces
our computational model under which the entropy characterization relates to
exact play of equilibria using balanced random bits. Section 3 contains proofs
of the main technical tools we use throughout the paper, both for sufficient
and necessary conditions. We progressively build up towards the most general
case by presenting our results on sublinear-entropy Nash equilibria of repeated
games in Sect. 4 for two-player games, Sect. 5 for m-player games with observable
distributions, and Sect. 6 for general m-player games.

1.2 Our Techniques: Playing with Sublinear Randomness

Our starting point is the following sufficient condition, which we then weaken
into a necessary (and sufficient) condition.

Proposition 1 (Informal version of Proposition 5). If there exists a con-
vex combination (γs)s∈S over pure strategies s of G such that the payoff vector∑

s γsu(s) is at least the pure-strategy minmax of each player, and every player
either is best responding in every strategy s where γs > 0 or has a Nash equilib-
rium that has a payoff strictly better than their minmax value, then there exists
O(1)-entropy Nash equilibria of G’s repeated game.

Note this proposition generalizes [8, Theorem 2] in two ways: (i) it does not
require all players to have a strictly individually rational NE and (ii) it does not
require the coefficients γs to be rationals. When γs ∈ Q for all s (as assumed
by Hubáček, Naor and Ullman [8]), a construction similar to the one from folk
theorems such as Benoît and Krishna [2] is possible. These constructions fail
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otherwise, which requires us to construct a different type of equilibria, we explain
this distinction in more detail in Sect. 3.

We use two main tools to weaken this statement into a necessary condition.
The first shows that the last assumption in the proposition above (that each
player has a Nash equilibrium strictly better than their minmax) must be true,
not of all players, but only of at least one player.

Proposition 2 (Informal version of Proposition 6). Assume G does not
have a pure Nash equilibrium, and has Nash equilibria of its repeated game
using o(n) entropy. Then G has a Nash equilibrium in which at least one player’s
payoff is strictly greater than their minmax.

The proof uses the compactness of Nash equilibria of G to find a round where a
player is not best responding. For this player to not be incentivized to devi-
ate to a better response at that round, there must be a future round that
rewards/punishes that player depending on whether they deviate or not. By
taking the latest such round, we show it must be a Nash equilibrium that is
strictly better than that player’s minmax.

Let vi be the pure-strategy minmax of player i, i.e. the worst punishment that
can be imposed on player i without randomizing (see Definition 1). The second
tool to weaken the above Proposition 1 is a lemma that bounds the long-term
punishments that can be imposed on a player for deviating (see Definition 8 for
a formal definition), when all players are bounded in their entropy.

Lemma 1 (Informal version of Lemma 5). For any small enough ε > 0 and
any n-round punishment of player i in which all players use at most O(f(n))
entropy, the average payoff of player i is at least vi − O

(
f(n)
εn

)
− O(ε).

This is important because it means that in a low-entropy equilibrium, the on-
path payoffs must converge to a value higher than the pure minmax of each
player. This ties back to our sufficient conditions, where the only payoff profiles
we were able to approximate were those that were better than each player’s pure
minmax. The idea behind the proof is that rounds in the punishment either use a
low amount of entropy or a high amount of entropy: low-entropy rounds cannot
have payoffs too far off from the pure minmax, whereas there cannot be too
many high-entropy rounds.

This bound allows us to prove the following lemma, which shows that the
average payoff of any sublinear-entropy equilibrium must be at least the pure-
strategy minmax. Intuitively, if the worst punishment possible approximately
imposes the payoff vi on player i, then their average payoff on-path must be at
least vi in the long run, otherwise player i could gain a linear advantage from
deviating as the punishment would be better than on-path payoffs.

Lemma 2 (Informal version of Lemma 6). If G has Nash equilibria of its
repeated game using o(n) randomness, then there exists a convex combination γs

over pure strategies s of G such that the payoff vector
∑

s γsu(s) is at least the
pure minmax of each player.
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Note that this recovers the first assumption made in Proposition 1 above, by
showing it is true as soon as there are sublinear-entropy Nash equilibria. In
the two-player case, we show in Theorem 3 that this condition and the one in
Proposition 2 are together sufficient.

The proofs for repeated games with observable distributions (Sect. 5) and for
general repeated games (Sect. 6) rely on similar ideas, but require stronger tools
to identify punishments in the necessary condition. In particular, Proposition 2
is no longer sufficient on its own, and the proofs of Theorems 5 and 6 must
instead produce strategy profiles where a subset of players are best responding
and a particular player’s payoff is strictly better than their minmax. This results
in an ordering of the players in their rewards/punishments: after a player has
been punished, they must not have any other opportunities for deviation during
the punishment of other players.

1.3 Further Related Work

There is one difference between the setting in which Hubáček, Naor and Ull-
man [8]’s results hold and our setting, namely the definition used for entropy
of an equilibrium. The sufficient condition for O(1) randomness equilibria in [8,
Theorem 2] bounds effective entropy rather than total entropy: instead of mea-
suring the amount of entropy along any path of the game, they only measure
entropy along paths which are sampled with non-zero probability under equilib-
rium play (see Definition 5 for formal definitions). Effective entropy could model
a situation in which linear entropy is costly yet achievable (players agree that
they could hurt each other using linear entropy so they won’t deviate), but it
does not model situations where players are unable to produce linear amounts of
entropy. Our sufficient conditions are therefore stronger in this regard, as bound-
ing total entropy implies the same bound for effective entropy, and Proposition 3
does so under similar assumptions to [8, Theorem 2]. Our techniques are suffi-
ciently general that our characterizations extend to the case of effective entropy
naturally: the full version of the paper [1, Appendix F.2] contains an analog of
our most general result for effective entropy.

Costly Randomness. Halpern and Pass [7] consider adding a cost of compu-
tation to games in a setting where players are modeled by Turing machines.
They show that Nash equilibria do not necessarily exist when players pay a cost
for randomness, but that whenever randomness is free (but computation can be
costly) Nash equilibria always exist.

Off-Equilibrium Play with Bounded Randomness. There is a line of
research on the maxmin payoff in repeated games where Ω(n) entropy is needed
but only sublinear entropy is available to one player, and specifically in two-
player zero-sum games. Budinich and Fortnow [3] had already shown that in
repeated matching pennies, if one player’s strategy uses (1 − δ)n random bits
there exists a deterministic strategy resulting in a payoff of δn against them. This
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results in an exact characterization of approximate Nash equilibria and required
randomness to play them in matching pennies. Both of these results were later
shown [8] to be consequences of Neyman and Okada [12]’s results, which char-
acterize the maxmin payoff of a player with bounded entropy in a repeated two-
player zero-sum game (against an opponent with access to unbounded entropy).
Gossner and Vieille [6] in turn generalize this result by assuming that the
player with bounded entropy only has access to realizations of random variables
Xt ∼ L(X) of entropy h = H(L(X)) at each round t, whose arbitrary distribu-
tion L(X) is also publicly known. Follow-up work by Valizadeh and Gohari [13]
further extends this work to a setting where the source of entropy X can also be
leaked to the adversary, and study the non-asymptotic behavior of the maxmin
value [14]. Kalyanaraman and Umans [9] undertake this problem with a learning
flavor: in two-player zero-sum games with payoffs in {0, 1}, they provide an algo-
rithm using O(log log n+ log(1/ε)) random bits (with high probability) yielding
a O (1/

√
n + ε) additive regret term against an adaptive adversary. All of this

work differs from our results in that it characterizes off-equilibrium outcomes in
games where players are bounded by their randomness, whereas we characterize
the amount of randomness players require to play equilibria.

Computational Nash Equilibria with Bounded Randomness. Both
Budinich and Fortnow [3] and Hubáček, Naor and Ullman [8] also study compu-
tational Nash equilibria in repeated games, the former for matching pennies and
the latter in two-player zero-sum games. A computational Nash equilibrium is
an approximate Nash equilibrium that can be implemented using polynomial-
size circuits. Hubáček, Naor and Ullman [8] show that if one-way functions do not
exist, then there are no computational Nash equilibria using sublinear entropy
in two-player zero-sum games with no weakly dominant pure strategies (recall
that they show there are no constant-entropy equilibria in the computationally
unbounded case).

2 Preliminaries

Let G be a normal-form game, with a set A = �1;m� of m ≥ 2 players, and denote
Si the set of strategies of player i and S = S1×· · ·×Sm the entire strategy space.
We assume that |Si| ∈ N∗ \{1} for all i. σ denotes a (potentially mixed) strategy
profile (σ1, . . . , σm), where σi is the distribution with which player i samples over
Si. When referring to a strategy profile σn that already has a subscript, we denote
(σn)i the strategy profile of player i in σn. When strategies are known to be pure
(i.e. the actions are deterministic) we use the letter s ∈ S. σ−i designates the
strategy profile of all players except player i in σ, i.e. (σ1, . . . , σi−1, σi+1, . . . , σm).
The utility of player i is ui : S → [0; 1] (we assume all payoffs are normalized
without loss of generality). This is then extended to mixed strategies in the
natural way, ui(σ) =

∑
s∈S

(∏m
j=1 σj(s)

)
ui(s). We write ui(σj , σ−j) = ui(σ),

and u(s) = (u1(s), . . . , um(s)).
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Definition 1. The minmax of player i is the best payoff player i can ensure
under any play by the other players,

ṽi = min
σ−i

max
σi

ui(σ) = min
σ−i

max
si∈Si

ui(si, σ−i). (1)

The pure minmax is the best payoff player i can ensure assuming other players
only play pure strategies,

vi = min
s−i∈

∏
j �=i Sj

max
σi

ui(σi, s−i) = min
s−i∈

∏
j �=i Sj

max
si∈Si

ui(s). (2)

Note the pure minmax of a player is always larger than their minmax.

Definition 2. The set of feasible payoff profiles (or feasible payoffs) is the
convex hull of {(u1(s), . . . , um(s)), s ∈ S} ⊂ [0; 1]m. We say that a particular
feasible payoff profile p is supported by strategies (s1, . . . , sr) ∈ Sr and coeffi-
cients (γ1, . . . , γr) ∈ (

R∗
+

)r if
∑r

k=1 γku(sk) = p and
∑r

k=1 γk = 1. We will also
say that p is supportable by {s1, . . . , sr} ⊆ S in this case.

A payoff being feasible does not necessarily imply there exists a mixed strategy
σ achieving it, since mixed strategies only span product distributions. Note the
difference with [8, Definition 4]’s definition of feasible payoff profiles, where they
only consider convex combinations with coefficients in Q.

Definition 3. A feasible payoff profile is called Q-feasible if it is supported by
strategies and coefficients such that γk ∈ Q for all k (when such an assumption
is not made, we sometimes refer to the payoff profile as R-feasible).

A payoff profile p is individually rational for player i if its payoff is
larger than its minmax, pi ≥ ṽi, and individually rational if p ≥ ṽ. Strictly
individually rational means p > ṽ.

p is purely individually rational for player i if its payoff is larger than
its pure minmax, pi ≥ vi (and the previous variants extend).

The extensive-form game where G is repeated n ∈ N∗ times is denoted Gn

and is called the n-repeated game of G, and G is called the stage game of
Gn. A history of play during the first k ∈ �1;n−1� rounds is a k-tuple h ∈ Sk.
When h ∈ Sn−1 is a history of play for all first n − 1 rounds, subscripts denote
its truncation to its first elements: hk is the history of play for the first k rounds
of h. A strategy profile for Gn is a mapping from histories of play to mixed
strategy profiles of the stage game G for all players. They are also denoted by
the symbol σ, and σ(hk) refers to the strategy profile of G played at round k+1
if the history of play is hk in the first k rounds. The symbol ∅ denotes the empty
history, and σ(∅) is therefore the strategy profile played at the first round in σ.
The concatenation of two histories h and h′ is denoted h · h′.

Definition 4. For a given strategy profile σ of a repeated game, we call the on-
path tree T (σ) the tree of all histories that are sampled with non-zero probability
by σ: its root is ∅ and the children of some history h ∈ Sk are the h · s ∈ Sk+1

such that s is played with non-zero probability in σ(h). We denote H(σ) the set
of leaves of T (σ), and Pσ(h) the probability of history h ∈ Sk when all players
play according to σ.
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Recall that for a discrete distribution p over a set S, its Shannon base-2
entropy is defined as H(p) = −∑

s∈S p(s) log2(p(s)).

Definition 5 ([8, Definition 10]). For a given strategy σ of the repeated game
Gn, we define its entropy (or total entropy) for player i as,

Hi(σ) = Hi(σi) = max
h∈Sn−1

[

H(σi(∅)) +
n−1∑

k=1

H(σi(hk))

]

.

Its effective entropy only considers histories that happen with non-zero prob-
ability during play,

Heff
i (σ) = max

h∈H(σ)

[

H(σi(∅)) +
n−1∑

k=1

H(σi(hk))

]

.

Definition 6. The amount of randomness or amount of entropy of an
equilibrium σ of a repeated game is

∑m
i=1 Hi(σ).

2.1 Computational Model

There are three immediate issues when the framework above is applied to com-
putationally bounded players (such as Turing-equivalent players):

(i) All Nash equilibria of the stage game G can have irrational coefficients in
all generality (even when payoff matrices have coefficients in Q) and cannot
immediately be efficiently represented;1

(ii) As a second consequence, it is not clear that sampling from a player’s dis-
tribution for such an equilibrium can be done exactly (non-exact play could
be exploited by other players) and;

(iii) Rather than sampling from one distribution with entropy Heff
i (σ), a player

might be sampling many times from conditionally independent very low-
entropy distributions (at each round), which naïvely requires a much larger
number of expected bits (because of overhead and uncertainty on what
distributions it will have to sample from in the future).

We therefore have to specify a computational model that addresses all of these
issues. To represent Nash equilibria or more generally any mixed strategy profile,
we assume that players have access to an oracle that can specify the probabilities
of their strategy up to any finite precision at each round. A particular case of
this model could be that agents have all approximately computed the strategy
profile themselves, and are able to compute approximations of the distributions
up to any precision efficiently.2

1 However, since the set of NEs is a semialgebraic variety, the Tarski-Seidenberg
principle ensures the existence of an efficiently representable NE satisfying any linear
conditions provided there exists such a Nash equilibrium [11, Theorem 1].

2 As per the previous footnote, if all played Nash equilibria (and strategy profiles) are
algebraic this would simply mean computing approximations to exactly-represented
numbers.
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For point (ii), to sample from a Nash equilibrium represented in this way,
the players can use inversion sampling and request the oracle for more bits as
required. The full version of the paper [1, Appendix B] contains an inversion
sampling algorithm for this oracle model, and shows it requires a finite number
of bits in expectation (with a geometrically-decaying tail), a finite number of
requests to the oracle in expectation, and produces an exact sample.

Regarding point (iii), throughout the paper we will ensure that whenever
there exists an equilibrium of a repeated game using O(1) entropy, it will also
use mixing in O(1) rounds along each path. This ensures that it can be played
with a constant expected amount of random bits using the inversion sampling
algorithm from point (ii) at each round. Note that without this condition, using
inversion sampling could require Ω(n) expected random bits to play some O(1)-
entropy equilibria of the repeated game due to overhead.

Definition 7. Analogously to the definition of entropy of a repeated Nash equi-
librium H(σ), we define its worst-case expected random bits3 for player i,

Bitsi(σ) = max
h∈Sn−1

min
N

E(N(σi(∅), σi(h1), . . . , σi(hn))),

where N spans over the number of expected bits used by algorithms terminating
with probability 1 and producing an exact sample of the distribution.

Theorem 2.2 of Knuth and Yao [10] and its corollary yield that Hi(σ) ≤
Bitsi(σ) < Hi(σ) + 2. This completes our computational model as it means that
Nash equilibria of the repeated game requiring Ω(n) entropy on their worst-case
path will also induce an algorithm using Ω(n) bits in expectation at least along
their worst-case path.

3 Playing with Sublinear Randomness

3.1 Tools for Sufficient Conditions

This first proposition shows how a constant-entropy equilibrium can be built
under conditions similar to folk theorems, when the payoff profile is Q-feasible.
As the punishment phase is the only place where randomness is used, the built
equilibrium uses constant entropy for all players. In the interest of space, the
proof is deferred to the full version of the paper [1, Proposition C.1].

Proposition 3. If G has a Q-feasible payoff profile p that is purely individu-
ally rational for all players and every player has a Nash equilibrium that is
strictly individually rational for them, then there exists a Nash equilibrium of
the repeated game requiring O(1) entropy.
3 Note that this concept is distinct from the expected random bits conditioned on

a worst-case path being taken for several reasons: (i) it could be ill-defined, as the
worst-case path for player i could involve deviations by player i and (ii) the definitions
of total and effective entropy do not condition on the path being taken, and would
be very different if they did.
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Fig. 1. Possible approximation schemes for a payoff profile consisting of three strate-
gies s1, s2 and s3

The construction is illustrated in Fig. 1 (a): a cycle is repeated, in which each
strategy is played proportionally to its weight in the payoff profile (which is
possible as it is Q-feasible). This is followed by a punishment/reward phase,
constructed similarly to folk theorems using the strictly individually rational
Nash equilibrium of each player.

Now, if the payoff profile is R-feasible instead of Q-feasible, such an approx-
imation scheme can no longer be used: the fixed sequence being repeated can
only approximate Q-feasible payoff profiles. The equilibrium from Proposition 3
is illustrated in Fig. 1 in line (a); a possible adaptation to R-feasible payoff
profiles is illustrated in line (b): by using finer and finer approximations of the
coefficients of the R-feasible payoff profile and concatenating them as previously,
one obtains a first phase that approximates the payoff profile arbitrarily well.
However, an important property is lost: if s3 in Fig. 1 is strictly worse than a
particular player’s pure minmax, that player could profit a lot by deviating in
the last (and finest) approximation (since they will avoid many rounds of s3).
As the approximations grow in length arbitrarily, the reward/punishment phase
would need to be arbitrarily long to avoid these types of deviations and the
equilibrium would no longer be O(1)-entropy.

To remedy this, we show the following lemma which constructs an approxima-
tion phase without any fixed repetitions of cycles. The construction, illustrated
in line (c) of Fig. 1, starts from the end, and ensures that any suffix of the first
phase is not too far from the pure minmax of each player: this prevents any player
from having a profitable deviation (beyond a constant profit, compensated by
the punishment phase).

Lemma 3. If p is a R-feasible payoff profile of G, then for all n ∈ N∗ there
exists a series of strategy profiles (s1, . . . , sn) such that for all k ∈ �1;n�, the
average payoff of each player i over the last k rounds is at least pi − |S| /k.

Proof. The following lemma is shown in the full version [1, Lemma A.3].

Lemma 4. For any vector (x1, . . . , xr) ∈ (
R∗

+

)r such that
∑r

i=1 xi = 1, there
exists a sequence (ak)k∈N such that ak ∈ Nr and

∑r
j=1 ak,j = k and ak+1 ≥ ak

and ak,j ≥ �kxj� for all k ∈ N and j ∈ �1; r�.

Let
∑r

j=1 xju(yj) = p be a support for p, where yj ∈ S for all j. Build the series
of integer vectors (ak)k∈N according to the construction of Lemma 4. For a fixed
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n ∈ N∗, define for k ∈ �1;n� the series of strategies sk = yj where j is such that
1j = an−k+1 − an−k.

The strategies played in the last k rounds are sn−k+1, . . . , sn. The number
of times each of the strategies y1, . . . , yr appear in these rounds is the vector,

(ak − ak−1) + (ak−1 − ak−2) + · · · + (a1 − a0) = ak.

Therefore, the average payoff for the last k rounds is the matrix product,

ak

k
·

⎛

⎜
⎝

u(y1)
...

u(yr)

⎞

⎟
⎠ ≥ �kx�

k
·

⎛

⎜
⎝

u(y1)
...

u(yr)

⎞

⎟
⎠ ≥ kx − 1

k
·

⎛

⎜
⎝

u(y1)
...

u(yr)

⎞

⎟
⎠ ≥ p − r

k
1. �

We now use this result to extend Proposition 3 to R-feasible payoff profiles.

Proposition 4. If G has an R-feasible payoff profile p that is purely individ-
ually rational for all players and every player has a Nash equilibrium that is
strictly individually rational for them, then there exists a Nash equilibrium of
the repeated game requiring O(1) entropy.

Proof. The equilibrium used follows the same structure as the one from Propo-
sition 3, except the first phase is replaced by the series from Lemma 3. The
second phase consists of

⌈
|S|+1

δi

⌉
repetitions of each player’s strictly individually

rational NE σi, similarly to Proposition 3. The total entropy is still constant
independently from the length of the first phase.

It is left to show that it is indeed a Nash equilibrium. We claim that any
player deviating during the first phase can gain at most |S| in expected payoff
compared to their pure minmax over the entire first phase of play. Indeed, if
player l deviates k rounds before the end of the first phase, their maximum
benefit over the rest of the phase is kvl − k (pl − |S| /k) ≤ |S| by Lemma 3.
Adding to this the benefit from deviating at the round where they deviate, their
benefit is indeed upper bounded by |S| + 1. Following the same proof as in
Proposition 3, it follows that the second phase contains sufficient incentives to
compensate this benefit, and therefore this is indeed a Nash equilibrium. �

We finally weaken the assumption that each player can be punished with a
Nash equilibrium, remarking that some players may not need to be punished.
The proof is deferred to the full version of the paper [1, Proposition C.4].

Proposition 5. If G has an R-feasible purely individually rational payoff profile
p supported by a convex combination of strategy profiles

∑r
k=1 γksk such that for

each player i, either they have a strictly individually rational Nash equilibrium
σi or they are best responding in all of the sk, then the repeated games Gn have
Nash equilibria requiring O(1) entropy.
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3.2 Tools for Necessary Conditions

We now prove a first necessary condition, showing there must exist a strictly
individually rational Nash equilibrium for at least one player as soon as there are
Nash equilibria of the repeated game using sublinear entropy. This proposition
is similar to the contraposition of [8, Theorem 1], with the two differences that
it only requires no pure Nash equilibria rather than all Nash equilibria being
mixed for all players, and it requires o(n) randomness for all players rather than
for at least one player. Our proof technique is different from theirs, and is reused
in various necessary conditions throughout the paper. The intuition is to find a
round where a player is not best responding on-path: at this round, the player
must be incentivized not to deviate to a better response. We prove the only way
this can happen is when a strictly individually rational Nash equilibrium exists
for that player (and is played in a future round). The proof is deferred to the
full version of the paper [1, Proposition C.5].

Proposition 6. Assume G does not have a pure Nash equilibrium, and has
Nash equilibria of its repeated game using o(n) entropy. Then G has a Nash
equilibrium that is strictly individually rational for at least one player.

Our second necessary condition concerns the existence a purely individually
rational payoff profile. We begin by defining punishments.

Definition 8. An n-round punishment σ of player i in G is a strategy profile
of the repeated game Gn such that player i cannot benefit from deviating to any
other σ′

i, i.e. ∀σ′
i, ui(σ) ≥ ui(σ′

i, σ−i).

The first step is to show a lower bound on the worst punishment that can be
inflicted on a player with limited entropy. This is important because it means
that in a low-entropy equilibrium, the on-path payoffs must converge to a value
higher than this lower bound – otherwise, a player could deviate at the beginning
of the game, and the low-entropy punishment would be higher than the on-path
payoff! This ties back to our sufficient conditions, where the only approximable
payoff profiles were those that were purely individually rational.

Lemma 5. For any ε ∈]0; 1 − 1/e] and any n-round punishment of player i
using at most O(f(n)) entropy the average payoff of player i is at least

vi − O

(
f(n)
εn

)

− O(ε). (3)

The proof is deferred to the full version of the paper [1, Lemma C.7]. The main
idea of the proof is to divide rounds (or rather, nodes of the game tree) into
high-entropy rounds and low-entropy rounds. The high-entropy rounds can have
any feasible payoff, therefore payoff arbitrarily close to the minmax of the player
being punished. However, the low-entropy rounds must have a payoff somewhat
close to the pure minmax of the punished player. Since the entropy of the entire
tree is bounded, the number of high-entropy rounds is also limited, yielding the
desired lower bound on payoffs.
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We finally use this lower bound to deduce that the average play on-path must
converge to a purely individually rational payoff profile. The proof is deferred to
the full version of the paper [1, Lemma C.8].

Lemma 6. If G has a Nash equilibrium of its repeated game for all large enough
n using o(n) randomness, then G has a R-feasible payoff profile that is purely
individually rational for all players.

4 Two-Player Games

In this section, we show that the necessary condition from Proposition 2, along
with Lemma 2 are together sufficient in the two-player case, providing a com-
plete characterization of the existence of constant-entropy Nash equilibria of
the repeated game. The complete proof is in the full version of the paper [1,
Theorem D.1], and a proof sketch is offered here.

Theorem 3. A two-player game G has O(1)-randomness Nash equilibria of its
repeated game if and only if G has a pure Nash equilibrium or if it has a purely
individually rational feasible payoff profile and has a Nash equilibrium that is
strictly individually rational for a player.

Proof (sketch). Begin by the sufficient condition, and assume G has no pure
Nash equilibria. We build an equilibrium in two phases, much like Proposi-
tion 4, except we need to distinguish between two cases. Up to renaming, assume
player 2 is the one that has a strictly individually rational Nash equilibrium σ2,
and denote p the purely individually rational payoff profile.

The first case is when the maximum payoff of player 1 is exactly their min-
max ṽ1. In this case, one can directly apply Proposition 6 since player 1 already
achieves their maximum payoff at every round (and is therefore best responding).

In the second case, we know the maximum payoff of player 1 is strictly greater
than their minmax ṽ1: let s ∈ S be a pure strategy profile achieving player 1’s
maximum payoff. The first phase is the same as in the proof of Proposition 4.

Let δ1 = u1(s) − ṽ1 > 0 by assumption. The second phase begins with
k1 =

⌈
|S|+1

δ1

⌉
repetitions of s, followed by k2 =

⌈
|S|+1+k1

δ2

⌉
repetitions of σ2. As

in Proposition 4, any deviation in the first phase is punished by that player’s
pure minmax for the rest of the phase and that player’s minmax during the
entire second phase. Moreover, any deviation by player 2 during the play of s is
punished by playing the minmax of player 2 for the rest of the game. Deviations
during the play of σ2 are ignored, since it is already a Nash equilibrium, and
deviations by player 1 during s are also ignored since it is its maximum payoff.

This is a constant-entropy strategy profile of the repeated game, since ran-
domness is only used in at most k1 + k2 = O(1) rounds along any path. It is
also a Nash equilibrium since Lemma 3 bounds the benefit from deviating in
the first phase, and the number of repetitions of the reward (or punishment) for
each player is fixed appropriately as in Proposition 4.

The converse is a direct application of Proposition 6 and Lemma 6. �



272 F. Arthaud

Sublinear Randomness. Notice that the proof of the necessary condition only
relies on Proposition 6 and Lemma 6, which both only require sublinear-entropy
equilibria. We deduce that the same condition holds for sublinear-entropy Nash
equilibria, yielding the following 0–1 law for entropy in two-player repeated
games.

Corollary 1. For any two-player game, there are either O(1)-randomness equi-
libria of its repeated game or all equilibria require Ω(n) randomness.

Asymptotically Achievable Payoffs. Another consequence of the proof is
that by applying the necessary condition and then the sufficient condition to a
series of sublinear-entropy Nash equilibria, we find constant-entropy Nash equi-
libria with the same asymptotic average payoffs. This provides a folk theorem-
like result for constant-entropy Nash equilibria, which can be compared to folk
theorems such as Benoît and Krishna [2].

Corollary 2. When the condition of Theorem 3 is satisfied, the set of payoff
profiles achievable asymptotically by sublinear and constant-entropy equilibria
are both exactly the set of purely individually rational payoff profiles. When the
condition is not satisfied, there are no sublinear-entropy Nash equilibria and the
set of achievable payoffs with sublinear entropy is empty.

Both Players Requiring Ω(n) Entropy Each. The full version of the
paper [1, Theorem D.2] provides a characterization for the existence of Nash
equilibria in which one player uses O(1) entropy. This yields the following char-
acterization of two-player games in which all Nash equilibria of the repeated
game require Ω(n) entropy from both players. Recall that Hubáček, Naor and
Ullman [8] proved that a sufficient condition is that all Nash equilibria of G have
payoffs exactly ṽ (the minmax of all players) and all Nash equilibria of G are
mixed for all players (for effective entropy). We complete this into a necessary
and sufficient condition for two-player games using total entropy.

Theorem 4. Suppose G is a two-player game. All Nash equilibria of the
repeated game Gn require Ω(n) randomness from both players if and only if
all Nash equilibria of G are mixed for all players and either all Nash equilibria
of G have payoffs exactly ṽ or there is no individually rational feasible payoff
profile p that is also purely individually rational for one of the two players.

5 Observable Distributions

In this section, we prove a similar result for games with more than two players
in a setting where players are able to observe the distributions that other players
used to select their action at the end of each round. This setting serves as an
intermediate between the two-player case and the general case, and the condition
we obtain is a natural extension of the one from Theorem 3. The assumption of
observable distributions is standard in the repeated games literature [4,5].



Playing Repeated Games with Sublinear Randomness 273

Definition 9. For a given game G and n ∈ N∗, G̃n is the n-repeated game
with observable distributions of G. It is the extensive-form game where strat-
egy profiles are mappings from histories of actions and distributions for all play-
ers to strategy profiles of G,

σ :
n−1⋃

k=0

⎛

⎝S ×
∏

j∈A

Δ(Sj)

⎞

⎠

k

→
∏

j∈A

Δ(Sj),

where Δ(X) is the simplex over X.

The main advantage of observable distributions is that it records any deviation in
the history, allowing for deviations in mixed rounds to be punished, which cannot
be done in the general case. The proof of the following theorem is deferred to
the full version of the paper [1, Theorem E.1].

Theorem 5. An m-player game G has O(1)-randomness Nash equilibria of
its repeated game with observable distributions G̃n (or equivalently sublinear-
randomness Nash equilibria) if and only if it has a purely individually rational
feasible payoff profile p supportable by S′ ⊆ S and there exists a mapping f :
A → {−∞} ∪ N such that,

– If f(i) = −∞ then player i best responds in all strategy profiles in S′;
– If f(i) ∈ N then there exists a strategy profile σ of G such that ui(σ) > ṽi

and in which the players {j, f(j) ≤ f(i)} are all best responding.

6 General Case

We finally extend our results to general repeated games (without observable
distributions). The proof of the following theorem is deferred to the full version
of the paper [1, Theorem F.1].

Theorem 6. An m-player game G has O(1)-randomness Nash equilibria of its
repeated game Gn if and only if G has a feasible purely individually rational
payoff profile p supportable by S′ ⊆ S, there exists some constant n0 ∈ N, a
Nash equilibrium σn0 of the repeated game Gn0 , and a partition A = A0 ∪ A1

of the players such that,

– Every player in A0 is best responding in every strategy profile in S′,
– Every player in A1 has an average payoff in σn0 that is strictly better than

their minmax.

Moreover, if G does not satisfy this condition then all equilibria of its repeated
game require Ω(n) entropy.

As in Corollary 2, note the set of achievable payoffs by constant or sublinear-
entropy equilibria are the same, and are exactly the payoff profiles p that satisfy
the condition in the theorem above for some support S′, integer n0, equilibrium
σn0 and partition A0 ∪ A1.
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The structure of the conditions from Theorems 3 and 5 is partially lost, as
there is no ordering but simply a partition: A0 can be seen as f−1({−∞}) and
A1 as f−1(N). We now give a sufficient condition and a necessary condition that
are closer to our earlier characterizations. The proof of the following proposition
is deferred to the full version of the paper [1, Proposition F.2].

Proposition 7 (Sufficient condition). If G has a feasible purely individually
rational payoff profile p supportable by S′ ⊆ S and there exists a mapping f :
A → {−∞} ∪ N such that,

– If f(i) = −∞ then player i is best responding in every strategy profile in S′

– If f(i) ∈ N then there exists a strategy profile σi such that ui(s) > ṽi and
in which the players {j, f(j) ≤ f(i)} are best responding and the players
{j, f(j) > f(i)} have the same payoff for all the strategies they are mixing
over,

then G has O(1)-randomness Nash equilibria of its repeated game.

Corollary 3 (Necessary condition). If G has o(n)-entropy Nash equilibria
of its repeated game, then the condition of Theorem 5 is verified by G.

Proof. An o(n)-randomness equilibrium of the repeated game Gn is immediately
an o(n)-randomness equilibrium of the repeated game with observable distribu-
tions G̃n. By Theorem 5, it satisfies all of its conditions. �

Subset of Players Using Bounded Entropy. Finally, we show that our
techniques can be adapted to provide conditions on games where only a subset
of players use sublinear randomness.

Definition 10. For T ⊆ A, a payoff profile p is T -individually rational if,

∀i ∈ A, pi ≥ min
sj∈Sj

j∈T\{i}
min
σj

j∈A\(T∪{i})
max
si∈Si

ui(si, sT\{i}, σA\(T∪{i})) = vT,i.

The term on the right vT,i is called the T -pure minmax of player i.

In short, it must ensure the player’s minmax assuming players from T do not use
mixing and those from A \ T do. The proof of the following theorem is deferred
to the full version of the paper [1, Theorem F.7].

Theorem 7. Suppose G is an m-player game, and T ⊆ A. If G has a feasible
T -individually rational payoff profile p supportable by S′ ⊆ S, there exists some
constant n0 ∈ N, a Nash equilibrium σn0 of the repeated game Gn0 , and a
partition A = A0 ∪ A1 of the players such that,

– Every player in A0 best responds in every strategy profile in S′,
– Every player in A1 has an average payoff in σn0 that is strictly better than

their minmax,
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then G has Nash equilibria of its repeated game such that all players in T use
O(1) randomness. Conversely, if G has Nash equilibria of its repeated game such
that all players in T use O(1) randomness, then it has a feasible T -individually
rational payoff profile p.
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Abstract. We consider a buyer-seller interaction where the revenue-
maximizer seller has one object to allocate and the buyer has private
valuation and private budget. The presence of private budgets is one
among the several triggers of complexity in mechanism design models.
Che and Gale [8] show that the optimal mechanism for this setting may
require a continuum of menu entries. We focus on a restricted class of
simple mechanisms, consisting of those whose associated menus have a
small number of entries. We show that for distributions supported on
[1, v] × [1, w], an arbitrarily high fraction of the optimal revenue can
be obtained using a simple mechanism with poly-logarithmic menu size.
This result applies even if the valuation and budget are arbitrarily cor-
related. However, if the distribution has unbounded support, then any
selling mechanism that contains a fixed number of menu entries cannot
guarantee any positive fraction of the optimal revenue. In fact, we are
able to strengthen this negative result and show that, for some family of
finite distributions, any mechanism that contains an asymptotically sub-
linear number of menu entries (in the size of the finite support) cannot
guarantee a positive fraction of the optimal revenue.
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1 Introduction

We study a buyer–seller interaction where the seller has a single object to allocate
and the buyer has private valuations and private budgets. In this setting, we are
interested in measuring the performance, in terms of expected revenue for the
seller, of approximation mechanisms against optimal mechanisms.

The presence of the private budget, which acts as a hard constraint on the
purchasing ability of the buyer, is the only complication we consider. Remove
it, and we are back in the classic “single-product monopoly” setting with incom-
plete information. Previous work in the literature that addresses variations of
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this problem has provided strong justifications for the inclusion of budget con-
straints.1 Importantly, this points to the limits of our understanding of mecha-
nism design outside single-item, single-type models. For example, Che and Gale
[8] consider revenue maximization by a seller who faces a buyer with private
valuations and private budgets distributed on a bounded rectangle. Even when
the joint distribution is well-behaved, the optimal mechanism is extremely com-
plex to obtain and to understand. It relies on minor details of the distribution
and, when translated into a menu of lotteries for implementation, it contains a
continuum of such options.

The presence of private budgets is one among the several triggers of com-
plexity in mechanism design models. Indeed, the literature recognized early on
that when the seller has many items to allocate (the so called “multi-product
monopoly” case), searching for optimal mechanisms or even characterizing incen-
tive compatibility is challenging.2 As a result, a branch of the literature adopted
an alternative route and studied approximation mechanisms in the multi-product
monopoly case without considering budget constraints.3 The performance of an
approximation mechanism is measured in terms of its expected revenue compared
against the expected revenue of the optimal mechanism. For instance, Hart and
Nisan [13,14] consider revenue maximization with k goods and valuations given
by random vectors of the form (V1, . . . , Vk). They show that if that V1, . . . , Vk

are independent random variables, a nontrivial fraction of the optimal revenue
can always be approximated by simple mechanisms. Simplicity here refers to the
size of the menu associated with a mechanism. Surprisingly, Hart and Nisan [14]
show that no such “good approximation” is possible if the components of the
random vector (V1, . . . , Vk) are correlated.4

The dramatic effect that different assumptions have on the revenue gap
between approximation mechanisms and optimal mechanisms is cause for further
study. A significant contribution of our paper is to point out how sensitive this
revenue gap is to some modeling assumptions, even in single-item settings, as
long as the buyer has private budgets and private valuations.

The preliminaries are presented in Sect. 2. We consider a seller with a single
item to allocate (and zero opportunity cost). The buyer is characterized by a ran-
dom vector (V,W ), where V refers to the valuation for the item and W to the
budget. We formalize the seller’s problem in terms of direct mechanisms that
satisfy incentive compatibility, (ex-post) individual rationality, and (ex-post)
budget feasibility. The set of these ex-post feasible and incentive compatible
mechanisms is denoted by M. The seller’s problem is thus to choose a mech-
anism in M that maximizes expected revenue. Approximation mechanisms are
obtained from M in two different ways: (i) by imposing additional constraints,
thus restricting M to a subclass of mechanisms, say N ; or (ii) by relaxing some
original constraints, thus expanding M to a superclass of mechanisms, say N ′.

1 See for example [8,9,17,22,23] and [4].
2 See the pioneering contributions in [20] and [24].
3 [25] present a recent and enlightening survey.
4 For related results, see [2,16,18] and [5].
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We measure the performance of a restricted class of mechanisms N ⊆ M, in
terms of expected revenue, using the guaranteed fraction of optimal revenue
ratio introduced by [13]. We measure the performance of a relaxation class of
mechanisms N ′ ⊇ M using a related ratio, which we call the maximal value of
relaxation. Both ratios perform robust revenue comparisons, i.e., over families
of (V,W )–buyers. We conclude this section with a revenue monotonicity result
that expands a similar result of Hart and Reny [15] to single-item settings where,
in addition to the valuation, the buyer has a private budget, which may be of
independent interest.5

In Sect. 3 we consider different classes of approximation mechanisms.
Subsections 3.1 and 3.2 focus on simple approximation mechanisms. Follow-

ing [14], we measure the complexity of a mechanism by the cardinality of its asso-
ciated menu. There are several reasons to focus on simple mechanisms, notably
that the menu size of a mechanism is related to its communication complexity
[1]. In settings without budget constraints, Myerson [21] shows that the optimal
mechanism contains one non-trivial option. When the buyer’s budget is publicly
known, Chawla et al. [6] demonstrate that the optimal mechanism has a menu
that contains at most two non-trivial options. In contrast, we show that when
the budget is private, simple mechanisms (i.e., mechanisms with poly-logarithmic
many options) generate an arbitrarily small revenue gap with respect to optimal
mechanisms as long as one considers a family of random vectors (V,W ) whose
support is bounded from above and bounded away from zero from below (Propo-
sition 2). However, if the family of (V,W )–buyers has unbounded support, or
includes random vectors whose support is a subset of the unit square, then any
selling mechanism that contains a fixed number of options cannot guarantee
any positive fraction of the optimal revenue (see Proposition 3 and Proposition
4). In fact, we are able to strengthen these negative results and show that, for
some family of distributions, any mechanism that contains an asymptotically
sub-linear number of options cannot guarantee a positive fraction of the optimal
revenue (Proposition 5). Our positive result on the revenue gap of simple mech-
anisms is derived using the revenue monotonicity result mentioned above. The
proofs of our negative results are constructive.

We switch gears in Subsect. 3.3 and pay attention to a relaxation of the
seller’s problem, where the seller can costlessly prevent the buyer from over-
reporting her budget.6 Our analysis here is motivated by both computational
and economic considerations, which we discuss in detail later on.7 Che and
Gale [8] show that if valuations and budgets are positively correlated, then this
relaxation to mechanisms where the seller ignores deviations to budget over-
reporting has no revenue advantage for the seller. In contrast, we show that

5 For reasons of space, we only provide proofs of Propositions 2 and 3. All other proofs
can be found in the working paper version accessible at https://sites.google.com/
site/ahuvamualem/ or https://sites.google.com/site/carbajaleconomics/.

6 There are several ways the seller can prevent over-reporting. For instance, the buyer
could be required to post a cash-bond prior to the interaction with the seller.

7 Previous work considering this relaxation include [11] and [10].

https://sites.google.com/site/ahuvamualem/
https://sites.google.com/site/ahuvamualem/
https://sites.google.com/site/carbajaleconomics/
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when valuations and budgets are negatively correlated, the value of relaxation
can be unboundedly large (Proposition 6). We obtain this result using a family
of (V,W )–buyers for whom the budget constraint is never binding under truthful
reporting. Finally, in Subsect. 3.4 we consider a restricted problem in which the
seller considers deviations from truthful reporting even when these deviations
may lead to unaffordable choices for the buyer. The imposition of these stronger
incentive constraints has received attention in the literature because it provides
computationally feasible solutions. We show that the optimal restricted mech-
anisms perform badly in comparison with the optimal mechanisms when the
family of (V,W )–buyers has unbounded support (Proposition 7) or has support
restricted to the unit square (Proposition 8).

Overall, our research highlights the limitations of using approximation mech-
anisms in settings with private valuations and private budgets. In only one of the
six cases we consider do approximation mechanisms yield a negligible revenue
gap. Specifically, we show that for distributions with bounded support (above
and below away from zero), an arbitrarily high fraction of the optimal revenue
can be obtained using a simple mechanism with poly-logarithmic menu size. In
all others, the revenue gap between the optimal mechanism and the optimal
approximation mechanism is large. Thus, despite some clear advantages (includ-
ing computational) in dealing with restricted or relaxed classes of mechanisms,
one has to be aware of large potential revenue loses. Our research also stresses
the crucial role some of our assumptions play in the performance of our theoreti-
cal constructs. Our results, positive and negative, apply to a single-item setting.
While we expect most of the negative results to hold in multi-item settings, it is
hard to forecast a priori which of the positive results will survive. We leave this
important question for future research.

2 Setting

We study a buyer–seller interaction where the seller has one object to sell and the
buyer has a private valuation and a private budget. This last element is the only
complication we consider. Without the presence of a hard financial constraint on
the buyer’s side, we are back in the canonical single-product monopoly setting in
which the revenue maximization problem is thoroughly understood. Our focus on
the single-product case allows us to highlight the limits of using approximation
mechanisms in the presence of budget constraints.

The seller’s objective is to maximize expected revenue—the seller’s opportu-
nity cost is zero. The buyer has a private valuation v ≥ 0 for the object and a
private budget w ≥ 0 constraining her ability to pay. Valuations and budgets are
given by a random vector (V,W ) that takes values in IR2

+. We do not exclude the
possibility of V and W being correlated. The realization of this random vector
is private information of the buyer. The seller only knows the distribution of the
(V,W )–buyer involved in the exchange.8

8 We use the expressions (V, W )–buyer and random vector (V, W ) interchangeably.
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The seller offers lotteries of the form (q, Pe). Here q ∈ [0, 1] denotes the
probability that the buyer gets the object, and Pe ≥ 0 denotes the price the
buyer pays in case the good exchanges hands—if there is no exchange, the buyer
pays nothing. The expected payment to the seller generated by lottery (q, Pe)
is thus Pe q. A menu is a collection (finite or infinite) of lotteries offered by the
seller.

2.1 Buyer’s Behavior

We consider a buyer who, due to her hard budget constraint, employs a two-
stage approach in deciding which lottery to choose from those available in a
given menu M . In the first stage, the buyer makes a shortlist composed of all
lotteries in M that are ex-post individually rational and ex-post budget feasible
given her budget. In the second stage the buyer selects, from this shortlist, a
lottery that maximizes her expected utility.

Formally, given menu M , a (V,W )–buyer with type realization (v, w) ∈ IR2
+

sorts out the collection of lotteries

M(v, w) =
{
(q, Pe) ∈ M : Pe ≤ min(v, w)

}
.

Any lottery in M(v, w) is ex-post budget feasible for the buyer—she is always
able to afford the price associated to either outcome, trade or no trade—and ex-
post individually rational—she weakly prefers purchasing any lottery in M(v, w)
to not interacting with the seller, trade or no trade. Note that the value of the
buyer’s outside option is normalized to zero. From the shortlist M(v, w), the
buyer selects a lottery (q∗, P ∗

e ) that maximizes her expected utility; i.e.,

(q∗, P ∗
e ) ∈ argmax

{
(v − Pe) q : (q, Pe) ∈ M(v, w)

}
.

It is convenient to let p = Pe q denote the expected payment to the seller. We
now write lotteries simply as pairs (q, p), where q ∈ [0, 1] and p ≥ 0. The actual
payment from the buyer to the seller, conditional on trade, is of course p/q as
long as q > 0, and zero otherwise.

Remark 1. We present the buyer’s behavior as a two-stage decision process to
highlight the fact that the buyer is an expected utility maximizer and has quasi-
linear preferences. This two-stage process is reminiscent of certain sequential
elimination processes employed in behavioral economic theory to model choices
by a boundedly rational agent (e.g., Manzini and Mariotti [19]). The difference is
that in our case the buyer is not boundedly rational, merely budget constrained:
the shortlist M(v, w) expresses only financial constraints.

2.2 Seller’s Problem

By the Revelation Principle [21], we formalize the seller’s problem in terms of
direct mechanisms. A direct (selling) mechanism μ = (x, s) is composed of a pair
of Borel measurable functions, where x : IR2

+ → [0, 1] describes the probability of
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the good being allocated to the buyer, and s : IR2
+ → IR+ describes the expected

payment to the seller. To be more explicit, given a report (ṽ, w̃) ∈ IR2
+ from the

buyer, the mechanism μ = (x, s) assigns the object with probability x(ṽ, w̃) ∈
[0, 1] in exchange for an expected payment of s(ṽ, w̃) ≥ 0 to the seller.

Given the buyer’s behavior, the seller takes into account the following restric-
tions in the design of direct mechanisms. First, μ = (x, s) must satisfy the ex-post
budget feasibility constraint; i.e., for all (v, w) ∈ IR2

+,

s(v, w) ≤ w x(v, w). (BF)

(Recall the buyer’s actual payment upon receiving the object is s(v, w)/x(v, w)
as long as x(v, w) > 0, and zero otherwise.) Second, the mechanism μ = (x, s)
must be ex-post individually rational ; i.e., for all (v, w) ∈ IR2

+,

v x(v, w) − s(v, w) ≥ 0. (IR)

(Recall that the buyer pays zero if the object doesn’t exchange hands.) Finally,
the mechanism μ = (x, s) must also be incentive compatible: for all (v, w) ∈ IR2

+

and all (ṽ, w̃) ∈ IR2
+ such that s(ṽ, w̃) ≤ w x(ṽ, w̃), it must be that

v x(v, w) − s(v, w) ≥ v x(ṽ, w̃) − s(ṽ, w̃). (IC)

In words, the buyer participates in the mechanism and truthfully reveals her
type if (i) the ex-post payment upon receiving the object is less than her budget,
and the ex-post payment when trade does not occur is zero; (ii) the ex-post utility
and, thus the expected utility, associated to participating in the mechanism is
weakly greater than the value of her outside option, which is normalized to zero;
and (iii) the expected utility from truthfully revealing her type to the mechanism
is weakly greater than the expected utility associated with any other report, as
long as this deviation is ex-post affordable for the buyer, given her true type.9

Our focus on ex-post budget feasibility and ex-post individual rationality
is not uncommon in the literature on auctions and mechanisms with budget
constrained agents. The analysis of first-price and second-price auctions under
budget constraints is usually performed under these two assumptions—see for
instance [6,7], and [17]. Some work on efficient and revenue-maximizing resource
allocation mechanisms with many agents also focuses on ex-post constraints,
e.g., [9] and [23]. On the other hand, [8] and [22] focus on interim constraints in
their analyses.

The ex-post constraints make more sense in our setting, where we focus on
mechanisms that offer lotteries to a single buyer. Che et al. [9] argue that, while
intellectually interesting, lotteries with positive entry fees are not common in the
real world because they are susceptible to manipulation by the seller. Focusing on
ex-post instead of interim constraints is not without consequences, as expected
revenue generally will be lower under the ex-post constraints.10

9 Because of this budget affordability requirement, the incentive constraints in this
case do not allow the seller’s problem to be expressed as a linear program.

10 Example 1 provides a concrete illustration—see also [6].
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Remark 2. We define a direct mechanism μ = (x, s) on IR2
+ even when the ran-

dom vector (V,W ) may not have full support. This is without loss of generality.
As we show in the working paper version, any ex-post budget feasible and incen-
tive compatible mechanism defined on the support of (V,W ) can be extended to
an ex-post budget feasible and incentive compatible mechanism defined on IR2

+.
From there, it is immediate to show that if the original mechanism defined on
the support of (V,W ) is also ex-post individual rational, then so is its extension
to IR2

+. Hart and Reny [15] show a similar Extension Lemma in a setting without
budget constraints, but with multiple goods. To the best of our knowledge, we
are the first to point out its validity under hard budget constraints.

The expected revenue raised by μ = (x, s) when the seller interacts with a
(V,W )–buyer is R(μ;V,W ) := E[s(V,W )]. Let M denote the class of all selling
mechanisms defined on IR2

+ that satisfy the (BF), (IR) and (IC) constraints. The
seller’s problem is to find a direct mechanism μ ∈ M that maximizes expected
revenue. The optimal revenue from the (V,W )–buyer is the value of the solution
to the seller’s problem at (V,W ), if one exists; i.e.,

Rev(V,W ) := sup
μ∈M

R(μ;V,W ). (1)

An optimal mechanism for the (V,W )–buyer is any mechanism μ∗ in M that
generates expected revenue Rev(V,W ).

2.3 Estimating the Revenue Gaps

Several papers in the literature have studied variations of the seller’s problem.
This body of work points to the complexity of optimal mechanisms under bud-
get constraints. As a result, important contributions in the literature focus on
solving the revenue maximization problem over a more restricted set of (sim-
pler) mechanisms or a more relaxed set of mechanisms. In this paper, we refer to
feasible solutions of these related problems as approximation mechanisms and
explore the limits of using approximation mechanisms to solve the seller’s rev-
enue maximization problem. When focusing on a different class of mechanisms
N �= M, we write

Rev(V,W |N ) := sup
ν∈N

R(ν;V,W )

for the optimal revenue that can be raised by a seller who interacts with a
(V,W )–buyer and uses mechanisms in the class N . An optimal approximation
mechanisms in the class N is any mechanism ν∗ ∈ N that generates expected
revenue Rev(V,W |N ).

A branch of the literature considers restricted classes of mechanisms that are
‘simpler’ than M and thus have lower communication complexity or computa-
tional complexity. This branch focuses on the expected revenue that is lost by
using simple mechanisms. To measure any potential losses, we follow Hart and
Nisan [13] and focus on worst-case scenarios. In what follows, let B denote a
given family of random vectors (V,W ) that take values on IR2

+. When specific
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properties of random vectors in B are required (e.g., bounded support), we will
be explicit about it.

Definition 1. Let B be a given family of (V,W )–buyers and N ⊆ M be a non-
empty subclass of mechanisms. The Guaranteed Fraction of Optimal Revenue
for N , denoted by GFOR(N ;B), is defined as

GFOR(N ;B) := inf
(V,W )∈B

Rev(V,W |N )
Rev(V,W )

.

In words, GFOR(N ;B) is the maximal number 0 ≤ α ≤ 1 such that, for
every (V,W )–buyer in B, there is a mechanism ν in the class N that generates
at least α times the optimal revenue Rev(V,W ). Hart and Nisan [13] discuss
the importance of this concept in the multiple-goods monopoly model and its
relationship with the competitive ratio concept in the computer science litera-
ture. When α is close to 1, the revenue gap between an optimal approximation
mechanism in the subclass N and an optimal mechanism in M is negligible, and
thus N can serve as a desirable replacement for M.

A related branch of the literature considers relaxing some of the constraints
embedded in the class M of (IC), (IR) and (BF) mechanisms. Sometimes this
relaxation is motivated by computational requirements—e.g., weakening some
of the constraints transforms the seller’s problem into a computationally feasi-
ble linear program. In other instances, a relaxation is motivated by economic
or institutional considerations. Che and Gale [8] explore revenue maximization
when the seller can force the buyer to set up a cash bond, thus preventing the
buyer from over-reporting her budget. We consider best-case scenarios in mea-
suring any potential gains from considering a relaxed environment.

Definition 2. Let B be a given family of (V,W )–buyers and N ′ ⊇ M be a
non-empty superclass of mechanisms. The Maximal Value of Relaxation for N ′,
denoted by MVR(N ′;B), is

MVR(N ′;B) := sup
(V,W )∈B

Rev(V,W |N ′)
Rev(V,W )

.

Thus, MVR(N ′;B) is the minimal number β ≥ 1 such that, for every (V,W )–
buyer in the family of random vectors B, every mechanism ν′ in the class N ′

generates at most a multiple β of the optimal revenue Rev(V,W ). When β is
close to 1, the revenue gap between an optimal mechanism in M and an optimal
approximation mechanism in the superclass N ′ is negligible, and so is the value
of relaxing the seller’s problem.

An additional reason to focus on GFOR and MVR is that they provide
a measure of robustness under higher orders of uncertainty. The seller knows
that a buyer is characterized by the random vector (V,W ) in B, and thus is
aware of the fact that facing a (V,W )–buyer is different from facing a (V ′,W ′)–
buyer. However, the seller may not know which buyer is present at the time of
exchange and thus may be interested in prior-free measurements of the revenue
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gap. When considering the use of simpler mechanisms in N , the seller focuses
on a ‘worst-case’ measure of lost revenue, which is precisely what GFOR(N ;B)
provides. When considering the value of relaxing some of the constraints in the
revenue maximization problem, the seller focuses on a ‘best-case’ measure of
gained revenue, which is what MVR(N ′;B) represents.

2.4 Revenue Monotonicity

Before we present our contributions on the revenue gaps, it is convenient
to show a revenue monotonicity result: under a reasonable tie-breaking rule,
expected revenue increases whenever the valuation and/or the budget of the
buyer increase. This holds for any mechanism satisfying (IC), (BF) and (IR), not
just revenue-maximizing mechanisms. We follow Hart and Reny [15] and define
seller-favorable mechanisms as those that break ties in favor of the seller. Since
we are interested in the revenue gaps between optimal mechanisms and optimal
approximation mechanisms, focusing on seller-favorable mechanisms does not
entail any loss of generality.

Recall that a random vector (V ′,W ′) first order stochastically dominates
(V,W ) if and only if E [u(V ′,W ′)] ≥ E [u(V,W )] for any non decreasing function
u : IR2 → IR.

Proposition 1. Suppose that μ = (x, s) ∈ M is a seller-favorable mechanism.
For any two buyers (V,W ) and (V ′,W ′) such that (V ′,W ′) first order stochas-
tically dominates (V,W ), one has

R(μ;V,W ) ≤ R(μ;V ′,W ′).

3 Revenue Gaps

In this section, we explore the gap between the revenue generated by optimal
mechanisms in M and the maximal revenue generated by approximation mech-
anisms (that is, mechanisms that lie in some class N �= M).

3.1 Good Approximations with Simple Mechanisms

For expositional purposes, it is convenient to define the menu generated by a
mechanism μ = (x, s) as

Menu(μ) :=
{(

x(v, w), s(v, w)
) ∈ [0, 1] × IR+ : (v, w) ∈ IR2

+

} \ {(0, 0)}.

In other words, the menu of μ = (x, s) is given by its image, excluding the trivial
lottery.11 The menu size of the mechanism μ is the cardinality of its menu. As
before, we refer to the different components of Menu(μ) as lotteries or menu
entries. When the mechanism is fixed and no confusion arises, we write generic

11 Any ex-post individually rational mechanism can include the trivial lottery (0, 0).
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lotteries as pairs (q, p), where q ∈ [0, 1] is the probability that the buyer gets
the object and p ≥ 0 is the expected price associated with this probability.
A lottery (q, p) belongs to Menu(μ) if there exists some type (v, w) for which
(x(v, w), s(v, w)) = (q, p).

For any positive integer m, let Sm ⊆ M denote the subclass of mechanisms
that have a menu size of (at most) m. In a setting where the buyer faces no
financial constraints, Myerson [21] shows that for any random valuation V , the
menu size of the optimal mechanism is m = 1. Thus, without budgets, there is
no revenue gap between the subclass S1 and M (where these two sets are defined
ignoring the (BF) constraint).

Unfortunately this result doesn’t extend to a setting with financial con-
straints. Indeed, [8] characterize the optimal selling mechanism for a single item
in a seller–buyer setting with private valuation and private budget, where val-
uation and budget may be correlated. They show that the revenue maximizing
mechanism may require a continuum of lotteries. This is true even in cases
where the buyer has a publicly known valuation. As a result, any mechanism
with finite menu size is suboptimal. We adapt their example to our setting with
ex-post budget feasibility and participation constraints.

Example 1. The buyer has a publicly known valuation of v̂ > 1 and a private
budget that lies in the unit interval. Budgets are uniformly distributed on [0, 1],
which is common knowledge. Thus, the support of the random vector (V,W ) is
{v̂} × [0, 1].

It is not difficult to show that the optimal mechanism μ∗ = (x∗, s∗), which
we define only on the support of the (V,W )–buyer for simplicity, is associated
with a critical budget level 0 < wc < 1 such that

x∗(v̂, w) =
v̂ − wc

v̂ − w
and s∗(v̂, w) = w x∗(v̂, w), for 0 ≤ w < wc,

x∗(v̂, w) = 1 and s∗(v̂, w) = wc, for wc ≤ w ≤ 1.

Thus, the seller pools all types with budgets above wc and offers them the degen-
erate lottery (1, wc). Upon receiving the good (which happens with probability
one), any buyer that buys this lottery pays a price of wc. Types with budgets
below wc are offered different lotteries, where the probability of trade is increas-
ing in the budget level.

Standard arguments can be used to verify that μ∗ = (x∗, s∗) is imple-
mentable. Crucially, one can also show that the budget level wc above, which
depends on v̂, is bounded away from zero. Thus, the menu size of the optimal
mechanism in this example is infinite, since Menu(μ∗) contains a continuum of
entries. 	

Feng et al. [12] investigate the power of posted prices as a selling mechanism in
the presence of private budgets. They showed that the revenue gap between any
single take-it-or-leave-it offer and the exact optimal mechanism can be infinite,
even for a single buyer setting where the budget distribution and the valuation
distribution are independent from each other. Therefore, the optimal revenue
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in their setting cannot be well approximated using mechanisms in the subclass
S1. In this subsection, we show that if the family of random vectors contains
only those with bounded support in terms of both the valuation and the budget
realizations, then simple, finite menu size mechanisms provide a good approxima-
tion to the optimal revenue. In the next subsection we show how things change
dramatically when one considers random variables with unbounded support. In
these two cases, we do not assume independence between the valuation and the
budget.

Our first result on the revenue gap between optimal mechanisms and optimal
approximation mechanisms states that if valuations and budgets are bounded
above and below (away from zero), then an arbitrarily high fraction of the
optimal revenue can be extracted using a simple mechanism with finite (poly-
logarithmic) menu size. This result holds even if the family of buyers considered
by the seller includes random vectors where valuation and budget are correlated.

Proposition 2. Fix 1 < v < ∞ and 1 < w < ∞. Let Bb be a family of (V,W )–
buyers that contains all distributions whose supports are subsets of [1, v]× [1, w].
Then, for every ε > 0 there exists a positive integer m ≤ (1 + �log1+ε v�) (1 +
�log1+ε w�) such that

GFOR(Sm;Bb) ≥ 1
1 + ε

.

Proof. Let (V,W ) be a random vector in Bb, so that any realization (v, w) of
(V,W ) lies in the bounded rectangle [1, v] × [1, w]. Fix any ε > 0, and consider
a (V ′,W ′)–buyer such that

(V ′,W ′) =
1

1 + ε
(V,W ).

In words, type (v′, w′) = (1 + ε)−1(v, w) belongs to the support of (V ′,W ′) if
and only if type (v, w) is in the support of (V,W ). Clearly,

Rev(V ′,W ′) =
1

1 + ε
Rev(V,W ), (2)

since (x∗, s∗) ∈ M is a revenue maximizing mechanism for the (V,W )–buyer if
and only if (x∗, s∗/(1 + ε)) ∈ M is a revenue maximizing mechanism for the
scaled down (V ′,W ′)–buyer.

We construct a new random vector (V̂ , Ŵ ) from (V,W ) as follows. Replace
every realization (v, w) in the support of (V,W ) with (v̂, ŵ), where v̂ is the
highest non-negative integer power of 1 + ε that is smaller than or equal to v,
and likewise ŵ is the highest non-negative integer power of 1 + ε that is smaller
than or equal to w. Observe that different types in the support of (V,W ) may
‘collapse’ to the same type in the rounded down random vector (V̂ , Ŵ ), in which
case the probability of type (v̂, ŵ) is the sum of probabilities of the collapsing
types in (V,W ). By construction, the (V̂ , Ŵ )–buyer contains at most

m∗ = (1 + �log1+ε v�) (1 + �log1+ε w�) (3)
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distinct types.12 Thus, the optimal mechanism in M for the (V̂ , Ŵ )–buyer has
menu size m ≤ m∗.

Notice that for every type (v, w) in the support of (V,W ), we have v/(1+ε) ≤
v̂ ≤ v and w/(1+ ε) ≤ ŵ ≤ w, where (v̂, ŵ) is the corresponding ‘collapsed’ type
in the support of (V̂ , Ŵ ). Since (V ′,W ′) = 1/(1+ ε)(V,W ), using Proposition 1,
we conclude that Rev(V ′,W ′) ≤ Rev(V̂ , Ŵ ). A further application of Proposi-
tion 1 shows that any mechanism μ with menu size m generates a larger expected
revenue from the (V,W )–buyer than from the (V̂ , Ŵ )–buyer. But this implies
Rev(V̂ , Ŵ ) ≤ Rev(V,W |Sm), since the optimal mechanism for the (V̂ , Ŵ )–
buyer has menu size of at most m. Using Eq. 2 obtains

1
1 + ε

≤ Rev(V,W |Sm)
Rev(V,W )

.

Our argument holds for any (V,W )–buyer in the class of distributions Bb

with support inside the bounded rectangle [1, v]× [1, w]. Thus, we conclude that

1
1 + ε

≤ GFOR(Sm;Bb),

as desired. �
Remark 3. Notice that we can bound m∗, which itself is an upper bound for the
menu size complexity needed in Proposition 2, by the following:

m∗ = (1 + �log1+ε v�) (1 + �log1+ε w�) ≤ 4 log1+ε v log1+ε w

≤ 4
(
1 + 1

ε

)2 log2 v log2 w,

where the last inequality is obtained by changing the base of the logarithm to 2
and using the fact that 1/ log2(1 + ε) ≤ 1 + 1/ε, for every ε > 0. Consequently,
the upper bound on menu size complexity for the family of buyers Bb depends
on ε, v and w in a poly-logarithmic way. Thus, it has a reasonable size even for
large upper bounds for the valuation and/or the budget. For fixed bounds on
the support of the distributions considered, a lower ε > 0 (equivalently, a better
approximation to the optimal revenue) demands a larger menu size complexity.
For instance when v = w = 2, Eq. 3 shows for ε = 1 (hence, to approximate
half the optimal revenue) it suffices to consider mechanisms with menu size of at
most 4. But the upper bound on menu size complexity increases to 8 if ε = 1/2.

3.2 Bad Approximations with Simple Mechanisms

A conjecture that seems to be suggested from Proposition 2 is that, as the
upper bounds v and w of the support of the random vector (V,W ) increase
without bound, the menu size complexity required to guarantee an arbitrarily

12 To see this, notice that v̂ ∈ {
(1 + ε)0, (1 + ε)1, (1 + ε)2, . . . , (1 + ε)�log1+ε v�}, and

likewise for ŵ.
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high fraction of the optimal revenue tends towards infinity. The validity of this
conjecture is not immediately verified for three reasons. First, Proposition 2
provides a poly-logarithmic upper bound on the menu size complexity, but it
does not provide a matching lower bound. Thus, we cannot be sure of how tight
the upper bound is. Second, the right-hand side of Eq. 3 grows in a sub-linear
way. So, it is possible that, as v and w grow, letting the size of the menu grow
faster (i.e., linearly) would keep the good approximation result in place. Finally,
it is not clear what happens when the support of the marginal distribution of
V is bounded and that of the marginal distribution of W is unbounded (or vice
versa).

However, our next result shows that despite these considerations, the conjec-
ture holds. If the menu size of the approximation mechanisms grows sub-linearly
when the upper bounds for the valuation and budget, v and w respectively, tend
to infinity, the revenue loss can become unboundedly large.

Proposition 3. Let Bu be a family of (V,W )–buyers that contains all distribu-
tions with supports that are unbounded from above. Then for any fixed positive
integer m,

GFOR(Sm;Bu) = 0.

Proof. Fix k ≥ 2 and let B = 2k. Consider a (V,W )–buyer with a public valua-
tion and k private budgets. More specifically, the support for the (V,W )–buyer
is given by

{
(vi, wi) : wi = Bi, for all i = 1, . . . , k, and vi = v ≥ Bk+1

}
. (4)

Further, assume that the probability mass function f for the random vector
(V,W ) is

f(vi, wi) ≡ fi =

⎧
⎪⎨

⎪⎩

(1 − B−1)B−(i−1) : i = 1, . . . , k − 1,

1 −
k−1∑

j=1

fj : i = k.
(5)

The proof of Proposition 3 follows from two lemmas that we make in regard to
the revenues that can be raised from the (V,W )–buyer.

Lemma 1. A lower bound for the optimal revenue from the (V,W )–buyer is
B2/8; i.e.,

Rev(V,W ) ≥ B2/8.

Lemma 2. For any 1 ≤ m < k, an upper bound for the optimal revenue from
the (V,W )–buyer in the class of mechanisms with menu size m is (m+1)B; i.e.,

(m + 1)B ≥ Rev(V,W |Sm).

Since B = 2k, the following ratio obtains from Lemmas 1 and 2

Rev(V,W |Sm)
Rev(V,W )

≤ 8(m + 1)
B

=
4(m + 1)

k
.
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We are looking at the family of buyer’s distributions with unbounded support
for W , letting k → ∞ shows that GFOR(Sm;Bu) = 0, as desired. �

It would appear that the fact that Bu contains random vectors (V,W ) with
unbounded support in both V and W is crucial for our bad approximation
result in Proposition 3. Indeed, if either the marginal distribution of V or W
has bounded support, then Rev(V,W ) ≤ E

[
min{V,W}] < +∞. But this is

not correct. The key to the above result is the observation that, while both
Rev(V,W ) and Rev(V,W |Sm) may increase without bound, the first one does
so at a faster rate. This can happen as well when the lower bounds for the
valuation and budget become arbitrarily close to zero.

In particular, we can show the following.

Proposition 4. Let B0 be a family of (V,W )–buyers that contains all distri-
butions whose supports are subsets of [0, 1] × [0, 1]. Then for any fixed positive
integer m,

GFOR(Sm;B0) = 0.

Technically, the proof of Proposition 3 shows a stronger result. Indeed, the
revenue gap between the optimal mechanism and the optimal approximation
mechanism can be exceedingly large as long as the menu size complexity of the
class of approximation mechanisms we consider grows in a sub-linear way. Recall
that a positive real valued function φ defined on the set of positive integers is
called sub-linear if limk→∞ φ(k)/k = 0. Thus, we can show that any mechanism
with asymptotically sub-linear menu size complexity cannot guarantee a positive
fraction of the optimal revenue, if the buyer’s family of random-vectors is either
Bu or B0.

Proposition 5. Let {(Vk,Wk) : k = 1, 2, . . .} be a sequence of random vectors,
where for each k the distribution of (Vk,Wk) is given in Eq. 5. Then, for any
sub-linear function φ,

lim
k→∞

Rev(Vk,Wk|Sφ(k))
Rev(Vk,Wk)

= 0.

Remark 4. While the marginal distribution of the budgets in the proofs of Propo-
sition 3 and Proposition 4 is important in our construction, this distribution
shares similar properties with the standard geometric distribution. In particu-
lar, it gives diminishing weight to types with higher budgets.

3.3 Cash Bond Relaxations

In this part of the paper we consider a relaxation of the seller’s revenue maxi-
mization problem. Following Che and Gale [8], we study a setting where the seller
can prevent the buyer from over-reporting her budget at no cost.13 In practice,
ruling out budget over-reporting can be accomplished by additional institutional

13 See Section 4 of their paper.
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arrangements. For example, the seller can require the buyer to post a cash bond
prior to choosing a lottery, or by some information disclosure rules (e.g., finan-
cial reports, bank statements, etc.). In this setting, the incentive compatibility
constraints are required to hold only for under-reporting the private budget. As
a result, higher budgeted types might be offered better deals (discounts).

To formalize this possibility, let Ncb be the class of ex-post budget feasible
and ex-post individually rational mechanisms that require a (V,W )–buyer to
post a cash bond to prevent her from over-reporting her budget. More explicitly,
a mechanism ν = (x, s) belongs to Ncb if it satisfies (BF), (IR) and the following
constraint, which replaces (IC): for all (v, w) and all (ṽ, w̃) with w̃ ≤ w, it must
be that

v x(v, w) − s(v, w) ≥ v x(ṽ, w̃) − s(ṽ, w̃). (CB)

In words, because the seller exacts a cash bond from the buyer, the mechanism
ν ∈ Ncb only needs to prevent a higher-budget type from mimicking a lower-
budget type. It is immediate to realize that M ⊆ Ncb. Thus, for any family B
of buyers, we have that

MVR(Ncb;B) ≥ 1,

since for any (V,W )-buyer in B, it must be Rev(V,W ) ≤ Rev(V,W |Ncb).
From a computational point of view, the importance of focusing on this

relaxed problem comes from the fact that it admits a natural linear program-
ming representation in discrete type spaces, which has been studied before (see
Bhattacharya et al. [3] for example). In particular, Devanur and Weinberg [11]
compute the optimal mechanism in this relaxed setting and show that it has
a menu with exponentially-many non-trivial options (in the number of possible
budgets).

In principle, then, the optimal revenue obtained in the superclass of mech-
anisms Ncb can be used to approximate the optimal revenue in M. Of course,
this provides a good approximation as long as MVR(Ncb;B) has a reasonable
bound. Che and Gale [8] show that if the random variables V and W are posi-
tively affiliated, then Rev(V,W ) = Rev(V,W |Ncb).14 Thus, when one focuses on
the family of (V,W )–buyers where the valuation and the budget are affiliated
random variables, there is no revenue gap between optimal mechanisms in M
and optimal approximation mechanisms in Ncb.

Unfortunately, positive affiliation is crucial for this good approximation result
to hold. Che and Gale [8] provide an example showing that a higher revenue can
be extracted (compared to the optimal auction) when the seller uses cash-bonds
to prevent over-reporting of private budgets. By adjusting this example, we show
that the optimal revenue in the class Ncb can be unboundedly large compared to
the optimal revenue in M. This shows that optimal approximation mechanism
in the class Ncb cannot serve as proxies to the revenue maximization problem in
the class M.

14 This result uses an additional declining marginal revenue assumption—see Assump-
tions 1 and 2 in [8].
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Proposition 6. Let Bna be a family of (V,W )–buyers that contains all distri-
butions where V and W are negatively affiliated. Then one has

MVR(Ncb;Bna) = +∞.

What do we make of the result stated in Proposition 6? In other words,
should one take it as a positive or a negative approximation result? From a com-
putational perspective, it is certainly not positive. Using the class of cash-bond
mechanisms to approximate the optimal revenue in M, or equivalently ignor-
ing the incentive constraints that consider over-reporting, can yield an exceed-
ingly large overestimation of the optimal revenue generated by a fully incentive
compatible mechanism. At the same time, the fact that the maximal value of
relaxation in Ncb is potentially large may provide a justification for the seller to
look for institutional fixes; i.e., lobby financial or other regulatory authorities to
make the use of cash bonds legal.

3.4 Restricted Mechanisms Under Strong Incentive Constraints

Daskalakis et al. [10] studied selling mechanisms when the incentive compati-
bility constraints hold even if the deviation produces a non-affordable outcome.
In other words, [10] increase the number of incentive constraints, by considering
deviations to lotteries that are not ex-post affordable for a buyer given her bud-
get. Formally, they consider the following incentive constraint on the mechanism
μ = (x, s): for all (v, w) ∈ IR2

+ and all (ṽ, w̃) ∈ IR2
+, it must be that

v x(v, w) − s(v, w) ≥ v x(ṽ, w̃) − s(ṽ, w̃). (SIC)

Comparing it with (IC), this constraint omits the requirement that the devia-
tion of the buyer’s type (v, w) to purchasing a lottery for the type (ṽ, w̃) must
be within (v, w)’s budget.

Let Nsic ⊆ M denote the class of mechanisms that satisfy (BF), (IR) and
(SIC). Of course, the imposition of these ‘extra’ incentive constraints means
that, for any (V,W )–buyer, the optimal revenue in the class Nsic will be weakly
lower than the optimal revenue in the class M. The advantage of imposing
these constraints is that the resulting setting has a natural linear programming
formulation. So, in principle, it can be used to approximate the revenue generated
by the optimal mechanisms in M.

Our two final results on revenue gaps in the presence of budget constraints
show that, sometimes, the expected revenue of the optimal approximation mech-
anism in the subclass Nsic can be arbitrarily small compared to the expected
revenue of the optimal mechanism. Thus, despite its computational advantages,
the subclass Nsic of mechanisms with the strong incentive constraint cannot
serve as a good proxy to the class M of incentive compatible, ex-post budget
feasible and ex-post individually rational mechanisms. Below we argue that this
holds at least in two important cases: when one considers the family of (V,W )–
buyers with unbounded support (Proposition 7), or the family of (V,W )–buyers
with support in the unit square (Proposition 8).
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Proposition 7. Let Bu be the family of (V,W )–buyers that contains all distri-
butions with unbounded support. Then one has that

GFOR(Nsic;Bu) = 0.

Proposition 8. Let B0 be a family of (V,W )–buyers that contains all distribu-
tions whose supports are subsets of [0, 1] × [0, 1]. One has that

GFOR(Nsic;B0) = 0.

These bad approximation results in terms of the revenue gap between compu-
tationally feasible mechanisms in Nsic and optimal mechanisms in M mimic the
bad approximation results for simple mechanisms previously obtained. Unfortu-
nately, we have not been able to show either a good approximation result or a
bad approximation result in the subclass Nsic when the family of (V,W )–buyers
consists of random vectors with support bounded from above and from below
(away from zero). We leave this for future work.

Acknowledgments and Disclosure of Interest. We would like to thank com-
ments and discussions with Murali Agastya, Isa Hafalir, Daniel Lehmann, Simon
Loertscher, Idione Meneghel, Noam Nisan and the audience at the 2023 Markets, Con-
tracts and Organizations Conference organized by the Australian National University.
Financial support from the Australian Research Council under grant DP190102064 is
gratefully acknowledged. Declaration of interest: none.

References

1. Babaioff, M., Gonczarowski, Y.A., Nisan, N.: The menu-size complexity of revenue
approximation. Games Econom. Behav. 134, 281–307 (2022). https://doi.org/10.
1016/j.geb.2021.03.001

2. Babaioff, M., Nisan, N., Rubinstein, A.: Optimal deterministic mechanisms for an
additive buyer. In: Proceedings of the 2018 ACM Conference on Economics and
Computation, EC 2018, p. 429. ACM (2018)

3. Bhattacharya, S., Conitzer, V., Munagala, K., Xia, L.: Incentive compatible bud-
get elicitation in multi-unit auctions. In: Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 554–572 (2010)

4. Boulatov, A., Severinov, S.: Optimal and efficient mechanisms with asymmetrically
budget constrained buyers. Games Econom. Behav. 127, 155–178 (2021). https://
doi.org/10.1016/j.geb.2021.02.001

5. Briest, P., Chawla, S., Kleinberg, R., Weinberg, S.M.: Pricing lotteries. J. Econ.
Theory 156, 144–174 (2015). https://doi.org/10.1016/j.jet.2014.04.011

6. Chawla, S., Malec, D., Malekian, A.: Bayesian mechanism design for budget-
constrained agents. In: Proceedings of the 12th ACM Conference on Electronic
Commerce, EC 2011, pp. 253–262. ACM (2011)

7. Che, Y.K., Gale, I.: Standard auctions with financially constrained bidders. Rev.
Econ. Stud. 65(1), 1–21 (1998)

8. Che, Y.K., Gale, I.: The optimal mechanism for selling to a budget-constrained
buyer. J. Econ. Theory 92, 198–233 (2000)

https://doi.org/10.1016/j.geb.2021.03.001
https://doi.org/10.1016/j.geb.2021.03.001
https://doi.org/10.1016/j.geb.2021.02.001
https://doi.org/10.1016/j.geb.2021.02.001
https://doi.org/10.1016/j.jet.2014.04.011


296 A. Mu’alem and J. C. Carbajal

9. Che, Y.K., Gale, I., Kim, J.: Assigning resources to budget-constrained agents.
Rev. Econ. Stud. 80(1), 73–107 (2013)

10. Daskalakis, C., Devanur, N.R., Weinberg, S.M.: Revenue maximization and ex-post
budget constraints. ACM Trans. Econ. Comput. 6(3–4), 1–19 (2018)

11. Devanur, N.R., Weinberg, S.M.: The optimal mechanism for selling to a budget-
constrained buyer: the general case. In: Proceedings of the 2017 ACM Conference
on Economics and Computation, EC 2017, pp. 39–40. Microsoft Research, ACM
Press, New York (2017)

12. Feng, Y., Hartline, J.D., Li, Y.: Simple mechanisms for agents with non-linear
utilities (2022). arXiv – https://arxiv.org/abs/2003.00545

13. Hart, S., Nisan, N.: Approximate revenue maximization with multiple items. J.
Econ. Theory 172, 313–347 (2017). https://doi.org/10.1016/j.jet.2017.09.001

14. Hart, S., Nisan, N.: Selling multiple correlated goods: revenue maximization and
menu-size complexity. J. Econ. Theory 183, 991–1029 (2019)

15. Hart, S., Reny, P.J.: Maximal revenue with multiple goods: nonmonotonicity and
other observations. Theor. Econ. 10(3), 893–922 (2015). https://doi.org/10.3982/
te1517

16. Hart, S., Reny, P.J.: The better half of selling separately. ACM Trans. Econ. Com-
put. 7(4), 18 (2019). https://doi.org/10.1145/3369927

17. Kotowski, M.H.: First-price auctions with budget constraints. Theor. Econ. 15(1),
199–237 (2020). https://doi.org/10.3982/te2982

18. Li, X., Yao, A.C.C.: On revenue maximization for selling multiple independently
distributed items. Proc. Natl. Acad. Sci. U.S.A. 110(28), 11232–11237 (2013).
http://www.jstor.org/stable/42712717

19. Manzini, P., Mariotti, M.: Sequentially rationalizable choice. Am. Econ. Rev. 97(5),
1824–1839 (2007)

20. McAfee, R., McMillan, J.: Multidimensional incentive compatibility and mech-
anism design. J. Econ. Theory 46(2), 335–354 (1988). https://doi.org/10.1016/
0022-0531(88)90135-4

21. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)
22. Pai, M.M., Vohra, R.V.: Optimal auctions with financially constrained buyers. J.

Econ. Theory 150, 383–425 (2014)
23. Richter, M.: Mechanism design with budget constraints and a population of agents.

Games Econ. Behav. 115, 30–47 (2019)
24. Rochet, J.C., Chone, P.: Ironing, sweeping, and multidimensional screening. Econo-

metrica 66(4), 783–826 (1998). https://doi.org/10.2307/2999574
25. Roughgarden, T., Talgam-Cohen, I.: Approximately optimal mechanism design.

Ann. Rev. Econ. 11, 355–381 (2019). https://doi.org/10.1146/annurev-economics-
080218-025607

https://arxiv.org/abs/2003.00545
https://doi.org/10.1016/j.jet.2017.09.001
https://doi.org/10.3982/te1517
https://doi.org/10.3982/te1517
https://doi.org/10.1145/3369927
https://doi.org/10.3982/te2982
http://www.jstor.org/stable/42712717
https://doi.org/10.1016/0022-0531(88)90135-4
https://doi.org/10.1016/0022-0531(88)90135-4
https://doi.org/10.2307/2999574
https://doi.org/10.1146/annurev-economics-080218-025607
https://doi.org/10.1146/annurev-economics-080218-025607


Sublogarithmic Approximation
for Tollbooth Pricing on a Cactus

Andrzej Turko(B) and Jarosław Byrka

University of Wrocław, Wrocław, Poland
andrzej.turko@gmail.com, jby@cs.uni.wroc.pl

Abstract. We study an envy-free pricing problem, in which each buyer
wishes to buy a shortest path connecting her individual pair of vertices
in a network owned by a single vendor. The vendor sets the prices of
individual edges with the aim of maximizing the total revenue gener-
ated by all buyers. Each customer buys a path as long as its cost does
not exceed her individual budget. In this case, the revenue generated
by her equals the sum of prices of edges along this path. We consider
the unlimited supply setting, where each edge can be sold to arbitrarily
many customers. The problem is to find a price assignment which max-
imizes vendor’s revenue. A special case in which the network is a tree is
known under the name of the tollbooth problem. Gamzu and Segev pro-
posed a O

(
logm

log logm

)
-approximation algorithm for revenue maximization

in that setting. Note that paths in a tree network are unique, and hence
the tollbooth problem falls under the category of single-minded bidders,
i.e., each buyer is interested in a single fixed set of goods.

In this work we step out of the single-minded setting and consider
more general networks that may contain cycles. We obtain an algorithm
for pricing cactus shaped networks, namely networks in which each edge
can belong to at most one simple cycle. Our result is a polynomial time
O

(
logm

log logm

)
-approximation algorithm for revenue maximization in toll-

booth pricing on a cactus graph. It builds upon the framework of Gamzu
and Segev, but requires substantially extending its main ideas: the recur-
sive decomposition of the graph, the dynamic programming for rooted
instances and rounding the prices.

Keywords: envy-free pricing · tollbooth problem · cactus graphs

1 Introduction

The problem of maximizing revenue by setting optimal prices has been widely
studied in various settings (see, e.g., [1,2,12]). This work discusses the problem
of envy-free pricing for revenue maximization. In general, this problem can be
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modeled as a two phase game. In the first step, vendor assigns prices to the
offered goods. Then, each buyer purchases her most preferred subset of goods
based on given prices and her own preferences. Every buyer aims to maximize
her utility, and the seller aims to maximize the total price paid by customers.
The problem is to find an optimal strategy for the vendor.

More precisely, an instance of the envy-free pricing problem consists of m
goods and n buyers. Each buyer is defined by a function which assigns a non-
negative valuation to every subset of the goods. It is assumed that the valuation
of an empty set for each customer equals zero. A solution to the problem is
formed by non-negative prices of goods and an envy-free allocation of goods to
the buyers. Utility of a buyer from a set of goods equals her valuation of this set
minus the total price of its elements. An allocation is envy-free when no buyer
would like to change her assigned set of goods. In other words, the set assigned
to her must maximize her utility.

In this work we focus on the unlimited supply setting, where each one of the
m goods can be sold to arbitrarily many buyers. Such goods may be thought
of as intellectual property or access to infrastructure. Sometimes the limited
supply setting is also considered, where each good is available only in a certain
number of copies. In that case, the solution must not only satisfy the envy-
freeness constraints, but also the number of buyers any good is allocated to
must not exceed its supply.

We study a natural case of the envy-free pricing with unlimited supply, where
the goods can be modeled by edges in a graph and buyers wish to purchase
cheapest paths. More precisely, each buyer has equal positive valuations for paths
connecting a certain pair of vertices and zero valuation for all the other sets of
goods. Such a problem may be used to model a situation where the vendor is an
owner of a road network and buyers are drivers wishing to travel from one city
to another.

Guruswami et al. [11] have defined and studied two subcases of this scenario
called: the tollbooth and the highway problems. In the former the underlying
graph is a tree and in the latter it is a path. We extend this collection by adding
cactus graphs that allow edge-disjoint cycles and hence allow more than one
path being attractive for a client. To the best of our knowledge this is the first
work that addresses envy-free tollbooth pricing of networks where clients have
alternative routes (are not single-minded).

1.1 Related Work

The problem of envy-free pricing for revenue maximization has been studied in
various settings. We are going to survey mostly the results for single-minded
buyers, a model where each buyer has positive valuation for exactly one set of
goods.

Guruswami et al. [11] defined the single-minded buyers setting and presented
a polynomial O (logm + log n)-approximation algorithm for the variant with
unlimited supply. Also for the unlimited supply setting, Balcan, Blum and Man-
sour [3] have shown that a logarithmic guarantee on expected revenue can be
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achieved by randomly setting a single price to all the goods. Notably, this result
holds for buyers with arbitrary valuations. By taking it as a reference point, a
natural question is: For what valuation classes sublogarithmic approximation of
revenue is possible?

Indeed, for special cases of the unlimited supply setting with single-minded
buyers, such results were obtained. For the tollbooth problem, Gamzu and Segev
[8] achieved a O

(
logm

log logm

)
-approximation of revenue with a polynomial algo-

rithm. For the highway problem, Grandoni and Rothvoß [9] have designed a
polynomial time approximation scheme (PTAS).

Already for these two problems hardness results for envy-free pricing with
single-minded buyers are known. Guruswami et al. [11] have proven that the
tollbooth problem is NP-hard. This was followed by a result from Briest and
Krysta [4], who showed the same for the highway problem.

For the general envy-free pricing Demaine et al. [6] showed several inapprox-
imability results under various complexity assumptions. They proved a lower
bound of Ω(log n), under a hardness hypothesis regarding the balanced bipar-
tite independent set problem. In this context, the result of Gamzu and Segev [8]
shows that pricing is strictly simpler to approximate on trees. We extend it to
show that sublogarithmic approximation of revenue is also possible on cactus
graphs.

Of course, the mentioned impossibility results hold for limited supply as well.
In that setting there also are several approximation results. Cheung and Swamy
[5] have designed a O (

√
m log umax)-approximation algorithm for the general

envy-free pricing problem with single-minded buyers (umax denotes the maxi-
mal number of copies of a single good). In the tollbooth and highway problems
they have obtained approximation ratio of O (log umax). Elbassioni, Fouz and
Swamy [7] have obtained a matching approximation guarantee for the non-envy-
free tollbooth problem without the single-mindedness constraint. More recently,
Grandoni and Wiese [10] obtained a PTAS for the limited supply version of the
highway problem.

1.2 Our Result

We consider the tollbooth problem on cactus graphs, a natural generalization
of the original tollbooth problem (on trees) with unlimited supply. Instead of
requiring the graph to be a tree, we only require that the underlying graph
is a cactus, i.e. its every edge belongs to at most one simple cycle. The main
difference between the two models is that, unlike in a tree, in a cactus there can
be multiple simple paths connecting a single pair of vertices. Thus, each buyer
can be interested in purchasing multiple sets of goods, i.e. is not single-minded.
We obtain the following result:

Theorem 1. There exists a polynomial time approximation algorithm for the
tollbooth problem on cactus graphs with unlimited supply which achieves an
approximation guarantee for revenue of O

(
logm

log logm

)
, where m is the number

of edges of the graph.
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Our approximation algorithm utilizes a similar framework as the algorithm by
Iftah Gamzu and Danny Segev [8] for the classical tollbooth problem (on trees).
However, various parts of the algorithmic construction are carefully adapted to
handle cycles and the freedom of clients to choose one of two routes on each
cycle they have on their way.

To the best of our knowledge, this is the first such result for graphs more
general than trees, and hence the first one not restricted to the single-minded
bidder case.

1.3 Model and Preliminaries

Let us consider an instance of the tollbooth problem on cactus graphs with m
goods and n buyers. Its description consists of a simple graph G with m edges
such that no edge lies on two simple cycles and a set B of buyers. Each buyer
i ∈ B is described by a pair of vertices ui and vi, and her budget bi > 0. For
each subset of edges S, her valuation is defined in the following way:

fi(S) =

{
bi, if S consists of edges along a ui-vi path
0, otherwise

(1)

A solution is a real vector p assigning non-negative prices to the edges of G. Let
us treat the prices as lengths of edges and let di denote the distance between
vi and ui. If bi ≥ di, i-th buyer purchases all edges along a shortest ui-vi path.
Otherwise, she buys nothing. Such an allocation is envy-free. Note that if there
are many shortest ui-vi paths, choosing either one does not change the revenue.

In this work we present an algorithm for finding such prices that the above-
mentioned way of allocating goods to buyers results in revenue O

(
logm

log logm

)

times smaller than optimal.

1.4 Overview of Techniques

Our algorithm follows the classify-and-select paradigm of Gamzu and Segev.
Buyers are split into O

(
logm

log logm

)
subsets, which define separate instances of

the problem. Those subproblems are processed independently and constant
factor approximations for each of them are computed. The final solution is
obtained by choosing the one yielding the biggest revenue. Supply of the goods
is unlimited and, thus, the revenue of a solution to a subproblem does not
decrease when applied to the initial instance with all the buyers. This gives
an O

(
logm

log logm

)
approximation of revenue, because the total revenue is at most

the sum of the revenues of the subproblems.
For each subproblem the algorithm constructs a subgraph of G, called the

skeleton, such that all paths desired by a buyer in the given instance enter and
leave the skeleton exactly once and in the same vertices. This way, each such
path is split into three parts, one of which is in the skeleton and the other two are
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not. Note that, for a constant factor approximation, it suffices to collect revenue
either only on the skeleton or only outside the skeleton. In the former case the
revenue is achieved by setting appropriate prices of the skeleton’s edges. In the
latter it suffices to focus on groups entering or leaving the skeleton through the
same vertex leading to rooted instances. Due to cycles in the underlying graph,
several significant challenges arise in both subproblems.

Rooted Instances: The algorithm by Gamzu and Segev solved rooted instances
with a black-box dynamic programming algorithm from [11]. In our case the
subgraphs forming rooted instances can contain cycles. Thus, that dynamic pro-
gramming, which has been designed for trees, could not be applied verbatim. In
order to define its subproblems, we have generalized the notion of a subtree using
the tree-like structure of biconnected components. Another key element of our
solution is a technique which effectively transforms cycles into paths. It is based
on the observation, that, as far as shortest paths from vertices to the root are
concerned, one edge of a cycle is always redundant. By guessing this edge, one
can tackle the problem on a cycle as if it was a path. For an optimization prob-
lem it is enough to iterate over all possible choices of this edge and calculate the
solutions independently using the dynamic programming for a tree. We believe
that this technique has a wide range of applications in generalizing algorithms
for trees to cyclic graphs whose biconnected components have simple structure.
Its usage for our problem is described in Sect. 4.1.

Dependent Subgraphs of the Skeleton: The classification of buyers is based
on a recursive decomposition of the input graph. The algorithm for the origi-
nal tollbooth problem in each step splits the tree into several connected sub-
graphs and processes buyers who wish to buy paths with endpoints belonging
to different ones. Those connected subgraphs can be then processed completely
independently because all paths relevant to the next instances are fully con-
tained in the individual subgraphs. This is not the case in cactus graphs, namely
for subgraphs which contain edges lying on the same cycle. As the cycles can
be arbitrarily long, our algorithm may need to divide them when splitting the
skeleton into smaller parts. It turns out that the dependencies between resulting
subgraphs regard the cost of paths in the cycle shared between them. By making
assumptions about their costs, the algorithm can isolate the subgraphs and pro-
cess them independently. This approach, however, results in multiple solutions
for each subgraph based on different assumed costs of individual parts of shared
cycles. While merging those solutions into an approximately optimal global one,
the procedure from Sect. 5 controls the cost of each cycle using dynamic program-
ming inspired by the knapsack problem. In order to make this possible, we have
extended the price rounding techniques, which allowed to relax the assumptions
about the costs of shared cycles and to calculate approximate revenue. Those
techniques are described in detail in the full version of the paper [13].

Decomposing the Graph: In the original tollbooth problem it was sufficient
to split each subtree at a given level of decomposition into connected subtrees
of the right size, which formed the next step of the decomposition. Our solution
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for handling the dependencies between subgraphs of the skeleton has been made
possible by additional properties ensured by the decomposition. For example,
we ensure that two subgraphs forming the decomposition can share at most one
cycle. Another way of limiting the dependencies between subgraphs, to which G
is split, is limiting the number of vertices each subgraph shares with the other
ones. The decomposition used by our algorithm is characterized in full detail by
Lemma 1.

Pricing the Segments: Segments are edge-disjoint subgraphs of the skeleton.
In each of them there are two vertices, called endpoints, and only they can
be shared with other segments. Thus, one can think of them as generalization
of edges. In one of the subproblems the algorithm fixes the lengths of whole
segments and sets the prices of the edges inside a given segment so that the
revenue from selling the paths starting inside and ending outside it is maximized.
In the original tollbooth problem the buyers are single-minded, so for each such
path the endpoint through which it will leave the segment is fixed. For a cactus
graph it is not the case, a buyer may choose a path passing though any of the
two endpoints depending on the prices.

We handle that additional complexity in the following way. With fixed lengths
of segments, it is possible to calculate the maximal amount of money a buyer is
able to spend on edges inside the segment where her path begins. Our algorithm
uses this to split the buyers into two categories. Each buyer who cannot afford to
pay half of the segment’s length, for fixed prices of its edges, can only purchase
paths passing through a single fixed endpoint. As for the remaining buyers, the
vendor can charge half of the segment’s cost for edges incident to any of the
endpoints and they will be able to pay this much. The procedure based on this
idea is described in full detail in the long version of this paper [13]. It is a part
of the algorithm for the skeleton subproblem, which is summarized in Sect. 5.

2 Graph Decomposition

Using a recursive decomposition of the cactus graph our algorithm splits the
buyer set B into disjoint subsets, which are later processed independently. Here
we define this partition.

2.1 The Tree of Biconnected Components

We begin by discussing the structure of biconnected components of the cactus
graph. Let us fix an arbitrary vertex of G, denoted rG, as the root of G for the
duration of the whole algorithm. A vertex or edge is said to be above another
one if it is closer to rG. Every biconnected component of a cactus is either a
single edge or a simple cycle. Thus, it has a single topmost vertex and at most
two topmost edges, which are exactly those adjacent to the topmost vertex.

Definition 1. For each cycle in G, its two edges closest to rG, i.e. topmost
edges, form a pair of associated edges. Note that every edge belongs to at
most one such pair.
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Fig. 1. An example cactus graph with
marked pairs of associated edges and
its tree of biconnected components. The
arrows indicate respectively the root vertex
and the root component. On both draw-
ings the subtree graph of the cycle num-
ber 5 is marked out. Vertices a, b, c and
d belong to biconnected component 2. It’s
also a main component of a, b and c. How-
ever, the main component of d is the edge
e-d. Note that e belongs to three distinct
biconnected components and it’s main com-
ponent is the edge between e and the root
vertex.

Although each vertex can be a top-
most vertex in arbitrarily many bicon-
nected components, it can belong to
at most one without being its top-
most vertex. Furthermore, all ver-
tices except for the root belong to
exactly one such biconnected compo-
nent. Let us call it the main com-
ponent of this vertex. For the root
it is a special component, consist-
ing only of itself (a single vertex).
Our algorithm uses the tree of bicon-
nected components rooted in this spe-
cial component. Every other compo-
nent is a child of the main component
of its topmost vertex. Note that such
a tree is unique. The tree of bicon-
nected components of an example cac-
tus graph is illustrated by Fig. 1.

Definition 2. A subtree graph of
a component C is the graph con-
sisting of all the edges and vertices
belonging to any descendant of C
(inclusive) in the tree of biconnected
components. The subtree graph of the
root component is the whole graph G.

2.2 Balanced Decomposition

Decompositions D1,D2, . . . DL of G
are defined recursively. Each of them
is a family of edge-disjoint subgraphs,
called fragments, which cover the
graph G. In D1 the whole graph G
forms a single fragment, and in DL

each fragment consists of at most two edges. For all j < L each fragment in par-
tition Dj is split into a number of subgraphs, which become fragments in Dj+1.

Definition 3. A vertex which belongs to multiple fragments in partition Dj+1 is
called a border vertex of j-th level. Furthermore, every vertex of G is considered
to be a border vertex of L-th level.

Note that a border vertex of j-th level is also a border vertex of (j + 1)-th
level.

Lemma 1. Consider a family of decompositions D1,D2, . . . DL of a cactus graph
G satisfying the following invariants for each valid j:
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1. Each fragment in Dj is split into O (k) fragments in Dj+1.
2. The maximal number of edges in a fragment forming Dj+1 is Ω (k) times

smaller than in Dj.
3. Each fragment forming Dj contains at most O (k) border vertices of j-th level.
4. Each pair of associated edges belongs to the same fragment of Dj.
5. All fragments forming Dj are connected subgraphs of G.

For k being an unbounded and nondecreasing function of m (the number of edges
in G), such a family can be found in polynomial time.

Fig. 2. Two levels of a recur-
sive decomposition satisfying
Lemma 1. Fragments from Dj

are marked out and Dj+1 are
differentiated with line styles.
The arrow indicates rG, the root
of G. Border vertices of j-th
level are highlighted. A buyer
wishing to purchase an a-b path
is not assigned to j-th level, but
a buyer interested in a-c paths
is. Vertices c and d are connected
at all levels of decomposition, so
corresponding customers would be
processed at its last level.

The second invariant ensures that the
number of levels is bounded by O (logk m).
By fixing k =

⌈
log

1
2 m

⌉
we achieve an

O
(

logm
log logm

)
bound on L. We choose this

value because some parts of the algorithm are
exponential in k.

Dj+1 is a refinement of Dj obtained by
a two-phase procedure. In the first step each
fragment is split into subparts of balanced
size. The second phase refines this division in
order to balance the number of border vertices
in each resulting fragment. Precise description
of this process and the proof of Lemma 1 can
be found in the full version of the paper [13].

2.3 Classification of Buyers

A pair of vertices u and v is said to be con-
nected in a decomposition Dj if there exists
a path from u to v fully contained in a sin-
gle fragment from Dj . Buyer i ∈ B will be
processed at the last level where ui and vi are
connected. This way every buyer is assigned to
a single level of decomposition. The decompo-
sition process and the classification of buyers
is illustrated by Fig. 2.

Remark 1. If j is the last level at which vertices u and v are connected, every
u-v path in the whole graph contains a border vertex on j-th level.

3 Algorithm for a Single Decomposition

In the previous section buyers have been divided into subsets by a recursive
graph decomposition. Now we focus on a single (j-th) level of decomposition.
By exploiting its properties our algorithm constructs prices which achieve a
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constant factor approximation of revenue with respect to buyers assigned to this
level (denoted Bj).

The main idea behind the algorithm for a single decomposition is to split the
paths desired by buyers into smaller sections and handle them separately. In the
following we define a partitioning of those paths and discuss that it suffices to
be able to solve the natural two subcases.

3.1 The Skeleton

Definition 4. Skeleton on j-th level, denoted SKj, is a minimal subgraph of
G containing all simple paths between border vertices of j-th level. Equivalently,
an edge belongs to the skeleton, i.e. is a skeleton edge, if and only if a simple
path connecting two border vertices passes through it. A vertex adjacent to a
skeleton edge is a skeleton vertex.

Definition 5. A non-skeleton component on j-th level is a maximal con-
nected subgraph of a fragment from Dj+1 containing no edges from SKj.

Note that, by the definition of a border vertex, SKj+1 is always a superset of
SKj and SKL = G. The following lemma allows for a clear distinction between
the paths inside the skeleton and outside it. The proof can be found in the full
version of the paper [13].

Lemma 2. Every simple path connecting two skeleton vertices passes only
though skeleton edges.

Corollary 1. Each non-skeleton component contains exactly one skeleton ver-
tex.

Definition 6. Let us define a skeleton representative of a vertex v on j-
th level denoted by reprj(v). If v is a skeleton vertex in Dj, then reprj(v) =
v. Otherwise, the representative of v is the unique skeleton vertex in the non-
skeleton component on j-th level containing v.

Consider a buyer i from Bj wishing to buy the cheapest ui-vi path. Recall
from Sect. 2 that each ui-vi path contains at least one border vertex of j-th level.
By Corollary 1, each path from ui to vi contains vertices ui, reprj(ui), reprj(vi),
vi. Although some of those four vertices may be equal, they are guaranteed to
appear in this order. This allows us to split every such path into three parts
(some of which may be empty):
– First non-skeleton section – a simple path from ui to reprj(ui), which

contains no skeleton edges.
– A skeleton section – a simple path from reprj(ui) to reprj(vi). By Lemma 2,

it consists only of skeleton edges.
– Second non-skeleton section – a simple path from reprj(vi) to vi. Similarly

to the first one, it does not contain skeleton edges.

Note that the endpoints of individual sections do not depend on the choice of
the particular ui-vi path. Our algorithm uses this property to handle both kinds
of sections individually. An example partition of a path into skeleton and non-
skeleton sections is illustrated by Fig. 3.
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3.2 Splitting the Graph Into Two Independent Subproblems

Fig. 3. The cactus from Fig. 2 with high-
lighted border vertices and the skeleton on
j-th level. Each connected group of edges
dotted in a same style forms a single non-
skeleton component. Each a-d path is split
into a skeleton section (a b-c path) and two
non-skeleton sections: a-b and c-d paths.

The algorithm handles two sub-
problems: pricing the non-skeleton
and skeleton edges to maximize rev-
enue generated by respectively non-
skeleton and skeleton sections.

The Skeleton Subproblem: Con-
sider a buyer i ∈ Bj wishing to
purchase the cheapest ui-vi path. In
this subproblem she buys a cheapest
reprj(ui)-reprj(vi) path as long as its
cost is at most bi (her original bud-
get). This situation achieved by set-
ting the price of all non-skeleton edges
to zero.

The Non-skeleton Subproblem:
In this case, we set the prices of all
the skeleton edges to zero. Each buyer
i ∈ Bj will purchase the cheapest
paths from ui to reprj(ui) and from
vi to reprj(vi) if their total cost does
not exceed bi.

Let us introduce additional notation:

– Let OPTj be the maximal revenue obtained by any price vector and envy-free
assignment of paths to the buyers from Bj .

– Let SKOPTj and NSKOPTj be the maximal revenues for the skeleton and
non-skeleton subproblem respectively.

Note that any envy-free solution for the whole graph immediately yields
envy-free solutions for both subproblems. Thus, SKOPTj+NSKOPTj ≥ OPTj .
The algorithm solves both subproblems independently. Then, the computed solu-
tions are compared and the one with greater revenue is chosen. Sections 5 and 4
describe polynomial time approximation algorithms for the skeleton and non-
skeleton subproblem respectively.

4 Non-skeleton Edges

This section describes an algorithm for solving the non-skeleton subproblem
on j-th level, that is pricing the non-skeleton edges and maximizing revenue
generated by non-skeleton sections of paths allocated to buyers from Bj . Prices
of all edges in the skeleton on j-th level are set to zero. On the last level of
decomposition the skeleton contains the whole graph G. Thus, we assume that
j < L. The algorithm presented here finds prices generating at least NSKOPTj

4
revenue.
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4.1 The Rooted Case

Before describing the method for pricing non-skeleton edges, let us discuss an
easier problem, solution to which is a subprocedure used by the final algorithm.

Definition 7. Consider an instance of the tollbooth problem on cactus graphs
defined by a cactus H and a set of buyers BH . We will say that it is a rooted
instance if there exists a vertex in H, called root, which is an endpoint of every
path desired by the buyers.

Definition 8. Consider a buyer i ∈ BH in a rooted instance, who wishes to
purchase a cheapest ui-vi path. Her destination vertex is the one of vertices
ui and vi which is not the root.

Lemma 3. Any rooted instance of the tollbooth problem on cactus graphs can be
solved in polynomial time. It is also true if the problem admits only those price
assignments, under which the distances from the root to some vertices are equal
to arbitrarily fixed constants.

For every possible price assignment and envy-free allocation each buyer is
assigned a shortest path from the root to her destination vertex as long as its
cost does not exceed her budget. Thus, presenting a polynomial algorithm for
finding optimal prices is sufficient to prove the above lemma.

The algorithm is based on dynamic programming whose subproblems mimic
the structure of the tree of biconnected components of H rooted in r – the
root from Definition 7. For each biconnected component C it calculates values
dpC,d, which are defined as the maximum revenue generated by buyers whose
destination vertices are in the subtree graph of C (excluding its topmost vertex)
under the assumption that the distance i.e., cost of a cheapest path, from r to
C (its depth) equals d. Note that the distance from C to the root is in fact the
distance between r and the topmost vertex of C. The following lemma allows us
to consider only polynomially many values d.

Lemma 4. For any rooted instance of the tollbooth problem on cactus graphs
there exists an optimal solution, such that the distance from each vertex to
the root belongs to the set D containing zero and buyers’ budgets: D = {0} ∪
{bi | i ∈ BH}.

In Sect. 5 the algorithm needs to find optimal prices given constraints on
the distance from certain vertices to the root. The following corollary allows for
handling such cases. Both the lemma and corollary are proven in the full version
of the paper [13].

Corollary 2. Consider a rooted instance of the tollbooth problem on cactus
graphs and a subset S of vertices of H such that for each v ∈ S required depth
ev of this vertex is given. Prices of edges in H are said to be feasible if the cost
of a cheapest r-v path equals ev for each v ∈ S. Let us assume that there is at
least one such price assignment. Then, there exists a feasible price assignment
maximizing revenue for which the distance from r to each vertex v �∈ S belongs
to the set D′:

D′ = {0} ∪ {bi | i ∈ BH} ∪ {ei | i ∈ S} (2)
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Solution for a Rooted Instance. The input to the procedure consists of a
graph H, buyers BH and a (possibly empty) set of constraints S from Corollary 2.
For each vertex v we define a set of its possible depths Dv in the following way:

Dv =

{
{ev} , v ∈ S

{0} ∪ {bi | i ∈ BH} ∪ {eu | u ∈ S} , v �∈ S
(3)

For each biconnected component C the algorithm calculates the values of
dpC,d for every d ∈ Dv where v is the topmost vertex of C. It is possible that
some values of d inevitably lead to violation of the constraints on depths of
vertices from S. In such a case we set dpC,d = −∞. For simplicity, we also
assume that dpC,d = −∞ for each d �∈ Dv.

The biconnected components of H are processed bottom up based on the
structure of the tree of biconnected components. The algorithm handles bicon-
nected components differently depending on whether they consist of a single edge
or a cycle. The root component R, which is the root of the tree of biconnected
components, contains the whole H in its subtree graph and is treated in yet
another way. Let us introduce useful notation:

– cntv,x – the number of buyers whose budgets are at least x and whose desti-
nation vertex is v.

– Cv – the set of all biconnected components whose topmost vertex is v.

The Case of a Single Edge: Let us denote the lower vertex of the considered
biconnected component C as v and the upper as u. Note that the subtree graph
of C consists of the (u, v) edge and subtree graphs of biconnected components
from Cv, which are edge disjoint and share only the topmost vertex. All simple
paths to the root from vertices contained in those subtree graphs pass though
v. Furthermore, each simple path from v to the root must contain u. Basing on
those observations, the algorithm calculates dpC,d for each d ∈ Du according to
the following formula:

dpC,d = max
d′∈Dv ; d′≥d

(
cntd′,v · d′ +

∑
C′∈Cv

dpC′,d′

)
(4)

The optimal value of d′ is stored along with dpC,d in order to find the prices
after calculating optimal revenue ((d′ − d) is the price of the (u, v) edge).

The Case of the Root Component: The root must have depth 0, hence for
this component only a single value (dpR,0) is calculated: dpR,0 =

∑
C′∈Cr

dpC′,0.

The Case of a Cycle: Let us denote the considered cycle by C, its topmost
vertex as v and its subtree graph by GC . GC consists of C and the subtree graphs
of components from Cu for all u ∈ C \ {v}.
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Fig. 4. Processing a cycle for a fixed unused
edge. Its subtree graph (without the top-
most vertex) is highlighted by thicker edges
and points both in the cactus graph (left)
and the temporary tree of biconnected com-
ponents (right). Solid lines enclose sub-
problems which already have been solved.
Arrows indicate respectively the root of G
and the root component. The algorithm cal-
culates the values of dpe for biconnected
components c, b, a and d (in this order).

Let us examine the structure of
the subproblem. All paths from ver-
tices from GC to the root pass
through v. By construction of the tree
of biconnected components each ver-
tex s in GC \ {v} belongs either to C
or to a subtree component of C ′ ∈ Cu

for a unique u ∈ C \ {v}. In the latter
case every path from s to the root also
passes through u. Edges which form
possible s-u paths belong to smaller
subproblems, so given the depth of u,
the optimal prices can be calculated.
Thus, now we are only interested in
the depths of vertices in C (more pre-
cisely, their distance to v, because it’s
depth is fixed). Note that these dis-
tances depend only on the edges in C.

Consider any prices assigned to
them. Let T be a shortest-path tree of
C rooted in v. Exactly one edge from
C does not belong to T , we will say
that it is unused. After removing this edge, the cost of a cheapest path from any
vertex in GC to v does not change (Fig. 4).

The algorithm iterates over all edges in C fixing the current one, denoted
e, to be the unused edge. In this step the algorithm finds an optimal solution
among those price assignments which result in e being unused. First, the price
of e is set to bmax + 1 (bmax = max {bi | i ∈ BH}). This effectively removes e
from the graph, as no buyer will ever purchase a path containing it.

Without e, C becomes a path and edges in C \ {e} constitute individual
biconnected components. The subtree graphs of components in Cu for u ∈ C\{v}
remain intact, but now in the subtree graph they are descendants of the single-
edge biconnected components from C \ {e} instead of the cycle C. However, the
solutions calculated for them for every valid depth still remain valid. Thus, the
only biconnected components in GC \ {e} for which we need to calculate dpC′,d
are formed by single-edge biconnected components. The algorithm calculates
these values in a bottom up manner as described previously. We assumed that
e is an unused edge, so let us denote the results as dpe.

Let C1 and C2 be the biconnected components formed by edges of C which
are adjacent to v. If e, the unused edge, happens to be adjacent to v, there is
only one such component. In this case C2 is just a placeholder with an empty
subtree graph and dpeC2,d

equals zero for all d ∈ R. Note that the union of subtree
graphs of C1 and C2 contains the same vertices and edges (except for e) as GC .
Furthermore, the two subtree graphs can only share one vertex: v. Thus, if we
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admit only such solutions, where e is unused, then dpC,d = dpeC1,d
+dpeC2,d

. Since
for every possible price assignment there exists an optimal allocation where one
edge of C is unused, it is enough to iterate over all possible edges e ∈ C:

dpC,d = max
e∈C

(
dpeC1,d + dpeC2,d

)
(5)

Using the above formula the algorithm computes dpC,d for every d ∈ Dv. Like
previously, respective price assignments to edges of C are stored alongside the
results.

Since all the above procedures run in polynomial time and each bicon-
nected component is processed only once, the solution is found in polynomial
time. Prices obtaining the computed maximal revenue can be easily calculated
using additional information stored alongside the values of dpC,d. This proves
Lemma 3.

4.2 The Non-skeleton Subproblem

In order to solve the non-skeleton subproblem the algorithm utilizes a special
structure of non-skeleton components on j-th level. For each of them, a rooted
instance of the tollbooth problem on cactus graphs is created. Those subproblems
are solved by the procedure described in Sect. 4.1. Resulting price assignments
for individual non-skeleton components are merged by a probabilistic procedure
which can, however, be derandomized.

Constructing Rooted Instances. Recall that each buyer i ∈ Bj is defined by
a triple (ui, vi, bi), which means that she has a valuation of bi for all ui-vi paths.
Since the skeleton edges are given away for free, the algorithm only processes
respective non-skeleton sections, which are modeled by two independent copies
of i-th buyer:

(
ui, reprj(ui), bi

)
and

(
vi, reprj(vi), bi

)
. Each of them is added

to the instance associated with the non-skeleton component containing ui and
vi respectively. If ui or vi is a skeleton vertex, the corresponding non-skeleton
section is empty and can be ignored. Since reprj(s) is the same for all vertices
s within a single non-skeleton component (Corollary 1), all subproblems defined
this way will indeed be rooted instances.

Remark 2. It follows from the classification of buyers, that if ui and vi are not
in SKj , the non-skeleton components containing ui and vi belong to the same
fragment of Dj , but to different fragments from Dj+1.

Algorithm for a Single Fragment. The above observation allows us to treat
all fragments in Dj independently. Let us consider a single fragment H ∈ Dj and
by revj,H(p) let us denote the revenue generated by its selling non-skeleton edges
for prices p to buyers from Bj . If for each buyer at most one non-skeleton section
was non-empty, the rooted instance would be independent. We could apply their
solutions verbatim – each buyer i present in an instance would always be able to
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spend bi as assumed. However, it’s not the case – for example a buyer i may be
present in two non-skeleton components and both solutions to the corresponding
rooted instances may require her to pay bi for each non-skeleton section, in which
case she would not buy anything.

We solve this issue by using a randomized procedure: each fragment F ∈ Dj+1

contained in H is independently and equiprobably colored black or white. Every
non-skeleton component in a black fragment is priced according to the solution
to the corresponding rooted instance. All edges in non-skeleton components in
white fragments are given away for free.

Lemma 5. Let p be the price vector found by the above randomized algorithm
and q be any price vector feasible for the non-skeleton subproblem. Then, the
following inequality holds:

E [revj,H(p)] ≥ 1
4
revj,H(q) (6)

This follows from the fact that for any non-skeleton section with probability
at least 1

4 it will be in the black fragment and the other non-skeleton section of
the same buyer will be in a white one. The deterministic algorithm iterates over
all possible colorings and chooses the best one, which will yield results at least
as good as the expected value. Because there are at most O (k) (O (√

logm
)
)

fragments of the next level contained in H, this takes polynomial time. Detailed
proofs of the lemma and the corollary can be found in the full version of the
paper [13].

Corollary 3. There exists a deterministic polynomial algorithm which for a
non-skeleton subproblem on j-th level finds prices achieving at least NSKOPTj

4
revenue.

5 Skeleton Edges

This section describes an algorithm solving the skeleton subproblem on a single,
j-th level of decomposition. Non-skeleton edges do not influence envy-freeness of
a solution because the are given away for free. Thus, a buyer i ∈ Bj wishing to
buy an ui-vi path can be thought of as a buyer with the same budget wishing
to buy a shortest reprj(ui)-reprj(vi) path. Our algorithm finds prices for edges
in SKj generating at least SKOPTj

2048 revenue. Here we present only the main ideas
behind the polynomial time procedure achieving that. For the full description
we refer the reader to the full version of the paper [13].

The algorithm first considers skeletons of individual fragments from Dj , i.e.
minimal subgraphs of SKj containing all paths between border vertices of j-th
level lying in a given single fragment F ∈ Dj . One can think of the skeleton of
a fragment as an extension of F ∩ SKj which includes all simple paths starting
and ending in it. Prices of edges in the skeleton of each fragment are optimized
independently. This is possible, because for each buyer i ∈ Bj both reprj(ui)
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and reprj(vi) lie in the same fragment F ∈ Dj . Hence, all paths between them
are contained in the skeleton of F . Secondly, those solutions are combined to
form a global solution for the whole SKj .

5.1 Solution for a Skeleton of a Single Fragment

When finding solutions for the skeleton of an individual fragment F ∈ Dj , we
take advantage of its simple structure. Since the skeleton of F is a cactus and a
union of simple paths between O (k) vertices (there can be only that many border
vertices in F ), we can partition it into O (k) subgraphs, called segments, which
can be thought of as edges. It is because each segment connects with the rest
of the skeleton of F through at most two vertices. Thus for all buyers i ∈ Bj

for which reprj(ui) and reprj(vi) do not lie in a given segment, the segment
will be either traversed from one endpoint to another or not at all. Hence, with
regards to them, the algorithm can focus on pricing whole segments instead of
individual edges. Here the price of a segment is the cost of traversing it from
one endpoint to the other. This is helpful, because having only O (k) segments
together with the observation that it is enough to consider only a polynomial
number of possible prices for each segment, it allows us to exhaustively search
through all such price assignments to the segments.

This yields a two-level algorithm, which first sets the prices of the entire seg-
ments and then distributes those costs (prices) among individual edges forming
the segments. In each segment S the latter stage is done by optimizing for the
revenue generated by buyers i ∈ Bj for which reprj(ui) and reprj(vi) lie in S.
As noted before, the other buyers can only traverse the whole segment from
one endpoint to the other, so from their perspective the distribution of the cost
into individual edges is irrelevant. By exploiting the structure of the cactus and
properties of the decomposition, our polynomial time procedure (described in
the full version of the paper [13]) computes the price distribution within a single
segment which generates revenue within a constant factor of the optimal one.

The aforementioned observation that it is sufficient to consider polynomially
many possible prices for each segment is based on the technique of price rounding.
The main idea is that if we decrease the price of all segments by at most half,
the revenue generated by the buyers will not decrease by more than a factor of
two. If additionally, we round all the prices which are under a certain threshold
t to zero, we can limit the prices to the set {0, t, 2t, 4t, . . . bmax}. For a proper
choice of t we can show that the size of that set is polynomial in the number
of edges and buyers while at the same time guaranteeing that the total revenue
shrinks at most four times due to rounding.

5.2 Combining the Local Solutions

One of the major difficulties in combining the solutions for skeletons of individual
fragments stems from the fact that G is a cactus graph and not necessarily
a tree. If it was a tree, each fragment, which is, by construction, a connected
subgraph, would contain all paths between border vertices belonging to it. Then,
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the skeleton of a fragment F would be fully contained in F and the skeletons of
individual fragments would partition SKj into edge-disjoint subgraphs. Hence,
local solutions from the previous section would be completely independent and
always compatible. Unfortunately, in the case of cactus graphs, although the
fragments in Dj are edge-disjoint, their skeletons can overlap. Thus, solutions
to the skeletons of two different fragments can also overlap, i.e. there may exist
edges to which both solutions assign a price. Hence, the algorithm cannot just
pick the most profitable solution for the skeleton of each fragment and combine
them. Instead, it needs to find the most profitable combination of solutions which
is compatible (i.e., if an edge is priced by multiple solutions, all of them assign
the same price to it). We achieve that using an involved dynamic programming
algorithm, which is presented in the full version of the paper [13].

6 Concluding Remarks

In Sects. 4 and 5 we have presented polynomial time constant factor approxima-
tion algorithms for the non-skeleton and skeleton subproblems. Thus, we have
shown that prices achieving at least a constant fraction of optimal revenue can
be found in polynomial time for each of the L levels of decomposition. Recall
that by setting k =

⌈
log

1
2 m

⌉
we ensure L to be O

(
logm

log logm

)
. Hence, our polyno-

mial algorithm for the tollbooth problem on cactus graphs yields an O
(

logm
log logm

)

approximation guarantee on revenue.
It remains an open question whether there exist polynomial time algorithms

giving sublogarithmic guarantees on revenue for further generalizations of the
tollbooth problem, for example for the cases where the underlying graphs are
only assumed to have bounded treewidth.
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Abstract. We study a theoretical model inspired by regulated health
insurance markets. The market regulator can choose to do nothing, run-
ning a Free Market, or can exercise her regulatory power by limiting
the entry of providers (decreasing consumer welfare by limiting options,
but also decreasing revenue via enhanced competition). We investigate
whether limiting entry increases or decreases the utility (welfare minus
revenue) of the consumers who purchase from the providers, specifically
in settings where the outside option of “purchasing nothing” is pro-
hibitively undesirable.

We focus primarily on the case where providers are symmetric. We
propose a sufficient condition on the distribution of consumer values for
(a) a unique symmetric equilibrium to exist in both markets and (b)
utility to be higher with limited entry. (We also establish that these con-
clusions do not necessarily hold for all distributions, and therefore some
condition is necessary.) Our techniques are primarily based on tools from
revenue maximization, and in particular Myerson’s virtual value theory.
We also consider extensions to settings where providers have identical
costs for providing plans, and to two providers with an asymmetric dis-
tribution.

Keywords: Limited Entry · Healthcare · Revenue · Virtual Values

1 Introduction

Consider a central planner who wishes to procure service from several providers,
on behalf of a population of consumers. One common approach, especially in the
domain of US healthcare, is for the planner to regulate an exchange. Specifically,
providers are still in control of the price to charge for their service, but the
regulator decides which providers get to actually enter the market (as a function
of the prices charged).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Schäfer and C. Ventre (Eds.): SAGT 2024, LNCS 15156, pp. 315–332, 2024.
https://doi.org/10.1007/978-3-031-71033-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71033-9_18&domain=pdf
http://orcid.org/0000-0003-3008-2724
http://orcid.org/0000-0001-7744-795X
https://doi.org/10.1007/978-3-031-71033-9_18


316 M. Essaidi et al.

Taking healthcare exchanges in the US as a running example, the following
two paradigms are both common. In some cases, employers manage an exchange
for their employees, and tend to limit entry, offering only a handful of providers
access to the market. In other cases, governments manage an exchange (such as
those created by the Affordable Care Act (ACA)), and instead allow any provider
meeting some minimum coverage guarantees to enter the market. The tradeoff
between these two approaches is that employer-managed exchanges tend to have
significantly fewer options, while government-managed exchanges tend to have
less competitive prices.1 Depending on the consumer population at hand, either
approach could optimize consumer utility.

Here is a motivating scenario to have in mind: perhaps there are multiple
providers, but each serves some segment of the market significantly better than
all others. For example, perhaps one provider has a strong network for diabetic
consumers, another has a strong network for competitive athletes, etc. With little
regulation, one should expect consumer welfare to be high (because there is a
provider for each segment of the market), but also provider revenue to be high
(because there is little competition within each segment).2 With limited entry,
one should expect consumer welfare to be lower (because some segments lose
access to their preferred provider), but also provider revenue to be lower (due
to increased competition just to enter the market in the first place). It is not
immediately obvious which approach leads to higher consumer utility (which is
the difference of the two). The main purpose of this paper is to provide theoretical
tools to reason about this tradeoff, and understand under what circumstances
consumer utility is improved.

Mandatory Purchase. Another important aspect of health insurance markets
is that purchase is essentially mandatory. Employers may assign a default option
if no option is selected, governments may assign a financial penalty for no selec-
tion (as was recently the case with the ACA’s individual mandate), or the choice
to purchase nothing may be prohibitively undesirable. We capture this aspect
in our model by requiring all consumers to purchase an option (but we do not
explicitly model the reason for why purchase is mandatory).

Our focus is the following: when purchase is mandatory, under what condi-
tions does limited entry (reducing prices via competition, but reducing welfare
via reduced options) improve consumer utility?

Observe that reasoning about this question requires a direct understanding of
what prices the providers will choose to set. As such, our main techniques involve
characterizing and analyzing equilibria, and understanding when they exist and
are unique. We compare two settings: the Free Market setting, where the market
regulator does not restrict entry at all, and the Limited Entry setting. Note, of

1 For example in 2013, even with subsidies, ACA premiums represented between 4
and 9.5% of the median income [13]. In 2015, a survey found that without subsidies,
average marketplace unsubsidized premiums were over 2.5× what most consumers
claim is the maximum they can afford [19].

2 In health insurance markets, lack of within-segment competition arises due to bar-
riers to entry of building a strong network.
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course, that while we use healthcare exchanges as a motivating example, the
focus of our paper is to provide a model and theoretical tools to study procure-
ment auctions. As such, our model is stylized and intended to capture one aspect
of decision-making (whether to limit entry or not)—it is not intended to capture
verbatim the full range of challenges facing regulators of healthcare exchanges.
Still, we do emphasize that this is indeed a key decision facing regulators, and
that theoretical tools to study this tradeoff were previously lacking.3

1.1 Model and Results

Our goal is to provide a clean model to reason about the impact of limiting
entry. To this end, we study a model first posed by Perloff and Salop [17]. There
are n providers, and a population D of consumers, each with a value vi for the
plan offered by provider i. For the majority of the paper, we consider the sym-
metric setting, where a random consumer from D has value vi for plan i drawn
i.i.d. from some single-variate distribution F (that is, individual consumers have
different values for different providers, but providers are comparably desirable
at the population-level view). We denote this as D := Fn. This i.i.d. assumption
has two components: first, we assume that provider values are independent, and
second, we assume that they are symmetrically distributed. Assuming that values
are independent across providers is the natural analogue of the ubiquitous “inde-
pendent items” assumption in multi-dimensional mechanism design [3,4,11]. The
motivation for this assumption in our work is the same as in the vast literature
of prior works: to enable tractability via Myersonian virtual-value theory [15].
Further assuming that values are symmetrically distributed simply means that
we are restricting attention to cases where no provider is a priori stronger than
another (e.g. providers have similarly-sized networks, but those networks are
tailored to different medical needs, geographic preferences, etc.).

In Sect. 3, we study the Free Market setting, where each provider i simply sets
a price pi, and consumers drawn from D purchase the plan i which maximizes
their utility vi − pi. We first identify sufficient conditions on F (involving a new
condition we term “MHR+”) for the existence of a unique symmetric equilibrium,
and we characterize the equilibrium prices in the Free Market in Theorem 1
below. Here, hn

2 (F ) denotes the expected hazard rate of the second-highest of n
i.i.d. draws from F , and formal definitions of both MHR+ and decreasing density
appear in Sect. 2.

Theorem 1. Let D := Fn, where F is MHR+ and has decreasing density. Then
the unique symmetric equilibrium in the Free Market setting is for each provider
to set price 1/hn

2 (F ).

Observe that a characterization of a canonical equilibrium in the Free Market
setting is necessary if we are to possibly analyze consumer utility. We include
one vignette regarding our technical approach, which leverages machinery from
3 Indeed, this direction was first posed to the authors by a researcher in applied mar-

kets for health insurance.
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the revenue maximization literature [15]. Suppose all other providers are setting
price p; what is a provider’s best-response? To reason about this, consider instead
a new distribution F ∗

p defined such that 1 − F ∗
p (q) is the probability that a

consumer drawn from marginal F will purchase from this provider when he sets
price q and all other providers set price p. The provider’s best response is then
to set q∗ which maximizes his expected profit, q · (1−F ∗

p (q)), and p is therefore a
symmetric equilibrium if and only if p = q∗. Using this rephrasing, we then argue
that if this distribution F ∗

p happens to have a monotone hazard rate (MHR), then
we are guaranteed the existence of a unique symmetric equilibrium. Of course,
this distribution F ∗

p is quite different from F itself (for example, F may be MHR
and F ∗

p may not even be regular!). We define a new distributional assumption,
MHR+, such that if F is MHR+ then this implies that F ∗

p is MHR. We note
that MHR+ is a strictly stronger condition than MHR, and that most common
MHR distributions are also MHR+ (e.g. exponential, uniform, Gaussian).

Next, in Sect. 4, we study the Limited Entry setting. Formally, each provider
still sets a price pi, but now only the n−1 providers4 with lowest price enter the
market (tie-breaking arbitrarily). That is, the providers participate in Bertrand
competition to enter the market. Consumers again pick the plan maximizing
vi − pi, but only among these n − 1 providers. For symmetric instances, quickly
observe that there is a unique (symmetric) equilibrium, and in it all providers
set pi = 0 (so in some sense, our model can be seen as “optimistic” towards the
benefits of limiting entry). The main result of this section is a characterization
of the precise condition on F that implies that consumer utility in the Limited
Entry setting will be greater than in the Free Market setting; we call this the
Limit-Entry condition.

Definition 1 (Limit-Entry Condition). A distribution D = Fn satisfies
the Limit-Entry Condition if Hn

1 (F ) ≤ n/hn
2 (F ). Here, Hn

1 (F ) is the expected
inverse hazard rate of the highest of n i.i.d. draws from F . (Recall that hn

2 (F ) is
the expected hazard rate of the second-highest of n i.i.d. draws from F .)

Theorem 2. Let D := Fn and admit a symmetric equilibrium in the Free Mar-
ket setting. Then the expected consumer utility at the unique equilibrium in the
Limited Entry setting exceeds that at the unique symmetric equilibrium in the
Free Market setting if and only if F satisfies the Limit-Entry Condition.

Finally, while the Limit-Entry condition is relatively clean, it is not obvious
how it relates to more common distributional assumptions. Our final main result
shows that the Limit-Entry condition is satisfied under standard distributional
assumptions.

Theorem 3. Let D := Fn, where F is MHR and has decreasing density. Then
D satisfies the Limit-Entry Condition.

4 We consider an extension to any k and minimum price p in the Appendix of the full
version.
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Corollary 1. Let D := Fn, where F is MHR+ and has decreasing density.
Then D has a unique symmetric equilibrium in the Free Market setting, and the
expected consumer utility at this unique symmetric equilibrium is exceeded by the
expected consumer utility in the Limited Entry setting.

In the interest of completeness, we examine whether any of our assumptions
can be relaxed to more standard assumptions (e.g. MHR+ to MHR). In short,
Proposition 1 establishes that the answer is no, suggesting that there is indeed
a relevant aspect of our stronger assumptions as it relates to our conclusions. Its
proof can be found in the Appendix of the full version.

Proposition 1. (Different) distributions D := Fn with the following properties
all exist:

– F is MHR, but there exists a p for which F ∗
p is not MHR (in fact, it is

anti-MHR).
– F is MHR, but D has no symmetric equilibrium in the Free Market setting.
– D has a symmetric equilibrium in the Free Market, but does not satisfy the

Limit-Entry Condition.
– D satisfies the Limit-Entry Condition, but does not have a symmetric equi-

librium in the Free Market.

Finally, we include some extensions. In Sect. 5 of the full version [9], we
consider the case of asymmetric distributions D = ×iFi. We prove that if Fi is
MHR+, then the asymmetric analog, F ∗

i,p−i
, is MHR. We also show that for two

providers, when F ∗
i,p−i

is MHR, an equilibrium exists. In the Appendix of the
full version, we extend our results to the setting where providers have identical
costs for providing service, and also extend the Limit-Entry Condition to the
Generalized Limited Entry setting where the regulator may choose parameters
k and p: the k providers with lowest price enter the market, and a minimum
price of p is imposed.

1.2 Related Work

As previously noted, the mathematical model we study (including that con-
sumers are i.i.d. with mandatory purchase, and provider costs are identical as in
the Appendix of the full version) is first posed in [17]. As a result, there is some
technical overlap between our works, but minimal conceptual overlap. At a con-
ceptual level, the entire goal of our paper is to understand the impact of limiting
entry, which is not considered in [17] (they consider, for example, the impact of
additional providers in the Free Market model). At a technical level, [17] also pro-
vides sufficient conditions for equilibria to exist, but these conditions are stated
in terms of conditions on our F ∗

p (rather than directly on F , as in our Theorem 1),
and they do not provide an example of non-existence (our Proposition 1).5 The
5 Their conditions suffice to establish that when F is uniform or exponential, an equi-

librium exists, but they do not give a classification in terms of direct conditions on
F .
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main technical overlap is that [17] also characterizes a Free Market symmetric
equilibrium and proves that it is unique (under the assumption that it exists);
however, their proof is via direct calculations, whereas ours derives intuition via
revenue maximization techniques, and uniqueness follows for free. As far as moti-
vation, [17] offers the same justification for the i.i.d. assumption: independence
is a ubiquitous technical assumption to simplify analysis, and symmetry implies
that the products are a priori of the same quality. Interestingly, they justify the
mandatory purchase assumption as a tool for technical simplicity, whereas we
propose mandatory purchase to better capture our running example.

The remaining literature pertains to procurement auctions without manda-
tory purchase for consumers. In order to compare with the literature on procure-
ment auctions, we will call the providers “suppliers” below. The most relevant
work is that of [18]. They also study procurement auctions with n heterogenous
goods, each owned by a different supplier, a consumer population, and a mech-
anism designer whose objective is to maximize consumer utility. The simplest
comparison between these works is that [18] studies a wide variety of different
procurement models, whereas we focus in depth of one particular model. For
example, our work fits into their “First-Price Auction” model (which is only one
of many models they consider). But within this model, they consider only a two-
supplier setting in a simple Hotelling game [12],6 whereas we study this model
in significantly more depth and generality.

Other procurement work [1,14] also studies optimal centralized allocations
for consumer utility, where the designer chooses which suppliers allocate to which
consumers. We do not study this form of allocation.

Most prior work studies the two-supplier case without mandatory purchase.
[8] also uses a third-party mechanism designer apart from consumers and sup-
pliers, but studies different objectives than us: (1) welfare (consumer utility plus
supplier revenue) and (2) supplier revenue minimization. They do not, however,
study consumer utility maximization.

Other works allow the consumers to act as the auctioneer [6,7] and investigate
whether it is better for the consumers to have one or two suppliers; the answer
differs depending on whether the consumers’ information is private or not. These
papers do not have a mechanism designer acting separately from the consumers;
they also only study the stylized Hotelling model.

1.3 Brief Summary

We study consumer utility in a market with n providers under mandatory pur-
chase. We find clean sufficient conditions for equilibria to exist (Theorem 1)
in the Free Market, and establish that conditions like these are also necessary
(Proposition 1). We also establish clean necessary and sufficient conditions for

6 Specifically: consumers are uniformly distributed along the unit line. Each supplier
offers an item with fixed value at the endpoint of the line, and consumers value the
items at their value minus the distance.
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consumer utility to improve with Limited Entry over the Free Market (Theo-
rems 2 and 3, and Corollary 1).

We also wish to briefly note our technical highlights. Typically, establishing
existence/uniqueness of market equilibria requires solving a system of non-linear
equations (and establishing uniqueness). Of course, our proofs must also accom-
plish this, but we get a surprising amount of leverage via Myersonian virtual
value theory. That is, we interpret equilibrium conditions as one price being
revenue-maximizing for a related consumer distribution. Due to mandatory pur-
chase, this interpretation (while mathematically involved) is conceptually fairly
clean. This enables us to break down a complex mathematical proof into con-
ceptually digestible chunks, and also provides insight into the right conditions
to search for. We are optimistic that these tools will continue to be useful in
extensions beyond those considered explicitly in this paper.

2 Notation and Preliminaries

We consider the following problem from the perspective of a market regula-
tor. We use the language of healthcare providers throughout the paper (but
we remind the reader that healthcare exchanges are just a motivating example
for our stylized model). There are n providers, each of whom produces a single
(distinct) plan. Each individual consumer in the market has a valuation vector
v ∈ R

n
+ for the plans, with vi denoting their value for plan i. The market consists

of a continuum over valuations v, which can alternatively be interpreted as a
distribution D (over a random consumer drawn from the market).

We assume throughout the paper that D is a product distribution (that is,
D := ×iDi for single-dimensional Di). We will use Fi to denote the CDF of Di,
and assume that each Di also has a density function, or PDF, denoted by fi.
For our main results, we will also assume that D is symmetric (that is, Di = Dj

for all i, j, or the valuations are identically drawn across providers). In Sect. 5 of
the full version [9], we consider extensions to asymmetric distributions.

In our context, let’s briefly elaborate on these assumptions. Assuming that
each Di admits a density function is extremely common in past literature (e.g.
[15]), and is comparable to a “large market” assumption that no particular indi-
vidual has an oversized role. The motivation for this assumption is purely tech-
nical, since it allows for clean closed-form definitions of conditions such as regu-
larity or Monotone Hazard Rate. Assuming that D is a product distribution is
also extremely common (e.g. [3,4,10,15]), and corresponds to the property that
a consumer’s value for one plan does not influence the probability of their value
for another. While this assumption may initially appear restrictive, numerous
works establish that results proved in this setting generally extend to richer set-
tings as well. Indeed, our results immediately extend, for free, to the “common
base-value” model of [5],7 but we focus on the independent setting for ease of
7 In the common base-value model, each consumer has a “base value” for all plans, and

an idiosynchratic value for each plan separately. Their value for a plan sums these
two together.
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exposition (see Sect. 5 of the full version for details on this particular extension).
Assuming that D is symmetric corresponds to the following: individuals may
certainly have distinct values for distinct plans. The fact that D is symmet-
ric simply means that a priori there is nothing special about one plan versus
another.

Free Market Setting: In the Free Market setting, each provider i sets a price pi
on their plan. A consumer drawn from D purchases the plan i∗ = argmaxi{vi −
pi}. Importantly, notice that the consumer must purchase a plan, even if vi < pi
for all i. So provider i’s payoff is equal to pi · Prv←D[i = argmaxj{vj − pj}].8
A best response of provider i to p−i, where −i denotes all agents other than
i, is the payoff-maximizing price in response to p−i. A price vector p is a pure
equilibrium if each provider is simultaneously best responding. An equilibrium
p is symmetric if pi = pj for all i, j. Observe that when both D and p are
symmetric, the payoff to each provider is just pi/n.

Limited Entry Setting: The focus of this paper is contrasting the Free Mar-
ket setting with a “Limited Entry” setting. In the Limited Entry setting, the
regulator does not exert total control over the market (e.g. by directly setting
prices), but simply restricts entry to the market. Specifically, each provider i
first sets a price pi on their plan, and then the market regulator allows the n− 1
providers who set the lowest price (tie-breaking randomly, if necessary) to enter
the market (refer to these providers as S). A consumer drawn from D purchases
the plan i∗ = argmaxi∈S{vi −pi}. Again, the consumer must purchase a plan in
S, even if vi < pi for all i ∈ S. Provider i’s payoff is 0 if they are not selected to
be in S, or equal to pi ·Prv←D[i = argmaxj∈S{vj − pj}] otherwise. A price vec-
tor p is again an equilibrium if each provider is simultaneously best responding,
and symmetric if pi = pj for all i, j. It is not hard to see that there is a unique
equilibrium for the provider prices. Observation 1 follows simply as the providers
participate in Bertrand competition (and e.g. would hold even if purchase were
not mandatory).

Observation 1. For all symmetric D, the unique equilibrium in the Limited
Entry setting is p = 0.

Note that, in principle, a regulator could limit entry using other rules (e.g.
they could allow only k < n − 1 providers to enter). Taking our model literally,
allowing n − 1 providers to enter is optimal among all such rules (because of
Observation 1, consumer utility is monotone in the providers who enter as long
as it is < n). Still, we consider this generalization in the Appendix of the full
version.

Consumer Utility: The focus of this paper is understanding the expected
consumer utility in equilibrium for both settings. Specifically, the expected con-
sumer welfare is equal to Ev←D[vi∗ , i∗ = argmaxi{vi − pi}], where the argmax
8 Observe also that because each Di has a PDF, ties occur with probability 0, and

there is always a unique argmax. As a result, we will not be careful between ≤ and
< when discussing preferences.
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is taken over i ∈ [n] in the Free Market setting, or i ∈ S in the Limited Entry
setting. That is, the expected welfare is simply the expected value a consumer
receives for the plan they purchase. The expected revenue is simply the sum
of the providers’ payoffs. Consumer utility is then just welfare minus revenue.
Recall that consumers cannot opt out, and some consumers may indeed get
negative utility.

2.1 Distributional Properties

Symmetric equilibria do not always exist for symmetric distributions (Proposi-
tion 1), and limiting entry does not universally increase or decrease consumer
utility compared to the Free Market setting (also Proposition 1). As such, the
focus of this paper is in providing sufficient conditions for (e.g.) (1) equilibria to
exist, and (2) limiting entry to improve consumer utility. Below are properties of
single-variate distributions which we’ll use. The first two are standard in the lit-
erature. MHR+ is a new condition we introduce which is a proper subset of MHR
(see Observation 2), and happens to be “the right” restriction of MHR for our
setting. For all definitions below, “non-decreasing” means “non-decreasing over
the support of F ,” and “for all x” means “for all x in the support of F .” Mod-
ulo our new MHR+, each of these conditions are common assumptions in past
work (e.g. [2,16]). In typical applications, regularity (or at least MHR) suffice for
desired positive results to hold. Proposition 1 establishes, perhaps surprisingly,
that MHR doesn’t suffice in our setting, motivating the MHR+ definition.

Definition 2 (Regular). A one-dimensional distribution with CDF F and
PDF f is regular if for all x, x − 1−F (x)

f(x) is monotone non-decreasing.

Definition 3 (Monotone Hazard Rate (MHR)). A one-dimensional dis-
tribution with CDF F and PDF f is MHR if for all x, the hazard rate
hF (x) :=

f(x)
1−F (x) is monotone non-decreasing.

The following condition is new to this work. Note that f ′(x) denotes d
dxf(x);

similarly for ′ throughout.

Definition 4 (MHR+). A one-dimensional distribution with CDF F and PDF
f is MHR+ if there exists a constant c ≥ 0 such that cf(x) ≥ −f ′(x) and
hF (x) ≥ c for all x.9

Definition 5 (Decreasing Density). A one-dimensional distribution with
CDF F and PDF f has decreasing density if f(·) is non-increasing.

The following observation provides several equivalent conditions for the above
definitions. In particular, the second condition concerning MHR (4) and the
second condition concerning MHR+(6) establish how MHR+distributions are
MHR distributions “plus a little extra.”
9 Essentially every MHR distribution is also MHR+except for those explicitly con-

structed so as not to be. See the Appendix of the full version.
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Observation 2. The definitions above are equivalent to the following condi-
tions:10

1. A distribution is regular iff 2f(x)2 ≥ −f ′(x)(1 − F (x)) for all x.
2. A distribution is regular iff 2f(x)hF (x) ≥ −f ′(x) for all x.
3. A distribution is MHR iff f(x)2 ≥ −f ′(x)(1 − F (x)) for all x.
4. A distribution is MHR iff f(x)hF (x) ≥ −f ′(x) for all x.
5. A distribution is MHR+ iff it is MHR and f(x)f(0) ≥ −f ′(x) for all x.
6. A distribution is MHR+ iff it is MHR and f(x)hF (0) ≥ −f ′(x) for all x.
7. A distribution is MHR+ iff f(x)f(0) ≥ −f ′(x) and hF (x) ≥ f(0) for all x.

Its proof can be found in the Appendix of the full version. We will use con-
dition (3) for MHR and (7) for MHR+several times throughout the proofs in
Sects. 3 and 5 (of the full version). See Figure in the Appendix of the full version
for examples in each class.

Finally, we’ll use the following notation for many of our theorem statements.

Definition 6 (Expected Order Statistics). For a single-variate distribution
with CDF F , define:

– Xn
i (F ) to be a random variable which is the ith highest of n i.i.d. draws from

F .
– V n

i (F ) to be the expected value of the ith highest of n i.i.d. draws from F .
That is, V n

i (F ) := E[Xn
i (F )].

– hn
i (F ) to be the expected hazard rate of the ith highest of n i.i.d. draws from F .

That is, hn
i (F ) := E

[
f(Xn

i (F ))
1−F (Xn

i (F ))

]
. Note that the definition inside the expec-

tation is intentional: we first find the ith highest sample, and then compute
its hazard rate with respect to the original F, f .

– Hn
i (F ) to be the expected inverse hazard rate of the ith highest of n i.i.d. draws

from F . That is, Hn
i (F ) := E

[
1−F (Xn

i (F ))
f(Xn

i (F ))

]
.

2.2 Virtual Value Preliminaries

A tool that we’ll repeatedly use throughout our results is the Myersonian theory
of virtual values [15].

Definition 7 (Virtual value). For a single-dimensional distribution with CDF
F and PDF f , define the virtual value with respect to F as ϕF (·), with ϕF (v) :=
v − 1−F (v)

f(v) .

Note also that ϕF (v) = v − 1
hF (v) . The inverse of ϕF (v) is well-defined when

ϕF (v) is non-decreasing, and unique when strictly increasing.

Theorem 4 ([15]). The following conditions hold
10 Let x = inf supp(F ). If x �= 0, everything still holds replacing 0 with x in Observa-

tion 2 and the proof of Proposition 4.
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– Let F be regular. Then ϕF (·) is monotone non-decreasing, and argmaxp{p ·
(1 − F (p))} = ϕ−1

F (0). Observe that ϕ−1
F (0) is the set of all v such that

v = 1/hF (v).
– If F is not regular, it is still the case that q := argmaxp{p · (1 − F (p))}

satisfies ϕF (q) = 0.11
– Finally, for all n and F , E[Xn

2 (F )] = E[ϕF (Xn
1 (F ))].12

Observation 3. Let F be MHR. Then argmaxp{p · (1 − F (p))} is unique.

Proof. Observe that v is strictly increasing in v, and 1/hF (v) is weakly decreasing
in v. Therefore, v = 1/hF (v) cannot have multiple solutions. ��

3 Best Responding in the Free Market Setting

In this section, we expand on the mathematics behind what it means to best-
respond in the Free Market setting. Importantly, recall that every consumer
must select a provider, even if their utility for each is negative. Our focus is on
the symmetric case (D is symmetric, searching for a symmetric equilibrium). In
Sect. 5 of the full version [9] we consider extensions to the asymmetric case.

In the search for a symmetric equilibrium, the question we ask is “given that
the n−1 other providers are setting price p, is p a best response for the remaining
provider?” To resolve this, we first need to understand the payoff received by the
remaining provider for setting price q while the other n − 1 set price p.

Definition 8 (Star Operation). Let F ∗
p (q) be such that when all providers

j �= i are setting price p, and provider i sets price q, the probability that the
consumer purchases from provider i is 1− F ∗

p (q). That is, the payoff to provider
i in this circumstance is q(1 − F ∗

p (q)).

Our notation suggests that we will reason about best-responding as a single-
item revenue problem, with the consumer’s value distribution defined by F ∗

p .
Our goal will be to find sufficient conditions for a p to exist such that p itself
is the revenue-maximizing price for the distribution F ∗

p . Our plan is roughly as
follows:

– Write an expression for ϕF∗
p
(·).

– Observe that ϕF∗
p
(p) = 0 is necessary for p to possibly be a symmetric equi-

librium, by first-order conditions (Theorem 4). Show that this equation has
a unique solution.

11 For readers not familiar with this particular claim, it follows by observing that
ϕF (q) = 0 is exactly the first-order condition for maximizing the revenue curve of
F .

12 This follows from the equivalence of expected virtual welfare and expected revenue.
The expected revenue of the second-price auction with n bidders is the LHS, and
the expected virtual value of the winner is the RHS.
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– If F ∗
p is regular or MHR, then first-order conditions suffice for p = ϕ−1

F∗
p
(0) to

be a best response, and therefore p is a symmetric equilibrium (but this is
not necessary for p to be a symmetric equilibrium).

– Prove that if F is MHR+ with decreasing density, then F ∗
p is MHR.

Let’s quickly highlight some aspects of this plan. Typically, finding a closed
form for potential equilibria and establishing that sufficient conditions hold is a
matter of solving systems of non-linear equations. Often, this process is mathe-
matically engaging, but may not offer insight connecting the sufficient conditions
to the conclusions. The final step of our outline (that MHR+F implies MHR F ∗

p )
is still mostly “just math,” but the rest of the outline leverages Myersonian vir-
tual values to make the rest of the math more intuitive.

Let’s now begin by writing an analytical expression for F ∗
p (q), f∗

p (q), and
(f∗)′p(q). This will let us (a) compute the virtual value ϕF∗

p
(q) and (b) check if

F ∗
p is regular or MHR. Recall that 1−F ∗

p (q) is the probability that the consumer
purchases from a provider priced at q when the other n−1 are priced at p. Below,
gp(q, x) is the density of the maximum of n−1 draws from F after adding p and
subtracting q.

Proposition 2. Let gp(q, x) := (n − 1)f(x − q + p)(F (x − q + p))n−2. Let also
M := max{0, q − p}.
– F ∗

p (q) =
∫ ∞
M

F (x)gp(q, x)dx.
– 1 − F ∗

p (q) =
∫ ∞
M

(1 − F (x))gp(q, x)dx + F (M + p − q)n−1.
– f∗

p (q) =
∫ ∞
M

f(x)gp(q, x)dx.
– (f∗

p )
′(q) =

∫ ∞
M

(f ′(x))gp(q, x)dx + f(0)gp(q,M).

Note that the definitions in Proposition 2 are referred to many times through-
out the proofs of Propositions 3 and 4; the reader may want to keep them handy.
Its proof appears in the Appendix of the full version.

We now describe a condition that, by first-order conditions, must be met in
order to have a symmetric equilibrium in the Free Market. Note that this holds
for any F , even those which are not MHR or regular.

Proposition 3. Let D := Fn. The only possible symmetric equilibrium in the
Free Market setting is pF := 1

hn
2 (F ) . If F ∗

p is regular, then 1
hn
2 (F ) is a symmetric

equilibrium.

Proof. By Theorem 4 and the definition of F ∗
p , in order for p to be a best response

to all other providers setting price p, we must have ϕF∗
p
(p) = 0. Note that this

does not guarantee that p is a best response; this is just a necessary first-order
condition.

Observe that, using Proposition 2, many of the terms in F ∗
p (q) (and f∗

p (q))
simplify when p = q, so:

ϕF∗
p
(p) = p − 1 − F ∗

p (p)
f∗
p (p)

= p −
∫ ∞
0

(1 − F (x))(n − 1)f(x)F (x)n−2dx∫ ∞
0

f(x)(n − 1)f(x)F (x)n−2dx
.
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Let’s first examine the numerator. The numerator integrates over all x, the
density f(x), times the probability that exactly one of n−1 other draws from F
exceeds x (this is (n−1)(1−F (x))F (x)n−2). This is exactly the probability that
one of n draws is the second-highest, which is just 1/n. Another way to see that
1 − F ∗

p (p) = 1/n is just that 1 − F ∗
p (p), by definition, is the probability that a

particular one of n providers is the consumer’s favorite. But as D is symmetric,
and the price p is the same for all providers, this is just 1/n. So now we wish to
examine the denominator, with an extra factor of n from the numerator:
∫ ∞

0

n(n − 1)f(x)2 F (x)n−2dx =
∫ ∞

0

n(n − 1)hF (x)f(x)F (x)n−2(1 − F (x))dx.

All we have done above is multiply and divide by 1 − F (x). But now the
integral is interpretable: we are integrating over all x, the number of ways to
choose an ordered pair (a, b) of n draws (n(n − 1)), times the density of va at x
(f(x)), times the probability that vb exceeds x (1−F (x)), times the probability
that the remaining n−2 items do not exceed x (F (x)n−2), times the hazard rate
at x. This is exactly computing the expected hazard rate of the second-highest
of n draws from F ! Therefore, we immediately conclude that:

ϕF∗
p
(p) = p − 1

hn
2 (F )

,

and therefore ϕF∗
p
(p) = 0 if and only if p = 1/hn

2 (F ). Importantly, note that
we have proven that for all p, even those which are not equilibria, or otherwise
related to F , that ϕF∗

p
(p) = p − 1

hn
2 (F ) . ��

So at this point, we know the unique candidate for a symmetric equilibrium
(because it is the only candidate which satisfies first-order conditions of Theo-
rem 4). If we can find sufficient conditions for F ∗

p to be regular (or MHR), then
these first-order conditions suffice for 1/hn

2 (F ) to indeed be a symmetric equilib-
rium. We identify such sufficient conditions below (remember that Proposition 1
establishes that MHR alone does not suffice, so some stronger conditions are
necessary):

Proposition 4. Let F be MHR+ and have decreasing density. Then for all p,
F ∗
p is MHR.

Due to space constraints, we defer the proof of Proposition 4 to the Appendix
of the full version, but we provide some intuition here for why MHR+ is a con-
venient condition for reasoning about the starred distribution. Observe that
each of the starred CDF/PDF/etc. functions are convolutions of the original
CDF/PDF/etc. with gp(q, x). Unfortunately, just knowing that, for example,
f ′(x)(1−F (x)) ≤ f(x)2 for all x (which is guaranteed by MHR from Observation
2 (3)) is not enough for us to reason about these convolutions. But MHR+ buys
us something stronger, which is exactly what’s needed for the first half of the
proof: not only is −f ′(x)(1−F (x)) ≤ f(x)2 for all x, but in fact −f ′(x) ≤ cf(x)
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everywhere, which does allow us to make direct substitutions into the convolu-
tion. The second step of the proof is dealing with the additional terms outside
of the integral. Surprisingly, MHR+ also turns out to be the right condition to
reason transparently about these additional terms, although more creativity is
required here than in step one.

And now, we can wrap up the proof of Theorem 1, which claims that whenever
F is MHR+, the unique symmetric equilibrium in the Free Market setting for
D := Fn is for each provider to set price 1/hn

2 (F ).

Proof (Proof of Theorem 1). Proposition 3 establishes that 1/hn
2 (F ) is a sym-

metric equilibrium as long as F ∗
1/hn

2 (F ) is regular. Proposition 4 proves something
even stronger: that F ∗

p is MHR for all p, as long as F is MHR+ with decreasing
density. The two propositions together complete the proof. ��

Note that Theorem 1 accomplishes several tasks:13

– It establishes that a symmetric equilibrium exists subject to MHR+ (which
is not generally true without some assumptions, Proposition 1).

– It provides a clean closed form for this symmetric equilibrium.
– It establishes uniqueness of this symmetric equilibrium (even stronger: this is

the only possible symmetric equilibrium for all F ). This is important because
it lets us reason about “the utility in the Free Market setting” without needing
to worry about exactly which equilibrium we should be analyzing.

4 Comparing Consumer Utilities

In this section, we derive a Limit-Entry condition, which dictates when consumer
utility is higher in the Limited Entry setting versus the Free Market. Note that
our condition is well-defined even when no symmetric equilibrium exists in the
Free Market setting. Let’s first recall the Limit-Entry condition from Sect. 1,
which a distribution satisfies when

Hn
1 (F ) ≤ n/hn

2 (F ),

where again, Hn
1 (F ) is the expected inverse hazard rate of the highest of n

i.i.d. draws from F and hn
2 (F ) is the expected hazard rate of the second-highest

of n i.i.d. draws from F . Recall that Theorem 2 states that consumer utility is
higher in the Limited Entry setting versus the Free Market setting if and only
if the Limit-Entry condition holds. The main result of this section is a proof of
Theorems 2 and 3.

Let’s first compute the expected consumer utility in the Limited Entry set-
ting.
13 The first two bullets below are not discussed in [17]: they do not provide direct

conditions on F for equilibrium to exist, nor analyze a closed form for the unique
potential equilibrium. The third bullet was also accomplished by [17], as they do
show that a unique potential equilibrium exists.
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Lemma 1. The expected consumer utility at the unique Limited Entry equilib-
rium is V n−1

1 (F ).

Proof. There are a total of n − 1 providers, and recall from Observation 1 that
the unique equilibrium has all prices set to 0. Therefore, the consumer’s expected
payment is zero. The consumer picks their favorite plan, with value simply the
maximum of n − 1 i.i.d. draws from F . Together, we see that the consumer’s
expected utility at the unique symmetric equilibrium of the Limited Entry setting
is V n−1

1 (F ). ��
Now, let’s compute the expected consumer utility in the Free Market setting.

Lemma 2. The expected consumer utility at the unique symmetric equilibrium
(when it exists) in the Free Market setting is V n

1 (F ) − 1/hn
2 (F ).

Proof. There are a total of n providers, and the unique symmetric equilibrium
(when it exists) has all prices set to 1/hn

2 (F ). Therefore, the consumers expected
payment is 1/hn

2 (F ) (because the consumer must purchase a plan, even with
negative utility for everything). The consumer’s value for their favorite plan is the
maximum of n i.i.d. draws from F . Therefore, the consumer’s expected utility at
the unique symmetric equilibrium of the Free Market setting is V n

1 (F )−1/hn
2 (F ).

��
With these two calculations in hand, we can prove Theorem 2.

Proof (Proof of Theorem 2). We observe first that the expected utility is higher
in the Limited Entry setting versus Free Market if and only if V n−1

1 (F ) ≥
V n
1 (F )− 1/hn

2 (F ). The remainder of the proof is rewriting this condition, using
Myersonian virtual value theory in yet another way. We produce the steps below,
and justify each step afterwards. Two of the three steps follow from basic algebra
or a coupling argument. The middle step (line three) makes use of virtual value
theory.

V n−1
1 (F ) ≥ V n

1 (F ) − 1
hn
2 (F )

⇔ n − 1
n

V n
1 (F ) +

1
n

V n
2 (F ) ≥ V n

1 (F ) − 1
hn
2 (F )

⇔ n − 1
n

V n
1 (F ) +

1
n
(V n

1 (F ) − Hn
1 (F )) ≥ V n

1 (F ) − 1
hn
2 (F )

⇔ Hn
1 (F ) ≤ n

hn
2 (F )

.

The first equivalence follows by a coupling argument. One way to draw the
highest of n−1 draws from F , or Xn−1

2 (F ), is to take n draws from F , remove one
uniformly at random, and then examine the highest remaining. With probability
1/n, the highest of the n draws is excluded, so the highest remaining is Xn

2 (F ).
The rest of the time, a different draw is excluded and the highest of n remains,
giving Xn

1 (F ). Hence in expectation, V n−1
1 (F ) = n−1

n V n
1 (F ) + 1

nV n
2 (F ).
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The second equivalence follows from Theorem 4, as V n
2 (F ) = E[ϕF (Xn

1 (F ))].
More familiarly, this is the fact that a second-price auction is revenue-
maximizing, and that the revenue is equal to the virtual welfare of the highest-
valued bidder in the i.i.d. setting. Recall that ϕF (v) = v − 1/hF (v); then
E[ϕF (Xn

1 (F ))] = V n
1 (F ) − Hn

1 (F ).
The final equivalence follows by subtracting V n

1 (F ) from both sides and mul-
tiplying by −1. ��

Finally, we prove Theorem 3. Recall that Theorem 3 asserts that whenever
F is MHR with decreasing density, it satisfies the Limit-Entry condition. Recall
that MHR alone is not enough to guarantee that there is a symmetric equilibrium
in the Free Market setting for the Limited Entry setting to improve over, but
that the condition is well-defined anyway. When F is further MHR+, there is
a symmetric equilibrium in both settings, and the consumer utility is always
higher with Limited Entry (Corollary 1).

Proof (Proof of Theorem 3). The proof will follow from the steps below (jus-
tification for each step is provided afterwards). If F is MHR with decreasing
density, then:

f(0) ≥ E[f(Xn−1
1 )]

⇔ 1
f(0)

≤ 1
E[f(Xn−1

1 )]

⇔ 1
hF (0)

≤ n

nE[f(Xn−1
1 )]

⇒ Hn
1 (F ) ≤ n

hn
2 (F )

.

The first line follows because F has decreasing density. Therefore f(0) ≥ f(x)
for all x, and certainly f(0) ≥ E[f(X)] for any non-negative random variable
X (including Xn−1

1 ). The second line follows by simple algebra. The third line
makes two steps. On the LHS, we observe that f(0) = hF (0), so the left-hand
sides are actually identical between the second and third lines. On the right-
hand side, we just multiply the numerator and denominator by n. The final
implication again makes two steps. On the left-hand side, we observe that as F
is MHR, 1/hF (0) ≥ 1/hF (x) for all x ≥ 0. Therefore, 1/hF (0) ≥ E[1/hF (X)] for
any non-negative random variable X (including Xn

1 ). On the right-hand side, we
use the equality nE[f(Xn−1

1 )] = hn
2 (F ), which follows from a technical lemma

(Lemma 3, proved immediately after this proof).
The last line above completes the proof: we have shown that if F is MHR

with decreasing density, then the Limit-Entry Condition is satisfied. ��
The remaining task is to prove Lemma 3, below.

Lemma 3. h2
n(F ) = E[n · f(Xn−1

1 (F ))].
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Proof.

hn
2 (F ) =

∫ ∞

0

n(n − 1)f(x)hF (x)F (x)n−2(1 − F (x))dx

=
∫ ∞

0

n(n − 1)f(x) · f(x)F (x)n−2dx

= E[n · f(Xn−1
1 (F ))].

The first line is simply the definition of hn
2 (F ). The second line just rewrites

hF (x)(1 − F (x)) = f(x). The third line observes that (n − 1)f(x)F (x)n−2dx is
the density of Xn−1

1 (F ). Indeed, there are n−1 ways to choose a provider a from
n−1, f(x) is the density of va at x, and F (x)n−2 is the probability that all n−2
other providers have vi ≤ x. So we are integrating the density of Xn−1

1 (F ) at x,
times f(x) from 0 to ∞. This exactly computes the expected value of f(Xn−1

1 ).
The extra factor of n is carried through. ��

5 Conclusion

We study the impact of limiting entry on consumer surplus with mandatory
purchase. We provide clean necessary and sufficient conditions for limiting entry
to improve consumer surplus, as well as sufficient conditions for an equilibrium
to exist in the Free Market setting.

Our model is of course stylized, so it is always important for future work to
relax assumptions. While it is always interesting to relax technical assumptions
(even if they do a reasonable job capturing practice), the most interesting direc-
tion would be to consider other models of limiting entry. For example, our model
takes a pure view on competition, and implies that limiting entry to all but a
single provider will drive prices down to the marginal cost of production. This
seems to be the biggest deviation from our model and practice, as healthcare
exchanges typically have much fewer options. It would be interesting to further
refine our model to better match this aspect.

Acknowledgments. Kira Goldner was supported in part by NSF award DMS-
1903037 and a Columbia Data Science Institute postdoctoral fellowship, and in part
by a Shibulal Family Career Development Professorship. S. Matthew Weinberg was
funded by NSF CAREER CCF-1942497.

We thank Mark Shepard for his expert guidance on health insurance markets, for
initially posing this research direction, and for helping us to refine the model. We also
thank Mark Braverman and Anna Karlin for helpful discussions in early stages of this
work.

References

1. Anton, J.J., Gertler, P.J.: Regulation, local monopolies and spatial competition.
J. Regul. Econ. 25(2), 115–141 (2004)



332 M. Essaidi et al.

2. Bulow, J., Klemperer, P.: Auctions vs. negotiations. Technical report, National
Bureau of Economic Research (1994)

3. Chawla, S., Hartline, J.D., Kleinberg, R.: Algorithmic pricing via virtual valua-
tions. In: Proceedings of the 8th ACM Conference on Electronic Commerce, pp.
243–251. ACM (2007)

4. Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism
design and sequential posted pricing. In: Proceedings of the Forty-Second ACM
Symposium on Theory of Computing, pp. 311–320. ACM (2010)

5. Chawla, S., Malec, D., Sivan, B.: The power of randomness in Bayesian optimal
mechanism design. Games Econ. Behav. 91, 297–317 (2015)

6. Chen, Y., Li, X.: Group buying commitment and sellers? Competitive advantages.
J. Econ. Manag. Strategy 22(1), 164–183 (2013)

7. Dana, J.D., Jr.: Buyer groups as strategic commitments. Games Econ. Behav.
74(2), 470–485 (2012)

8. Engel, E., Fischer, R., Galetovic, A.: Competition in or for the field: which is
better? Technical report, National Bureau of Economic Research (2002)

9. Essaidi, M., Goldner, K., Weinberg, S.M.: When to limit market entry under
mandatory purchase. CoRR abs/2002.06326 (2020). https://arxiv.org/abs/2002.
06326

10. Hart, S., Nisan, N.: Approximate revenue maximization with multiple items. In:
The 13th ACM Conference on Electronic Commerce (EC) (2012)

11. Hart, S., Nisan, N.: Approximate revenue maximization with multiple items. J.
Econ. Theory 172, 313–347 (2017)

12. Hotelling, H.: Stability in competition. Econ. J. 39(4), 57 (1929)
13. Johnson, E.J., Hassin, R., Baker, T., Bajger, A.T., Treuer, G.: Can consumers

make affordable care affordable? The value of choice architecture. PloS One 8(12)
(2013)

14. McGuire, T.G., Riordan, M.H.: Incomplete information and optimal market struc-
ture public purchases from private providers. J. Public Econ. 56(1), 125–141 (1995)

15. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)
16. Pai, M.M., Vohra, R.: Optimal auctions with financially constrained buyers. J.

Econ. Theory 150, 383–425 (2014)
17. Perloff, J.M., Salop, S.C.: Equilibrium with product differentiation. Rev. Econ.

Stud. 52(1), 107–120 (1985)
18. Saban, D., Weintraub, G.Y.: Procurement mechanisms for assortments of differen-

tiated products. Available at SSRN 3453144 (2019)
19. Williams, J.: The patient protection and affordable care act meets the ‘persistently

uninsured’. Soc. Policy Adm. 50(4), 452–466 (2016)

https://arxiv.org/abs/2002.06326
https://arxiv.org/abs/2002.06326


Balancing Participation
and Decentralization in Proof-of-Stake

Cryptocurrencies

Aggelos Kiayias1,5, Elias Koutsoupias2,5, Francisco Marmolejo-Cossío3,5(B),
and Aikaterini-Panagiota Stouka4

1 University of Edinburgh, Edinburgh, UK
akiayias@inf.ed.ac.uk

2 University of Oxford, Oxford, UK
elias.koutsoupias@cs.ox.ac.uk

3 Harvard University, Cambridge, USA
fjmarmol@seas.harvard.edu

4 Nethermind, London, UK
aikaterini-panagiota@nethermind.io

5 Input Output(IOG), Singapore, Singapore

Abstract. Proof-of-stake blockchain protocols have emerged as a com-
pelling paradigm for organizing distributed ledger systems. In proof-of-
stake (PoS), a subset of stakeholders participate in validating a grow-
ing ledger of transactions. For the safety and liveness of the underlying
system, it is desirable for the set of validators to include multiple inde-
pendent entities as well as represent a non-negligible percentage of the
total stake issued. In this paper, we study a secondary form of participa-
tion in the transaction validation process, which takes the form of stake
delegation, whereby an agent delegates their stake to an active valida-
tor who acts as a stake pool operator. We study payment schemes that
reward agents as a function of their collective actions regarding stake pool
operation and delegation. Such payment schemes serve as a mechanism
to incentivize participation in the validation process while maintaining
decentralization. We observe natural trade-offs between these objectives
and the total expenditure required to run the relevant payment schemes.
Ultimately, we provide a family of payment schemes which can strike
different balances between these competing objectives at equilibrium in
a Bayesian game theoretic framework.

Keywords: delegation games · proof of stake · cryptocurrencies ·
decentralization

Full version of the paper: https://arxiv.org/abs/2407.08686.
A.-P. Stouka—Part of this work was conducted while Stouka was a research associate
at the Edinburgh Blockchain Technology Lab.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Schäfer and C. Ventre (Eds.): SAGT 2024, LNCS 15156, pp. 333–350, 2024.
https://doi.org/10.1007/978-3-031-71033-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71033-9_19&domain=pdf
https://arxiv.org/abs/2407.08686
https://doi.org/10.1007/978-3-031-71033-9_19


334 A. Kiayias et al.

1 Introduction

Proof-of-stake (PoS) blockchain protocols have emerged as a compelling
paradigm for organizing distributed ledger systems. Unlike Proof-of-work (PoW),
where computational resources are expended for the opportunity to append
transactions to a growing ledger, PoS protocols designate the potential to update
the ledger proportionally to the stake one has within the system. Common to
both protocols is the fact that larger and more varied participation in the transac-
tion validation process provides the system with increased security and liveness.

Although participating as a validator in a PoS protocol is computationally
less intensive than doing so in a PoW protocol, it still demands some effort, e.g.
that the validator be consistently online and maintain dedicated hardware and
software, thus it is still not the case that every agent in the system decides to, or
is even able to, do so. Given this, a compelling intermediate form of participation
in the transaction validation process is stake delegation. In PoS systems with
stake delegation, validators can be considered stake pool operators (SPOs), who
activate pools controlling their own as well as delegated stake of others. Agents
who prefer not to participate as validators have the opportunity to delegate
their stake to active pools and gain rewards. In this paradigm, pools are chosen
to update the ledger proportional to the combination of their “pledged stake”
(i.e., stake they contribute) and externally delegated stake (stake contributed
to them by others); in this way, delegation can be seen as a vetting of how
frequently operators should be selected to participate. Furthermore, delegation
is not borne out of good will alone, since the system provides additional payments
to all agents as a function of the profile of pool operators and delegators in the
system. The space of payment mechanisms provides for an interesting problem
in balancing three objectives: increasing participation in the validation protocol
of the system (via delegation), maintaining a decentralized validation creation
process (in spite of added delegation), and balancing the budget of rewards to
be given to operators and delegators.

1.1 Related Work and Motivation

Our work is most related to that of Brunjes et al. [2] which introduces a reward
sharing scheme for stake pools as a mechanism to incentivize decentralization–a
key objective shared with our work. The reward sharing scheme of their paper
has been operational on the Cardano mainnet since July 2020.1 In this existing
Cardano reward sharing scheme, decentralization in the system is modulated by
a system parameter, k, an integer representing the number of pools of equal size
which are formed at equilibrium under the given payment scheme. This para-
metric formulation has the added benefit of preventing a single entity with low
stake from controlling the majority of pools. Continuing with this line of work,
the authors of [10] analyze the Nash dynamics of the Cardano reward sharing
scheme and the decentralization that it offers through metrics similar to those

1 https://roadmap.cardano.org/en/shelley/.

https://roadmap.cardano.org/en/shelley/
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we employ to measure decentralization. In more detail, they use a variation of
the Nakamoto coefficient [14] that takes into account not only the number of
pools in the system, but also the overall composition of stake of the operators
who run the pools. This metric can be loosely interpreted as a measure of the
composition of “skin in the game” that SPOs have, by looking at the overall
pledged stake from SPOs that may have enough cumulative stake (pledged and
delegated) to perform an attack on the system. Multiple subsequent papers have
proposed other metrics for decentralization of blockchain protocols (with appli-
cability beyond PoS consensus), including [1,4,5,7–10,14,15].

Both [2] and [10] use in their analysis a framework for incentives called non-
myopic utility that tries to predict how delegators will choose a pool when the
system stabilizes at equilibrium. This analysis is essential because a key com-
ponent of their reward mechanism is the margin of rewards an SPO keeps for
themselves before further sharing rewards with delegators. We present a variation
of the reward schemes of [2] in which the margin of the operators is implicitly
set by the system. Most importantly, we study trade-offs between three com-
peting objectives for the system: decentralization, overall participation, and the
expenditure of the reward sharing scheme used. Furthermore, we study this per-
formance in the presence of users who are only willing to delegate their stake if
the reward they earn is lower bounded by an amount ε (i.e., users who may be
“lazy”, or who may have external sources of earnings for their stake).

Liquid Staking Protocols on Ethereum. We note that the framework of
reward sharing schemes that we present is general enough to encompass key
features of liquid staking protocols (LSPs) which are increasingly used in the
Ethereum blockchain after its transition to PoS consensus [6]. At a high level,
LSPs allow users to “stake” their cryptocurrency (such as ETH) to be used for
validation even when their cryptocurrency held is below the 32 ETH threshold
required to be a validator. Upon staking their assets, users receive a liquid token
in return, representing the staked assets. These liquid tokens can be used in
various decentralized finance (DeFi) applications, providing liquidity and earning
additional rewards while the original stake continues to generate staking rewards
when used to facilitate validation. Validators for LSPs are equivalent to SPOs in
our model, and individuals who mint liquid stake tokens are similar to delegators
in our model. Rewards are inherently generated by the Ethereum validation
process and shared according to the specification of the corresponding LSP.

Currently on Ethereum, more than 25% of all ETH in circulation is staked
to be used for PoS validation, of which more than 50% is attributed to 5 val-
idators participating in LSPs (amounting overall to approximately 50 billion
USD as of May 2024)2. Of all stakes in LSPs, the majority is related to the
Lido LSP (approximately 29% of the total ETH in circulation), which facilitates
staking ETH to a permissioned set of validators designated by the Lido DAO
[13]. However, most relevant to our work is the permissionless validator setting,
exemplified by Rocket Pool [12] and ether.fi [17] in which any user can become
2 https://defillama.com/protocols/liquid%20staking/Ethereum.

https://defillama.com/protocols/liquid%20staking/Ethereum
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a validator as long as they have enough ETH deposited as collateral, according
to the specifications of the underlying LSP. Providing collateral is essential for
aligning incentives of validators, for without locking collateral, they can mount
attacks on the LSP by shorting liquid stake tokens with nothing to lose. In our
work, SPOs choose how much stake to pledge to the pool they operate, and this
quantity plays the same essential role as locked collateral in LSPs, forcing SPOs
to have “skin in the game” in terms of the consensus validation process.

1.2 Overview

We consider a setting where a finite number of agents owns a publicly known
amount of stake in a decentralized system. Agents at a high level are given three
options: (i) They can create a stake pool, whereby they can be delegated stake
from other players. Such agents are called stake pool operators (SPOs). To be
an SPO, the agent must pledge whatever stake they own and, in addition, incur
a private cost, c > 0, for the operation of the pool. (ii) They can delegate their
stake to pools that are in operation. Such agents are called delegators. (iii) They
can decide to abstain from participating in the protocol and remain idle, earning
baseline utility ε > 0.

Participation. We are interested in systems that encourage increased partici-
pation in the overall validation process. To prevent agents from abstaining from
the protocol, they must at least be able to delegate in such a way as to earn
more than ε, their baseline utility for remaining idle.

Rewards and Incentives. We consider reward schemes whereby pool operators
and delegators are compensated as a function of which pools are active and
whom delegators choose to delegate to. This creates a well-defined family of
one-shot games that are played between all agents in the system, and we study
the equilibria that result as a function of the reward scheme implemented.

Informal Design Objectives. Our goal is to create reward schemes that opti-
mize for three distinct objectives: (i) Increasing participation in the system; (ii)
Increasing Decentralization, i.e. preventing stake from overly accumulating (via
delegation) in the hands of few SPOs; (iii) Minimizing the budget necessary to
achieve the above.

1.3 Roadmap of Our Results

We consider the setting in which stakeholders of a PoS blockchain can either
operate pools (receive delegation), delegate their stake, or abstain from the pro-
tocol, where each of these actions provides a certain reward from the system.
Section 2 begins by introducing the notion of a delegation game, which is a gen-
eral framework for encapsulating strategic considerations between stakeholders
in this setting. At the end of Sect. 2, we introduce the notion of a uniform reward
delegation game, which is a refinement of general delegation games by which all
delegators in the system (roughly) earn a uniform reward per unit of stake that
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they delegate. Within the class of uniform delegation games, we further hone our
focus on proper delegation games, which we define in such a way to exemplify
relevant characteristics of existing reward sharing schemes deployed in practice.
In Sect. 3 we provide sufficient conditions for pure Nash equilibria in proper del-
egation games. Section 4 introduces a Bayesian framework to proper delegation
games and explores novel solution concepts intricately tied to ex post pure Nash
equilibria. In Sect. 5 we introduce the main metrics by which we compare the
equilibria of the Bayesian proper delegation game: participation, decentraliza-
tion, and system expenditure. Section 6 provides details on the computational
methods used to evaluate the performance of payment schemes in proper dele-
gation games at equilibrium, together with experimental results. Finally, Sect. 7
provides a conceptual overview of the results obtained and provides future direc-
tions of work.

2 The Delegation Game

We formalize a general family of games modeling agent decisions regarding
whether to create a pool, delegate their stake or remain idle. We consider n > 0
players, each with a publicly known stake, si > 0. We also assume that any
agent who chooses to operate a pool incurs a cost of ci > 0 and any agents who
remain idle obtains a fixed utility εi. This can encompass the fact that an agent
may find participating in stake delegation prohibitively complicated or that they
prefer using their stake in other ways.

Player Strategies. For each player, i ∈ [n], let Di denote the set of functions
di : [n] \ {i} → R

+ such that
∑

j∈[n]\{i} di(j) = si. The action space of the i-th
player corresponds to the set Ai = {aI} ∪ {aSPO} ∪ Di. We further denote the
space of all joint strategy profiles by A =

∏
i Ai. A joint strategy profile of the

game is a vector p = (pi)ni=1 ∈ A, where pi ∈ Ai denotes the action taken by
the i-th agent. Furthermore, for a fixed agent i ∈ [n], we let A−i denote the
action space of all players other than i, such that p−i ∈ A−i denotes a specific
collection of strategies for all players in [n] \ {i}, and p = (pi,p−i) ∈ A denotes
a strategy profile that makes specific reference to the action pi ∈ Ai played by
the i-th player. There are 3 relevant cases for the values pi can take and hence
the actions that the i-th player can take:

– pi = aI represents non-participation in delegation for the i-th agent. We say
that the agent is idle.

– pi = aSPO occurs when the i-th player chooses to operate their pool and be
an SPO. They pledge their stake, si, to the pool and incur a pool operation
cost of ci. In this case, we say the i-th pool is active (otherwise it is inactive)

– pi = di ∈ Di occurs when the i-th player chooses to delegate their stake, si,
to different pools operated by other agents. We call di the player’s delegation
profile. For each j ∈ [n] \ {i}, the player i delegates di(j) stake to a pool
operated by the j-th agent. We say that the agent is a delegator.
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Rewards. For each agent, i ∈ [n], we let Ri : A → R be their delegation game
reward function. For p ∈ A, we denote Ri(p) as the reward obtained by the i-th
agent. We impose two constraints on Ri: (i) If pi = aI , then Ri(p) = εi; and (ii)
If pi = di ∈ Di, then Ri(di,p−i) can be further decomposed as the sum of n − 1
delegation reward functions, Ri(di,p−i) =

∑
j∈[n]\{i} Ri,j(di(j),p−i), with the

constraints that Ri,j(0,p−i) = 0 for all p−i ∈ A−i and Ri,j(di(j),p−i) = 0 if
pool j is not active.

Utilities. For i ∈ [n], we let ui : A → R, denote the i-th player’s utility function,
For p ∈ A, if pi = aI , then ui(p) = εi. If pi = aSPO, then ui(p) = Ri(p)) − ci.
Finally, if pi ∈ Di, then ui(p) = Ri(p).

Definition 1 (The Delegation Game). Suppose that we have n agents with
publicly known stakes denoted by s = (si)ni=1, privately known pool operation
costs c = (ci)ni=1 and privately known idle utilities ε = (εi)ni=1. In addition,
suppose that R = (Ri)ni=1 is a family of reward functions Ri : A → R

+. We let
G(R, (s, c, ε)) be the corresponding game with induced utilities u = (ui)ni=1 from
above. This game is called the “Delegation Game” for s, c,ε, and R.

2.1 Games with Uniform Delegation Rewards

Given the large class of delegation games, we focus on a natural class of games
similar to what is used on the Cardano blockchain [2]. Cardano implicitly rewards
pools as a function of their pledge and accrued external delegation. SPOs in
turn choose how much of this reward to proportionally share with delegators
(by choosing what is called a margin). Going forward, we let λj be the operator
pledge of pool j , given by λj = sj when pj = aPO, and λj = 0 otherwise.
In addition, we let βj be the external stake delegated to pool j under p given
by βj =

∑
i:pi∈Di

di(j). Finally, we let σj = λj + βj be the size of the pool
corresponding to player j.

Definition 2 (Pool Reward Function). A pool reward function is given by
ρ : (R+)2 → R

+ that takes as input pool pledge and external delegation and
returns pool rewards given by ρ(λ, β).

The Cardano pool reward function has the further property that rewards
are capped, and rewards themselves can be decomposed into a specific algebraic
form which we call separable:

Definition 3 (Capped Separable Pool Reward Function). Let τ > 0 and
a, b : R+ → R

+ and define ρ : (R+)2 → R
+ by ρ(λ, β) = a(λ′) + b(λ′)β′, where

λ′ = min{τ, λ} and β′ = min{τ − λ′, β}. We say that ρ is a capped pool reward
function with cap τ . We also say that ρ is separable into a and b, where a is the
pledge reward component and b is the external delegation reward component.

Delegation games, as per Definition 1, already exemplify an important point
of departure from Cardano reward sharing schemes. Namely, they have a simpler
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action space for agents, amounting to the high-level choice of: being an SPO,
being a delegator, and being idle. In Cardano, rewards have a more complicated
action space whereby beyond the choice to become an SPO, agents can also pick
the margin of rewards they wish to keep as SPOs. In [2], the authors study the
parametric family of pool reward functions used in Cardano to show that when
players are non-myopic, one can modulate the number of pools, k, which are
formed at equilibrium. An important characteristic of these equilibria though is
the fact that pool operators choose a margin such that delegators are indifferent
amongst the k active pools in terms of the delegation reward they obtain from
them. Rather than letting agents reach such an outcome at equilibrium, we study
delegation games with the very property that delegators earn the same per-unit
reward mostly irrespective of the pool to which they delegate. In order to do so,
we introduce the notion of delegator rewards:

Definition 4. A delegation reward function is given by r : A × (R+)n → R
+

and takes as input p = (pi)ni=1 ∈ A and s = (si)ni=1 to output a fixed reward per
unit of delegated stake given by r(p, s).

We will shortly precisely define delegation games with uniform delegation
rewards, but at a high level these games have reward functions that automat-
ically enforce the fact that for a given strategy profile, delegators will receive
r(p, s) rewards per unit of delegation. Continuing with the comparison with
Cardano, at equilibrium, it is not the case that all pools have equal per-unit del-
egation rewards, but rather the k pools which offer the best per-unit delegation
rewards to delegators. It can very well be the case that a suboptimal pool remain
in operation, albeit offering lower per-unit rewards to potential delegators. In
this spirit, we define the notion of pool feasibility to determine which pools are
suboptimal, and use this to define delegation games with uniform rewards.

Definition 5 (Pool feasibility). For a given joint strategy profile p, we call
the i-th pool feasible if pi = aSPO and ρ(λi, βi) ≥ σir(p, s).

Definition 6 (Uniform Delegation Agent Rewards). Suppose that we
have n agents with stake distribution s, participation costs c, and idle utili-
ties ε. Furthermore, suppose that p ∈ A is such that pi = di ∈ Di. If we let
r = r(p, s), then the components of the reward function for the i-th agent are
given by Ri,j(di(j),p−i) for each j ∈ [n]. This quantity is given by r · di(j) if
the j-th pool is active and feasible, di(j)

σj
· ρ(λj , βj) if the j-th pool is active and

infeasible, and 0 if the j-th pool is inactive. With this in hand, we can fully define
the reward function for the i-th agent under arbitrary actions as follows:

Ri(p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εi if pi = aI

ρ(λi, βi) − r · βi if pi = aSPO, feasible
λi

σi
· ρ(λi, βi) if pi = aSPO, infeasible

∑
j∈[n]\{i} Ri,j(di(j),p−i) if pi = di ∈ Di

If a delegation game G has uniform delegation rewards, we say it is a uniform
delegation reward game.
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Narrowing Down Delegation Rewards. As seen before, Cardano rewards at
equilibrium are specified by the most competitive agent who misses out on being
an SPO. Similarly, we focus on a delegation reward function that is specified
according to the “most competitive” delegator, with the property that once such
a delegator is identified, all less competitive delegators do not deviate.

Definition 7. For a given ρ, we let α : (R+)2 → R
+ given by α(s, c) = ρ(s,0)−c

s
be the rewards per unit of stake that an SPO with stake s and pool cost c obtains
for opening a pool without external delegation (a solo pool). We call α(s, c) the
threat of deviation of a delegator with stake s and pool operation cost c.

For a given p ∈ A, we would ideally set delegation rewards to be the maxi-
mum threat of deviation among delegators, to ensure no delegator has an incen-
tive to deviate by becoming a solo pool. However, α depends on private c values,
hence we suppose that 0 ≤ cmin ≤ ci ≤ cmax for any i ∈ [n], where cmin and
cmax are publicly known. With this, we define the max-delegate rewards:

Definition 8 (Max-delegate r). Given ρ, we let rM : A × (R+)n → R
+ be

rM (p, s) = maxi:pi∈Di
α(si, cmin). If {i ∈ [n] | pi ∈ Di} = ∅, then rM (p, s) = 0.

In what follows, we will consider pool reward functions ρ with the natural
property that α is monotonically increasing in s as well. In this case, we can
express the max-delegate reward function in a more simple and useful fashion
by making use of the following:

Definition 9. Suppose that G is a delegation game and p ∈ A. We let s∗ =
maxi:pi∈Di

si and call this quantity the pivotal delegation stake of p. If pi ∈ Di

and si = s∗, then we also say that the player is a pivotal delegate in p.

If the reward function, ρ, is such that α increases monotonically in s, then it
follows that rM (p, s) = α(s∗, cmin). We focus on uniform delegation games with
max-delegate rewards such that α is monotonically increasing in pledge. We give
this class of games a specific name as the main focus of this paper:

Definition 10 (Proper delegation game). Suppose that G is a uniform del-
egation game such that the following hold: (i) ρ is such that α(s, c) is mono-
tonically increasing for s ∈ [0, smax], where smax = max{si}, (ii) ρ is capped
and separable with smax < τ , and (iii) Delegation rewards are given by rM . We
say that ρ is a proper reward function and G is a proper delegation game. For a
specific proper delegation game, we use notation G(ρ, τ, (s, c, ε)).

3 Equilibria in Proper Delegation Games

This section provides sufficient conditions for a joint strategy profile to be a
pure Nash equilibrium. We use the shorthand r = rM (p, s) ∈ R

+ to refer to
the per-unit reward for delegating to a feasible pool, and we begin by providing
multiple structural results related to the best responses agents may have in a
proper delegation game. Proofs can be found in the full version of the paper.
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Lemma 1 (Feasible pool structural lemma). Let G(ρ, τ, (s, c, ε)) be a
proper delegation game with all agents playing p ∈ A. Let pi = aSPO for an
infeasible pool with pledge λi = si and external delegation βi ≥ 0. Both delega-
tors to the pool and the SPO can obtain strictly more utility by delegating to a
feasible pool.

Lemma 2 (Idle and Delegator Best Response). Consider a proper dele-
gation game G(ρ, τ, (s, c, ε)) and either p = (aI ,p−i) ∈ A or p = (di,p−i) ∈ A,
with the i-th player delegating to feasible pools. In both cases, deviating to become
an SPO cannot be a strict best response for the i-th player.

In what follows, we consider an SPO with pledge, pool operation cost, and
idle utility given by (λ, c, ε). Moreover, we continue to let r be per-unit rewards
for delegating to feasible pools. We call the following quantity the “Gap” of the
given SPO: G(λ, c, ε, r) = max{ε+c−a(λ), [r−α(λ, cmin)]+ ·λ+(c−cmin)} > 0,
where we use the notational shorthand [x]+ = max{x, 0}. Furthermore, when
the context is clear, we simply use G to refer to the gap of an SPO.

Lemma 3 Suppose that an SPO has s stake, pool operation cost c, and idle
utility ε. Furthermore, suppose that they operate a pool with pledge λ = s and
external delegation β. The SPO cannot benefit from unilaterally deviating from
pool operation (by either becoming idle, becoming a delegator, or opening a new
pool) if and only if: b(λ)β′ − rβ ≥ G(λ, c, r, ε) > 0.

Definition 11 (Pool Deficit/Capacity). Consider a proper pool delegation
game given by G(ρ, τ, (s, c, ε)) where the pool reward function is given by
ρ(λ, β) = a(λ) + b(λ)β′. Let p ∈ A be such that per unit delegation reward
is given by r, and the i-th player is an SPO with pledge λi < τ and pool oper-
ation cost ci. We let β−

i = β−(λi, ci, εi, r) and β+
i = β+(λi, ci, εi, r) denote the

deficit and capacity, respectively, of the pool run by the i-th player as an SPO:

β−(λi, ci, εi, r) =

⎧
⎪⎨

⎪⎩

G(λi,ci,εi,r)
b(λi)−r if (b(λi) − r)(τ − λi)

≥ G(λi, ci, εi, r)
∞ otherwise

β+(λi, ci, εi, r) =

⎧
⎪⎨

⎪⎩

b(λi)(τ−λi)−G(λi,ci,εi,r)
r if (b(λi) − r)(τ − λi)

≥ G(λi, ci, εi, r)
−∞ otherwise

β−
i and β+

i can take infinite values when no external delegation can prevent
an SPO from deviating from stake pool operation. The following lemma for-
malizes how pool deficit and capacity serve as lower and upper bounds to the
external delegation an SPO can bear while being content as an SPO.

Lemma 4. Suppose that the i-th player is an SPO with pledge, λi, and pool oper-
ation cost, ci, and that they are running a feasible pool under the joint strategy
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profile p with external delegation βi. Furthermore, suppose that per-unit delega-
tion rewards in p are given by r. The i-th player prefers operating their pool to
becoming idle or becoming a delegator if and only if: 0 < β−

i ≤ βi ≤ β+
i

Notice that β−
i ≤ βi ≤ β+

i also implies that the pool opened by the i-th player
as an SPO is feasible. If this were not the case, then by Lemma 1 the SPO would
prefer delegation, which is not possible due to Lemma 4. We summarize the
collection of results from this section as a theorem:

Theorem 1. Suppose that G(ρ, τ, (s, c, ε)) is a proper delegation game. Con-
sider a joint strategy profile p that results in per-unit delegation rewards, r. The
following are sufficient conditions for p to be a pure Nash equilibrium: i) Dele-
gators only delegate to feasible pools; ii) If the i-th agent is not idle, they earn at
least εi utility; iii) If the i-th agent is idle, their delegation utility is at most εi;
iv) If the i-th agent is an SPO with pledge λi = si < τ and external delegation
βi, then β−

i ≤ βi ≤ β+
i .

4 The Bayesian Setting

In a proper delegation game, we let the type of the i-th player consist of their
stake, pool operation cost and idle utility: (si, ci, εi).

Definition 12 (Bayesian Proper Delegation Game (BPDG)). A
Bayesian proper delegation game requires four inputs: (i) A proper reward func-
tion, ρ, (ii) A pool cap, τ , (iii) A type distribution, X , and (iv) The num-
ber of agents, n > 0. For such a game, player types are first drawn indepen-
dently via (s, c, ε) ∼ X n, and they subsequently play the proper delegation game
G(ρ, τ, (s, c, ε)). We use the notation G(ρ, τ,X , n) to denote a specific Bayesian
proper delegation game.

In Bayesian games, one typically studies ex ante player strategies that consist
of mappings from player types to actions taken. Agents in a proper delegation
games, however, have a rich family of actions at their disposal and we are ulti-
mately interested in the high-level decision taken by an agent whether to be an
SPO, a delegator or idle. For this reason, we introduce the notion of a partial ex
ante strategy which will be an important object of study of our paper.

Definition 13 (Partial Ex Ante Strategy). A partial ex ante strategy for a
BPDG is a function f : R3 → {0, 1} that dictates which players become SPOs.
Under f , a player of type (s, c, ε) is an SPO if and only if f(s, c, ε) = 1.

We call such ex-ante strategies partial due to the fact that after drawing
player types, there are multiple pure strategy profiles of the ex post proper
delegation game which are consistent with f . For a given draw of player types,
(s, c, ε), we let Af (s, c, ε) denote the set of pure strategy profiles of the ex post
proper delegation game, G(ρ, τ, (s, c, ε)), which are consistent with f . In other
words, p ∈ Af (s, c, ε) when pi = aSPO ⇐⇒ f(si, ci, εi) = 1. We are interested
in strategies that can give rise to PNE ex post:
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Definition 14 (Ex post SPO stable). Suppose that f is a partial ex ante
strategy for a BPDG G(ρ, τ,X , n). f is ex post SPO stable for the draw (s, c, ε) ∼
X n if there exists a joint strategy profile p ∈ Af (s, c, ε) which is a PNE.

The main result of this section provides useful sufficient conditions for a
partial ex ante strategy, f , to be ex post SPO stable for a given draw of player
types. The proof can be found in the full version of the paper. Before delving
into the main theorem, though, we define some relevant quantities.

Definition 15 (Total Ex Post Stable Delegation). Suppose that f is a
partial ex ante strategy for a BPDG, G(ρ, τ,X , n) with player types given by
(s, c, ε) ∼ X n. Assume s∗ = max{i ∈ [n] | f(si, ci, εi) = 0 and α(si, cmin) ≥
εi/si} and r = α(s∗, cmin),3 we denote the total ex post stable delegation by
Del(f) =

∑n
i=1 si(1− f(si, ci, ε))I(rsi ≥ εi), where I(·) is an indicator function.

Definition 16 (Total Ex Post Pool Deficit/Capacity). Suppose that f is
a partial ex ante strategy for a BPDG, G(ρ, τ,X , n) with player types given by
(s, c, ε) ∼ X n. Assume s∗ = max{i ∈ [n] | f(si, ci, εi) = 0 and α(si, cmin) ≥
εi/si} and r = α(s∗, cmin), we denote the total ex post pool deficit/capacity by
Def(f) and Cap(f) respectively where Def(f) =

∑n
i=1 β−

i (si, ci, εi, r)f(si, ci, εi)
and Cap(f) =

∑n
i=1 β−

i (si, ci, εi, r)f(si, ci, εi).

Theorem 2. Suppose that f is a partial ex ante strategy for a BPDG
G(ρ, τ,X , n) with player types given by (s, c, ε) ∼ X n. The following is a suffi-
cient condition for f to be ex post SPO stable: 0 < Def(f) ≤ Del(f) ≤ Cap(f).

If f is ex post SPO stable for the draw (s, c, ε) ∼ X n there are generally
multiple joint strategy profiles p ∈ Af (s, c, ε) which give rise to PNE. In the
following section we provide a means of distinguishing the performance different
PNE which arise. We quantify the performance of a given joint strategy profile
p using 3 key metrics: Participation, Expenditure, and Decentralization.

5 Design Objectives

If p ∈ A gives rise to k ≥ 1 active pools, we let λ, β and σ be k-dimensional
vectors encoding the pledge, external delegation and total size of each of the k
active pools. We call (λ,β) the public pool profile of p with σ = λ + β.

Definition 17 (Design Objectives). Consider p ∈ A which gives rise to
public pool profile (λ,β). We define the participation objective as OP (p) =
∑k

j=1(λj + βj) =
∑k

j=1 σj. We define the expenditure objective as OE(p) =
∑n

i=1 Ri(p). Finally, For 	 ≥ 0, we let P�(p) = {S ⊆ [k] :
∑

i∈S σi ≥ 	OP (p)}.
We define the decentralization objective as OD

� (p) = minS∈P�(λ,β)

∑
i∈S λi.4

3 If {i ∈ [n] | α(si, cmin) ≥ εi/si} = ∅, we let r = 0.
4 OD

� can be seen as a measure of “skin in the game” for dominating coalitions. In
a decentralized system this is high, and dominating coalitions stand to lose more
rewards via penalties in case of undesirable behavior.
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A system designer will seek to maximize participation, minimize expendi-
ture and maximize decentralization. Simultaneously optimizing for each of these
objectives is generally not possible, hence we use a framework inspired by multi-
objective optimization to understand tradeoffs between all three.

6 Computational Methods and Results

Our main computational approach focuses on conceptualizing the performance
of a partial ex ante strategy, f , for a given Bayesian proper delegation game
G(ρ, τ,X , n). To do so, we measure the performance of f for a given (s, c, ε) ∼
X n, in terms of the three objectives of Sect. 5. Our approach proceeds in two
stages. First, we establish whether f satisfies the sufficient conditions set forth
in Theorem 2 to be ex post SPO stable. Subsequently, If f is ex post SPO
stable, then all p ∈ Af (s, c, ε) which are PNE exhibit the same participation
breakdown, and hence have equal values for OP . This is not the case for OE

and OD
� , therefore, to study decentralization and expenditure, we construct a

comprehensive set of ex post PNE, p1, . . . ,pm ∈ P ∈ Af (s, c, ε) with different
decentralization and expenditure performance to represent the potential spread
of performance that can be achieved ex post for f .

6.1 Representative Ex Post PNE

We outline our methodology for building a representative set of PNE from
A(s, c, ε) to understand the potential decentralization and expenditure achieved
by a given partial ex ante strategy, f , which is ex post SPO stable for a given
draw of agent types. We consider a Bayesian proper delegation game G(ρ, τ,X , n)
and a partial ex ante strategy f . Suppose that f is ex post SPO stable for (s, c, ε)
where at least one agent is an SPO. We outline our methodology for building a
representative set of PNE from A(s, c, ε) for understanding the potential decen-
tralization and expenditure achieved under f ex post.

Let λmin ≤ λmax represent the smallest and largest pledges made by SPOs
under f and let m ∈ N be a resolution parameter that dictates the number of
representative PNE from Af (s, c, ε) constructed. We construct an m-dimensional
vector of reference pledges, λ̄ = (λ̄j)mj=1, where λ̄j = λmin + (j − 1) (λmax−λmin)

m−1 .
From λ̄j , we construct the j-th representative PNE from Af (s, c, ε) denoted by
pj . As in Theorem 2, we fix the high-level actions of agents to ensure ex post
SPO stability. All that remains to specify pj is deciding where delegation goes
to, for which we make use of the reference pledge, λ̄j . We do so by computing
a delegation vector β = (βi)ni=1 first satisfying the deficit of all pools (using
Def(f) ≤ Del(f) of the available delegation). Afterwards, we greedily fill pools
with pledge closest to λ̄j up to capacity using the remaining Del(f) − Def(f)
delegation at our disposal. The details of the greedy delegation allocation are
provided in Algorithm 1. Given the target greedy delegation allocation, β, we
simply let pj be any PNE which is consistent with the target delegation (since
they all achieve the same expenditure and decentralization objectives).



Balancing Participation and Decentralization 345

Algorithm 1. Greedy Delegation Allocation
1: procedure GreedyDelegation(λ̄j , β

−, β+, Del(f))
2: β ← β− � Satisfying pool deficit
3: X ← Del(f) − ∑n

i=1 βi � Remaining delegation
4: A ← {i ∈ [n] | βi < β+

i }
5: j∗ ← argmini∈A|λi − λ̄j | � Ties broken lexicographically in argmin
6: while X �= 0 do
7: βj∗ ← βj∗ +min{X, (β+

j∗ − βj∗)}
8: X ← Del(f) − ∑n

i=1 βi

9: A ← {i ∈ [n] | βi < β+
i }

10: j∗ ← argmini∈A|λi − λ̄j |
11: end while
12: return β
13: end procedure

Computing Design Objectives. Computing OP and OE for a given p ∈ A in a
proper delegation game, G(ρ, τ, (s, c, ε)), is straightforward.

We focus on the problem of computing the decentralization objective, OD
� . We

can express this computational problem in terms of the public pool profile (λ,β)
which arises from a given p ∈ A. The value of OD

� (p) is given by minimizing
∑k

j=1 λjxj subject to the constraints
∑k

j=1 σjxj ≥ 	OP (p) and xj ∈ {0, 1}
for j = 1, . . . k. This optimization problem is precisely an instance of the min-
knapsack problem, hence it is NP-hard [3]. To approximate OD

� , we use typical
knapsack approximation schemes as per [16].

6.2 Relevant Modeling Choices and Parameters

For a given Bayesian proper delegation game, G(ρ, τ,X , n), a partial ex ante
strategy can be an arbitrary function from player types to whether they act as
an SPO or not. In practice we expect larger players (with more stake) to be
SPOs for multiple reasons (increased interest in the proper functioning of the
underlying blockchain, potentially less frictions to operate as SPO, etc.). For
this reason, we consider a simple class of partial ex ante strategies with agents
operating as SPOs only if they exceed a stake threshold.

Definition 18 (Threshold Partial Ex Ante Strategy). We let f t
α : R2 →

{0, 1} denote a threshold partial ex ante strategy with threshold θ ≥ 0. The
strategy is specified by: f t

θ(s, c, ε) = 1 ⇐⇒ s ≥ θ.

As is common in economic literature, We can assume that stake distributions
obey a power law [11] (Pareto Distribution).

Definition 19 (Truncated Pareto Distribution). For 0 < L < H, we say
Z is a truncated Pareto distribution over [L,H] with inequality parameter γ > 0
if it has pdf η(x) =

(
γLγ

1−(L/H)γ

)
x−γ−1 for x ∈ [L,H] and 0 otherwise. We write

s ∼ Pareto(L,H, γ) when stake is distributed as a bounded Pareto distribution.



346 A. Kiayias et al.

In order to achieve marginal Pareto distributions on player stake, we consider
type distributions X which result as product distributions over player stake,
cost and idle utility respectively. Furthermore, without loss of generality, we
normalize the value of stake with respect to the lower bound L, so we can let
L = 1. In more detail, we consider type distributions parametrized by: H, γ, the
upper bound and exponent in Pareto PDF for stake distribution, cmin, cmax,
the minimal and maximal values of pool operation cost, and εmin, εmax, the
minimal and maximal values of idle utility. The type distribution with these
parameters is denoted X (H, γ, cmin, cmax, εmin, εmax). In order to sample from
the distribution, we independently sample each component: s ∼ Pareto(1,H, γ),
c ∼ U [cmin, cmax] and ε ∼ U [εmin, εmax].

6.3 Experimental Results

We provide some specific results for a proper Bayesian delegation game which
demonstrate the flexibility of our approach in studying tradeoffs struck by pay-
ment schemes in proper delegation games. For extended experimental results,
we refer the reader to the full version of the paper.

Baseline Parameter Settings. We begin by providing details regarding the
family of ρ functions we explore in our experiments. Given we are modeling
proper delegation games as per Definition 10, we are considering separable pool
reward functions such that ρ(λ, β) = a(λ)+b(λ)β′, where β′ = min{τ −λ, β} for
the cap τ , which we will specify shortly. In our experiments, we model a(λ) and
b(λ) as polynomials of varying degree and positive coefficients (which is in fact
similar to the formula for Cardano reward sharing schemes [2]). Our baseline
formulas are given by a(λ) = b(λ) = λ.

For the marginal distribution of player stakes, we use a truncated Pareto
distribution with lower bound L = 1, H = 100, and γ = 1.5. For SPO costs,
we let lower and upper bounds for cost be cmin = 0.4 and cmax = 0.6 and for
idle utilities, we simply assume that all players have the same ε = 0.01. Finally,
given the marginal stake distribution, we let τ = 200 be the pool cap used
for ρ. We begin by considering the threshold partial ex ante strategy f t

θ with
θ = 30. Moreover, we consider a Bayesian proper delegation game with n = 1000
agents drawn from the type distribution described above. In addition, we create
m = 100 representative ex post PNE as per Algorithm 1 whenever f t

θ is ex post
SPO stable, and use 	 = 0.5 for the decentralization objective Od

� . Finally, we
repeat this process for N = 500 independent draws from X n.

Results from this parameteric setting can be seen within Fig. 1 for points
corresponding to θ = 30. The empirical frequency of ex post stability for the
baseline setting was 496 of the N = 500 draws of player types. The figure
provides a breakdown of participation achieved. We note that no players are idle
in this setting. With regards to expenditure and decentralization, we can see
that as delegation is sent to pools with higher pledge, the system achieves better
decentralization, albeit at a higher expenditure.
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Impact of Idle Utility. We modulate ε ∈ {0.005, 0.1, 1.0, 5.0, 10.0} of all players in
the game, maintaining all other parameters as in the baseline setting. In Table 1
we see the empirical frequency of ex post stable PNE as we modulate ε values,
and we see that there is no significant difference even as ε increases multiple
orders of magnitude. We do however see significant differences in terms of the
participation, decentralization and expenditure of ex post PNE as we change
idle utilities. With regards to participation, Fig. 1 shows the changes in relative
and absolute participation of agents as ε varies. As expected, with higher idle
utilities, more agents prefer remaining idle over delegating. Moreover, this is in
line with the fact that empirical frequencies for ex post stability do not change
much, for if there is less delegation to go around, it can be easier to satisfy pool
deficits and capacities. Of course, if too much delegation is idle, then there may
not be enough delegation to satisfy pool deficits, and we may see a decrease in
the empirical frequency of ex post SPO stability. Figure 1 also provides insight
in terms of how decentralization and expenditure vary with ε. As expected,
large values of ε result in lower expenditure, as the system needs to pay out
less delegators. On the other hand, we also see that larger baseline utilities can
increase decentralization, which also makes sense from the decreased delegation
that occurs, as any dominating coalition of pools will necessarily have more skin
in the game as they may have less external delegation.

Table 1. Frequency of ex post SPO stability for different parameter settings (N = 500
draws). Top rows modulate ε, middle rows θ, and bottom rows a, b in ρ.

Parameters 0.005 0.1 1.0 5.0 10.0

Modulate ε 498 497 499 495 499

Parameters 10 20 30 40 50 60

Modulate θ 500 500 496 478 428 344

Parameters g1 g2 g3 g4 g5 g6

Modulate a 497 499 496 497 493 489

Modulate b 496 497 497 499 497 497

Modulate (a, b) 496 496 498 498 498 499

Impact of Reward Function. We modulate ρ(λ, β) = a(λ)+b(λ)β′. In addition we
fix idle utilities to be larger than baseline at ε = 5, where we’ve seen that agents
can prefer to be idle over delegating. This way we glean insight regarding how
different payment structures can foster participation. We modulate our payment
scheme by varying, a and b. Going forward we consider setting the constituent
functions of ρ with combinations of the following functions: g1(λ) = 0.5λ, g2(λ) =
λ, g3(λ) = 2λ, g4(λ) = λ + 0.005λ2, g5(λ) = λ + 0.01λ2, g6(λ) = λ + 0.05λ2.
We modulate ρ in three different ways: unilaterally a ∈ {g1, . . . , g6}; unilaterally
b ∈ {g1, . . . , g6}; and jointly (a, b) ∈ {(g1, g1) . . . , (g6, g6)}. Empirical frequencies
of ex post SPO stability can be found in Table 1.

In Fig. 2 we provide a detailed breakdown of how modulating a and b within
ρ can impact the participation reached by the system at ex post PNE. First of
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Fig. 1. The top images provide a breakdown of participation where bars give average
values of absolute stake used by agents being idle, delegators or SPOs respectively for
multiple draws in different parameter settings. The bottom image simultaneously plots
the performance of representative ex post PNE in terms of average decentralization
and expenditure over multiple draws of player types. Representative ex post PNE with
larger reference pledge values exhibit both higher expenditure and decentralization.
Left plots correspond to modulating ε and right plots to modulating θ.

all we see that unilaterally modulating a ∈ {g1, . . . , g6} accounts for much more
change in participation over unilaterally modulating b ∈ {g1, . . . , g6}. Moreover,
when jointly modulating (a, b) ∈ {(g1, g1), . . . , (g6, g6)}, changes in participation
closely resemble those made by individually modulating a, which suggest that
for the functional values chosen, changes in a account for the majority of differ-
ences in participation. This phenomenon largely results from the fact that the a
functions we explore with larger quadratic coefficients in λ not only pay SPOs
more, but they also increase values of α(s, c), which in turn increase delegation
rewards. Increased delegation rewards in turn incentivize more players into being
delegators over being idle. At the same time, this comes at an added expense,
as can be seen in the same figure where higher degree expressions of λ result in
much higher expenditure for the system. At the same time, these expensive ex
post PNE also achieve large decentralization values, hence the system designer
may find it beneficial to use such ρ functions if prioritizing participation and
decentralization is more important than minimizing expenditure.

Impact of SPO Threshold in f t
θ. We modulate the threshold for SPO opera-

tion in the ex ante strategy f t
θ. We consider values θ ∈ {10, 20, 30, 40, 50, 60} and

Table 1 shows the number of ex post SPO stable draws for each given threshold
value. The first observation we can make is that the empirical probability that
f t

θ is ex post SPO stable is decreasing in θ. This makes sense for two reasons: (i)
as θ increases, pivotal delegates become larger, which increases r, the per-unit
delegator rewards, thus leaving less rewards for SPOs, and hence decreasing their
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Fig. 2. The top images provide a breakdown of participation as ρ varies. Bars provide
average values of absolute stake used by agents being idle, delegators or SPOs respec-
tively for different ρ settings. The bottom images simultaneously plots the performance
of representative ex post PNE in terms of decentralization and expenditure. Represen-
tative ex post PNE with larger reference pledge values exhibit both higher expenditure
and decentralization. The left column corresponds to only modulating a, the middle
column to only modulating b, and the right column to modulating both a and b.

pool capacity; (ii) an increased threshold also means that there is more delega-
tion to go around, both from “large” delegates who lie just under the threshold,
but also from agents who may have been idle, but with an increased r decide
to delegate. These factors contribute to decreased empirical probability of being
ex post SPO stable. Figure 1 also provides a more fine-grained perspective on
how participation (and hence OP ) changes as a function of θ, where we see that
increased thresholds decrease SPO operation and increase overall delegation.

For how decentralization and expenditure are affected by θ, we turn to Fig. 1.
We see that as θ increases, decentralization and expenditure in general increase,
and moreover they become more constant as a function of representative ex post
PNE reference pledge. Furthermore, we see that the performance of the θ = 10
threshold is better than others in terms of OD

� and OE (but not OP ). All these
points represent ex post PNE, hence depending on the threshold exhibited by
players in an ex post PNE, the system can exhibit a multitude of decentralization
and expenditure objective values (along all θ values).

7 Conclusion

In this work, we provide a multi-objective framework for studying tradeoffs inher-
ent in delegation systems for PoS cryptocurrencies. We began by providing a
broad game theoretic framework for incentives in delegation systems, and suc-
cessively narrowed down the game at hand to both represent key characteristics
of existing PoS delegation systems, and also be tractable to study in a Bayesian
framework. We provide key sufficient conditions for equilibria in the one-shot
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and Bayesian setting and use this characterization to study the potential perfor-
mance of various payment schemes with respect to three key objectives: partic-
ipation, decentralization and expenditure. The computational tools we provide
give us insight with respect to inherent tradeoffs system designers may face when
attempting to maximize for these three natural objectives. We believe our work
is a preliminary foray into these tradeoffs faced by system designers, and we hope
that future work can further clarify the nuances in balancing these objectives
via richer game theoretic models and reward sharing schemes.
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Abstract. Congestion games allow to model competitive resource shar-
ing in various distributed systems. Pure Nash equilibria, that are stable
outcomes of a game, could be far from being socially optimal. Our goal
is to identify combinatorial structures that limit the inefficiency of equi-
libria. This question has been mainly investigated for congestion games
defined over networks. Instead, we focus on symmetric matroid conges-
tion games, where the strategies of every player are the bases of a given
matroid. We derive new upper bounds on the Price of Anarchy (PoA) of
congestion games defined over k-uniform matroids and paving matroids
with delay functions in class D. For both affine and polynomial delay
functions, our bounds indicate that the inefficiency of pure Nash equi-
libria is limited by these combinatorial structures.

1 Introduction

Congestion games are a class of strategic games that provide an appealing
paradigm to model resource sharing among selfish players. In a congestion game,
a set of resources is given, and each player selects a feasible subset of the resources
in order to minimize their cost function. The cost of a player’s strategy is the
sum of the delays of the resources selected by the player, and the delay of each
resource is a function of the total number of players using it. The game is called
symmetric if all players have the same strategy set. An example are network
congestion games with single origin-destination pair, where the resources are
the arcs of a given digraph and the strategies of each player are paths between
the origin and the destination in the network. Congestion games are practically
relevant for various problems related to resource sharing in distributed systems,
e.g., routing, network design and scheduling.

A pure Nash equilibrium (PNE) is a configuration where no player can
decrease their cost by unilaterally deviating to another strategy, and it rep-
resents a stable outcome of the game. However, since the players act selfishly
and independently in a non-cooperative fashion, a PNE might be far from min-
imizing the social cost, which is commonly defined as the sum of all players’
costs. Two classic metrics for quantifying the inefficiency of equilibria are the
Price of Anarchy (PoA) [21] and the Price of Stability (PoS) [3].
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Congestion games always admit a PNE [29]. However, the complexity of com-
puting a PNE in a congestion game can be significantly affected by its combi-
natorial structure. While symmetric congestion games and asymmetric network
congestion games are PLS-complete [14], Fabrikant et al. [14] gave a strongly
polynomial-time algorithm to find a PNE in symmetric network congestion
games, which was later extended to symmetric totally unimodular congestion
games by Del Pia et al. [13].

Our main goal is to better understand how the combinatorial structure of a
congestion game might affect the inefficiency of equilibria. For nonatomic con-
gestion games, where each single player has a negligible impact on congestion,
structure has no impact on the PoA. In fact, Roughgarden [31] proved that the
worst-case PoA is equal to ρ(D), a function that only depends on the class D of
delay functions1. On the other hand, in atomic games, where each single player
can affect the other players’ decisions, there are structures that might reduce the
inefficiency of equilibria. In the absence of structure, Awerbuch et al. [4,5] and
Christodoulou and Koutsoupias [11] independently provided an upper bound of
5/2 on the PoA for general atomic congestion games with affine delays. This
bound can be improved to (5N − 2)/(2N + 1) if the game is symmetric [11],
where N is the number of players. For atomic congestion games with polynomial
delays of highest degree p, Aland et al. [2] obtained exact values for the worst-
case PoA, see also [4,5,11]. These exact values admit a lower bound of �φp�p+1

and an upper bound of φp+1
p , where φp ∈ Θ(p/ ln p) is the unique nonnegative

real solution to (x+1)p = xp+1. In the general case, Bhawalkar et al. [6] proved
that the worst-case PoA can be achieved in symmetric games.

However, in the symmetric case the PoA can significantly decrease if the
players’ strategy sets have a special structure. Most of the existing literature has
focused on graph structures in network congestion games. Lücking et al. [23,24]
studied symmetric congestion games on parallel links and proved that the PoA is
4/3 for linear delay functions. Fotakis [16] later extended this result to network
congestion games defined over extension-parallel networks and proved that for
these networks the worst-case PoA is equal to ρ(D), if the delays belong to class
D. Recently, Hao and Michini explored a further extension to the larger family of
series-parallel networks. For affine delays, they proved that the worst-case PoA
is in [27/19, 2] [18]; for polynomial delays of highest degree p they showed that
the worst-case PoA is at most 2p+1 − 1 [17], which is significantly smaller than
the worst-case PoA in general network congestion games.

In this paper we focus on another combinatorial structure, namely matroids.
Matroid congestion games are congestion games where each player’s strategy set
is the set of bases of a given matroid. For this class of games, a PNE equilibrium
can be efficiently computed, both in the symmetric and in the asymmetric case
[1,13]. Concerning the inefficiency of equilibria, Kleer and Schäfer [20] showed
that the PoS in general matroids is upper bounded by ρ(D) when the delay
functions belong to class D. However, the PoA of matroid congestion games is
not well understood. For affine delays, the worst-case PoA of general conges-

1 The formal definition of ρ(D) is recalled later in Eq. (2).
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tion games, that is equal to 5/2, can be asymptotically achieved in asymmetric
instances of singleton congestion games—that coincide with 1-uniform matroid
congestion games—when the number of players goes to infinity [10]. In the sym-
metric case, the PoA of general matroid congestion games is still not completely
understood. For graphic matroids and N = 2, 3, 4 or infinity the PoA can be as
large as the worst-case PoA of symmetric congestion games, which is equal to
5N−2
2N+1 [15]. However, for arbitrary N or different delay functions we don’t know
whether the worst-case PoA of symmetric congestion games can be achieved
by symmetric matroid congestion games. Moreover, the worst-case PoA of k-
uniform matroid congestion games with affine delays cannot exceed 1.4131 and
it is equal 1.35188 when the number of players goes to infinity [12]. For k-uniform
matroid congestion games with polynomial delays of highest degree p the worst-
case PoA is in O(2p(p+1)) and in Ω(2p) [22]. Moreover, if k = 1 and the delays
are all identical, then the worst-case PoA is in Θ((2 + o(1))p) [7]. This indicates
that the combinatorial structure of k-uniform matroids significantly limits the
inefficiency of equilibria. However, k-uniform matroids are very special matroids,
since every subset of the ground set of size at most k is independent. Are there
weaker matroid structures that affect the inefficiency of equilibria? In this paper
we focus on paving matroids, i.e., matroids whose circuits have cardinality greater
than or equal to the matroid rank. Unlike k-uniform matroids, paving matroids
exhibit a notable predominance within the enumeration of matroids. It has been
conjectured that, in an asymptotic sense, the majority of matroids are paving
matroids [25]. This conjecture holds if the ground set has size at most 9 [8,26].
Pendavingh and van der Pol [28] more recently proved that, as the size of the
ground set goes to infinity, the ratio of logarithms between the total number
of matroids and the number of sparse paving matroids, a subclass of paving
matroids, converges to 1.

Our Contributions. First, we provide a lower bound of 13/9 on the worst-
case PoA for symmetric paving matroid congestion games with affine delays.
This ratio is worse than the previously known best upper bound ≈ 1.41 on the
PoA of symmetric congestion games with affine delay functions over k-uniform
matroids, which are a subclass of paving matroids. Thus, relaxing the structure
of players’ strategy sets from uniform matroids to paving matroids can increase
the inefficiency of pure Nash equilibria.
Theorem 1. The worst-case PoA of symmetric paving matroid congestion
games with affine delay functions is at least 13/9.

We next turn to the question of finding upper bounds on the PoA of sym-
metric paving matroid congestion games. Given the class of delay functions D,
we define the parameter z(D) as

z(D) = sup
d∈D, x∈N+

d(x + 1)
d(x)

.

Since the delay functions d(x) are non-negative and non-decreasing, we have
z(D) ≥ 1. Our first main result is an upper bound on the worst-case PoA in
symmetric paving matroid congestion games with delay functions in class D.



356 B. Hao and C. Michini

Theorem 2. The PoA of symmetric paving matroid congestion games with
delay functions in class D is at most z(D)2ρ(D).

When D is the class of polynomial functions of maximum degree p, we have
z(D) = 2p and ρ(D) ∈ Θ(p/ln p). Thus, the worst-case PoA is in O(4pp/ ln p).
For p ≥ 6 our bound is smaller than the worst-case PoA that can be achieved
in general symmetric congestion games, that is in Θ(p/ ln p)p+1 [2]. Thus, the
worst-case PoA of symmetric congestion games cannot be achieved in paving
matroids.

We also prove —with a substantially different approach— that this is the case
for p = 1, i.e., when the delay functions are affine. In this case, the worst-case
PoA for general symmetric congestion games is 5/2.

Theorem 3. The PoA of symmetric paving matroid congestion games with
affine delay functions is at most 17/7.

Finally, the approach used to prove Theorem 2 also provides a new upper
bound on the worst-case PoA in symmetric k-uniform matroid congestion games
with delay functions in class D.

Theorem 4. The PoA of symmetric k-uniform matroid congestion games with
delay functions in class D is at most z(D)ρ(D).

When D is the class of polynomial functions of maximum degree p, we obtain
that the worst-case PoA is in O(2pp/ln p). This significantly improves on the
previously known upper bound of O(2p(p+1)) [22] and partially closes the gap
with the lower bound of Ω(2p) [22].

Our Approach. Our approach is based on representing the “difference” between
a PNE f and a social optimum o of a matroid congestion game as a flow on a
complete directed graph, whose nodes correspond to the resources. Each unit of
flow on arc (r, r′) corresponds to a player replacing r with r′ in their strategy.
The overloaded resources (those with more players in f than in the o) act as
supply nodes and the underloaded resources (those with more players in the o
than in the f) act as demand nodes. If every path from supply u to demand v
is such that the costs of u and v in the PNE are related through a constant α,
then we can establish that the PoA is at most αρ(D) (Theorem 6). When the
delay functions are in class D, we can determine values of α for the case where
the matroid is k-uniform (Lemma 1) or paving (Lemma 3). These results allow
us to establish Theorems 2 and 4. Note that our definition of flows generalizes
the idea of the “augmenting paths” used by de Jong et al. [12], extending it from
k-uniform matroids with affine delay functions to general matroids with delay
functions in class D.

For a paving matroid congestion game with affine delays we require a different
approach in order to prove Theorem 3. Given f , o and the associated flow, we
construct another congestion game with two states s and q such that cost(f)

cost(o) ≤
cost(s)
cost(q) . We show that s and q and their associated flow satisfy some special
properties, which are used to establish that cost(s)/cost(q) ≤ 17/7 (Theorem 7).
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2 Preliminaries

In this section, we first recall some basics of matroid theory and then we intro-
duce some fundamental notions of congestion games.

Matroids. A matroid is a pair (R, I) where the ground set R consists of a
finite set of elements and I is a nonempty collection of subsets of R such that:
(i) if I ∈ I and J ⊆ I, then J ∈ I; and (ii) if I, J ∈ I and |I| < |J |, then
I ∪ {z} ∈ I for some z ∈ J \ I. Given a matroid M = (R, I), a subset I of R is
called independent if I belongs to I, and dependent otherwise. A subset B ⊆ R
is called a basis if B is an inclusion-wise maximal independent subset. That is,
B ∈ I and there is no Z ∈ I with B ⊂ Z ⊆ R. The common size of all bases is
called the rank of the matroid, denoted by r(M). A circuit of a matroid is an
inclusion-wise minimal dependent set. For every basis B and every element x in
R\B, there is a unique circuit contained in B∪{x}, that is called a fundamental
circuit. Next, we introduce the bijective basis-exchange property :

Theorem 5 [9]. Let B be the collection of bases of a matroid. For any B,B′ ∈
B, there is a bijection π : B → B′ from B to B′, such that for every x ∈ B \ B′,
B \ {x} ∪ {π(x)} is a basis.

A matroid is called k-uniform matroid if its independent sets are all the
subsets of R of cardinality at most k, i.e. every k + 1-element subset of R is a
circuit. A matroid is called paving matroid if every circuit of M has cardinality
r(M) or r(M) + 1. The following proposition characterizes paving matroids in
terms of their circuits.

Proposition 1 [27]. Let C be a collection of non-empty subsets of a set R such
that each member of C has size either t or t + 1. Let C′ ⊆ C consist only of the
t-element members of C. Then C is the set of circuits of a paving matroid on R
of rank t if and only if

1. if two distinct members C1 and C2 of C′ have t − 1 common elements, then
every t-element subset of C1 ∪ C2 is in C′; and

2. C \C′ consists of all the (t+1)-element subsets of R that contains no member
of C′.

Congestion Games. We consider a congestion game with N players and
resources set R. For n ∈ N, we denote by [n] the set {1, . . . , n}. The set Xi ⊆ R
is the strategy set of player i. We call the game symmetric if all the players have
the same strategy set, i.e. Xi = Xj for all i, j ∈ [N ]. A state of the game is a
strategy profile s = (s1, . . . , sN ) where si ∈ Xi is the strategy chosen by player
i, for i ∈ [N ]. The set of states of the game is denoted by X = X1 × · · · × XN .

For each r ∈ R we have a nondecreasing delay function dr : [N ] → R≥0.
Given a state s we denote the number of players using resource r by sr. Each
player using r incurs a cost equal to dr(sr), i.e., the cost of r depends on the
total number of players that use r in s. Since dr is a nondecreasing function,
dr(j + 1) ≥ dr(j) for j ∈ [N − 1], which models the effect of congestion. We
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denote the cost of a resource r with respect to state s by costs(r) = dr(sr). We
also define cost+s (r) = dr(sr +1). Finally, the social cost of state s is denoted by
cost(s) =

∑
r∈R srdr(sr) =

∑
r∈R srcosts(r).

Matroid Congestion Games. A matroid congestion game is a congestion
game where the strategy set of each player i is the set of bases Bi of a given
matroid Mi = (Ri ⊆ R, Ii). For an arbitrary state s of the matroid congestion
game, we denote by Bi

s the strategy of player i in s. A paving matroid congestion
game is a matroid congestion game where Mi is a paving matroid for all i ∈ [N ].
A k-uniform matroid congestion game is a congestion game where Mi is a k-
uniform matroid for all i ∈ [N ] and k ∈ [mini |Ri|].
Pure Nash Equilibria and Social Optima. A pure Nash equilibrium (PNE)
is a state s = (s1, . . . , si, . . . , sN ) such that, for each i ∈ [N ] we have

costs(si) ≤ costs̃(s̃i) ∀s̃ = (s1, . . . , s̃i, . . . , sN ) ∈ X.

A PNE represents a stable outcome of the game, since no player i ∈ [N ] can
improve their cost if they select a different strategy s̃i.

We are also interested in a social optimum (SO), which is a state that min-
imizes cost(s) over all the states s ∈ X. The Price of Anarchy (PoA) is the
maximum ratio cost(f)

cost(o) such that o is a SO and f is a PNE. In other words, to
compute the PoA we consider the “worst” PNE, i.e., a PNE whose social cost is
as large as possible.

3 Upper Bounds on the PoA for Delays in Class D
In this section, our goal is to prove Theorems 2 and 4. For a matroid congestion
game over resource set R, we let G = (R,E) be a complete directed graph, where
the nodes correspond to the resources in R. Let s and q be two states of the
congestion game. We define the following two sets:

R−(s, q) = {r ∈ R : sr > qr} R+(s, q) = {r ∈ R : sr < qr} ,

and we let l =
∑

r∈R−(s,q)(sr − qr) =
∑

r∈R+(s,q)(qr − sr). In G, every node
r ∈ R− has supply sr − qr, and every node r ∈ R+ has demand qr − sr. A
(single-commodity) flow F ∈ Z

R×R in G is a non-negative vector such that for
every node r ∈ R

F (δ−(r)) − F (δ+(r)) = qr − sr, (1)

where δ−(r) contains all the arcs whose head is r and δ+(r) contains all the arcs
whose tail is r. We call F an (s, q)-difference flow. Note that the above definitions
can be applied to a generic congestion game. For a matroid congestion game, we
can construct a special (s, q)-difference flow F , that we call (s, q)-exchange flow,
as follows. According to Theorem 5, for each pair (Bi

s, B
i
q), there is a bijection

πi(x) : Bi
s → Bi

q such that for every r ∈ Bi
s \Bi

q there is a unique πi(r) ∈ Bi
q \Bi

s
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and Bi
s \ {r} ∪ {πi(r)} ∈ B. Starting from the zero vector, for every i ∈ [N ],

r ∈ Bi
s \ Bi

q, we add one unit of flow to the arc (r, πi(r)) to G in order to
obtain F . We observe that F can be decomposed into l paths, each one starting
from a node in R−(s, q) and ending at a node in R+(s, q), and carrying one
unit of flow. Each path in the exchange flow can be interpreted as a sequence
of resource exchanges such that each arc (r, r′) in the path corresponds to some
player replacing resource r with resource r′ in their strategy.

In the next theorem, we consider an (f, o)-exchange flow. For any (u, v)-path
from R−(f, o) to R+(f, o), if costf (u) is equal to at least a fraction α of cost+f (v),
then we can upper bound the ratio between the social costs of f and o by αρ(D).
We recall that the function ρ(D), initially introduced by Roughgarden [30], is
defined as ρ(D) := supd∈D ρ(d), where

ρ(d) = sup
x≥y≥0

xd(x)
yd(y) + (x − y)d(x)

. (2)

Theorem 6. Let F be an (f, o)-exchange flow. Let R− = R−(f, o) and R+ =
R+(f, o). For all paths p contained in F from u ∈ R− to v ∈ R+, if αcost+f (v) ≥
costf (u) for some α ≥ 1 then we have cost(f) ≤ αρ(D)cost(o).

Proof. For every resource r ∈ R−, inequality (2) and α ≥ 1 imply

frcostf (r) = frdr(fr) ≤ ρ(D)(ordr(or) + (fr − or)dr(fr))
≤ ρ(D)(αordr(or) + (fr − or)dr(fr)). (3)

Let {p1, . . . , pl} be an arbitrary decomposition of the flow F , where each pk

is from r−
k to r+k such that r−

k ∈ R− and r+k ∈ R+. We have

∑

r∈R+

(or − fr)costo(r) =
l∑

k=1

costo(r+k ) ≥
l∑

k=1

cost+f (r
+
k )

≥
l∑

k=1

1
α

costf (r−
k ) =

1
α

∑

r∈R−
(fr − or)costf (r), (4)

where the equalities hold by the definition of F and equality (1), the first inequal-
ity holds because of the definition of R+, and the second inequality holds by our
assumption. Let R̄ = {r ∈ R : fr = or} = R \ (R− ∪ R+).

cost(f) =
∑

r∈R−
frcostf (r) +

∑

r∈R+

frcostf (r) +
∑

r∈R̄

frcostf (r)

≤
∑

r∈R−
frcostf (r) +

∑

r∈R+

frcosto(r) +
∑

r∈R̄

orcosto(r)

≤ ρ(D)
∑

r∈R−
αorcosto(r) + ρ(D)

∑

r∈R−
(fr − or)costf (r)
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+ αρ(D)
∑

r∈R+

frcosto(r) +
∑

r∈R̄

orcosto(r)

≤ ρ(D)
∑

r∈R−
αorcosto(r) + ρ(D)

∑

r∈R+

α(or − fr)costo(r)

+ αρ(D)
∑

r∈R+

frcosto(r) +
∑

r∈R̄

orcosto(r)

= αρ(D)
∑

r∈R−∪R+

orcosto(r) +
∑

r∈R̄

orcosto(r) ≤ αρ(D)cost(o).

The first inequality holds because of the definition of R+ and R̄; the second
inequality holds because of inequality (3) and α ≥ 1, ρ(D) ≥ 1; the third inequal-
ity follows by applying (4); the last inequality follows because α ≥ 1, ρ(D) ≥ 1.

�
We emphasize that the bound on the PoA provided by Theorem 6 is not

restricted to the class of paving matroids. In fact, the assumption of the theorem
involves an exchange flow, which is defined for any matroid, and a parameter α.
Thus, for any matroid, if we are able to find such α, we are able to bound the
PoA.

The next lemma implies that for k-uniform matroids α = z(D) satisfies the
assumption of Theorem 6. This lemma is an extension of Lemma 5 in [12] from
affine delay functions to general delay functions. Moreover, it can be verified
that for polynomial delay functions the bound established in Lemma 1 is tight.

Lemma 1. Suppose M is a k-uniform matroid. Let f be an arbitrary PNE state
and q be an arbitrary state of the game. For every u ∈ R−(f, q) and v ∈ R+(f, q)
we have z(D)cost+f (v) ≥ costf (u).

Proof. Let u∗ be the most expensive resource in R−(f, q), i.e., costf (r) ≤
costf (u∗) for every resource r ∈ R−(f, q). To prove the lemma, we will show
that for every v ∈ R+(f, q) we have z(D)cost+f (v) ≥ costf (u∗). By contradic-
tion, suppose there exists a resource v ∈ R+(f, q) such that

z(D)cost+f (v) < costf (u∗). (5)

Since qv > fv, we have fv < N , thus there exists at least one player i who does
not use v in f , i.e., v /∈ Bi

f . We claim that, for all r ∈ Bi
f , we have

costf (r) ≤ cost+f (v). (6)

This follows from the fact that, since M is a k-uniform matroid Bi
f \{r}∪{v} is

a basis of M for all r ∈ Bi
f . Thus, if (6) did not hold, player i could deviate from

r ∈ Bi
f to v to decrease their cost. As a consequence, z(D)cost+f (v) < costf (u∗)

implies that v /∈ Bi
f . Moreover, recalling that z(D) ≥ 1, we have cost+f (r) ≤

z(D)costf (r) for all r ∈ R. Combining this with (5) and (6), we obtain that, for
all r ∈ Bi

f

cost+f (r) < costf (u∗). (7)
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Note that (7) implies u∗ /∈ Bi
f . Since u∗ ∈ R−(f, q), fu∗ > ou∗ ≥ 0, thus there is

at least one player j using u∗ in f , i.e., u∗ ∈ Bj
f . Since M is a k-uniform matroid,

Bj
f \ {u∗} ∪ {r} is a basis of M for all r ∈ Bi

f . Moreover, since u∗ /∈ Bi
f and

|Bi
f | = |Bj

f | = k, we can conclude that |Bi
f \ Bj

f | ≥ 1. I.e. there exists at least
one resource r∗ ∈ Bi

f such that r∗ /∈ Bj
f . Thus, by (7), player j could deviate

from u∗ to r∗ to decrease their cost. This contradicts the fact that f is a PNE.
�

Applying Theorem 6 and Lemma 1, we can immediately derive Theorem 4.
Next, we show that for paving matroids α = z(D)2 satisfies the assumption

of Theorem 6. To this purpose, we first introduce an auxiliary result.

Lemma 2. Consider a symmetric matroid congestion game with delays in class
D. Let f be a PNE, and o a SO. Let v be a resource that is not used by player i
in f and let Ci

v be the unique circuit in Bi
f ∪ {v}. Then, for all r ∈ Ci

v we have
cost+f (r) ≤ z(D)costf (r) ≤ z(D)cost+f (v).

Proof. Assume that there exists a resource r ∈ Ci
v such that costf (r) > cost+f (v).

Since Ci
v is the unique circuit that satisfies Ci

v \ {v} ⊆ Bi
f , we have that Bi

f \
{r}∪{v} ∈ B, i.e., exchanging r and v defines a feasible strategy for player i. By
performing this exchange player i is able to lower their cost, thus contradicting
the fact that f is a PNE. Thus, we can conclude that for each r ∈ Ci

v we have
costf (r) ≤ cost+f (v). This implies that z(D)costf (r) ≤ z(D)cost+f (v). Finally, by
the definition of z(D), thus we have cost+f (r) ≤ z(D)costf (r). �

For an arbitrary state q, consider an (f, q)-exchange flow F and any path
contained in it starting from a node u ∈ R−(f, q) and ending at a node v ∈
R+(f, q). If the matroid is paving, the next lemma implies that cost+f (v) cannot
be smaller than a fraction of costf (u).

Lemma 3. Suppose M is a paving matroid with r(M) = t ≥ 1. Let f be an
arbitrary PNE state and q be an arbitrary state of the game and let F be an
(f, q)-exchange flow. Let R− = R−(f, q) and R+ = R+(f, q). For all paths p
contained in F from u ∈ R− to v ∈ R+, and for every resource r in p we have
costf (r) ≤ z(D)2cost+f (v).

Proof. Let r∗ be the most expensive resource of path p in f , i.e., costf (r) ≤
costf (r∗) for every resource r in p. Since t ≥ 1 we know that r∗ is used by at
least one player in f . We will prove costf (r∗) ≤ z(D)2cost+f (v). By contradiction,
suppose

costf (r∗) > z(D)2cost+f (v). (8)

Define

S = {r ∈ R : cost+f (r) < costf (r∗)}, S̄ = {r ∈ R : z(D)cost+f (r) < costf (r∗)}.

Since z(D) ≥ 1, we have S̄ ⊆ S. Moreover, we have the following property.
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Claim 1. |S̄| ≥ t.

Proof of Claim. Since v is the last node in p, there exists a player j such that
v /∈ Bj

f . Let Cj
v be the fundamental circuit in Bj

f ∪ {v}. By Lemma 2, for all
r ∈ Cj

v we have cost+f (r) ≤ z(D)cost+f (v). Thus:

z(D)cost+f (r) ≤ z(D)2cost+f (v) < costf (r∗),

where the last inequality comes from (8). This implies that Cj
v ⊆ S̄. Since in a

paving matroid of rank t every circuit has size at least t we obtain |S̄| ≥ t. �
Note that v ∈ S, since z(D) ≥ 1, and r∗ /∈ S. Since p traverses both r∗ and

v, there is an arc (a, b) in p such that a /∈ S and b ∈ S. Since (a, b) is contained
in F there exists a player i such that a ∈ Bi

f , b /∈ Bi
f and Bi

f \ {a} ∪ {b} ∈ B.
First, a ∈ Bi

f \ S = Bi
f \ (Bi

f ∩ S). Thus 1 ≤ t − |Bi
f ∩ S|. We have

|S̄ \ Bi
f | = |S̄| − |S̄ ∩ Bi

f | ≥ t − |S̄ ∩ Bi
f | ≥ t − |S ∩ Bi

f | ≥ t + (1 − t) = 1,

where the first inequality follows from Claim 1. Thus S̄ \Bi
f �= ∅. Let w ∈ S̄ \Bi

f .
Let Ci

w be the fundamental circuit in Bi
f ∪ {w}. By Lemma 2 for all r ∈ Ci

w we
have

cost+f (r) ≤ z(D)cost+f (w) < costf (r∗),

where the last inequality holds because w ∈ S̄.
This implies Ci

w ⊆ S. Recall that Ci
w\{w} ⊆ Bi

f . Since the matroid is paving,
|Ci

w \ {w}| ≥ t − 1. Finally, as a ∈ Bi
f \ S we can conclude that Bi

f \ {a} =
Ci

w \ {w} ⊆ S. Since b ∈ S, we have Bi
f \ {a} ∪ {b} ⊆ S. We now prove that

every t-element subset of S is a circuit. This immediately contradicts the fact
that Bi

f \ {a} ∪ {b} is a basis.

Claim 2. Every t-element subset of S is a circuit of the paving matroid M .

Proof of Claim. Let h be a player such that r∗ ∈ Bh
f and let r be an arbitrary

resource in S \ Bh
f . We show that Bh

f \ {r∗} ∪ {r} is a circuit. Consider the
fundamental circuit Ch

r in Bh
f ∪ {r}. We argue that r∗ is not in Ch

r . If that was
the case, we would have cost+f (r) ≥ costf (r∗) by Lemma 2, which contradicts
r ∈ S. Since we have a paving matroid Ch

r ≥ t, thus Ch
r = {r} ∪ Bh

f \ {r∗}.
This proves that Bh

f \ {r∗} forms a circuit with every resource r ∈ S \ Bh
f .

By applying the first statement in Proposition 1 we can conclude that every
t-element subset of S ∪ Bh

f \ {r∗} is a circuit. By the definition of S we have
r∗ /∈ S, so S ⊆ S ∪ Bh

f \ {r∗} and every t-element subset of S is a circuit. �
�

Lemma 3 implies that for paving matroids α = z(D)2 satisfies the assumption
of Theorem 6. Thus, Theorem 2 directly follows.
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Remark 1. It can be verified that the bound of Lemma 3 is tight for polynomial
delay functions, however we conjecture that the bound of Theorem 2 is not tight
for the same class of delays. In fact, instances where the bound of Lemma 3 is
tight can have PoA smaller than the upper bound of Theorem 2. An intuitive
explanation is the following: when the bound in Lemma 3 is tight, in the PNE
there is an “expensive” resource used by many players and a “cheap” resource
used by few players. For this state to be a PNE, the circuits of the matroid
must prevent single player deviations where the expensive resource is replaced
by the cheap one. The existence of these circuits requires the existence of other
resources with comparable costs both in the PNE and in the SO (this is implied
by Lemma 2). As a result, the PoA in these instances will be lower than the
upper bound of Theorem 2.

4 Lower Bound on the PoA of Paving Matroid
Congestion Games with Affine Delays

In this section, we consider symmetric paving matroid congestion games with
affine delays, i.e., we assume that the delay function of each resource r ∈ R is
of the form dr(x) = arx + br with ar ≥ 0 and br ≥ 0. Our goal is to prove
Theorem 1, stating that the worst-case PoA is at least 13/9. This lower bound is
higher than the previously best known lower bound of ≈ 1.35, which is achieved
in the symmetric k-uniform matroid congestion games [12]. Moreover, this lower
bound indicates that the upper bound of ≈ 1.41 for symmetric k-uniform matroid
congestion games does not hold for paving matroids.

Proof [Proof of Theorem 1]. We prove the theorem by constructing an instance
of a symmetric paving matroid congestion game with affine delays that achieves
the PoA of 13/9. Let R = {r1} ∪ R2 ∪ R3, where R2 = {r2, r3, r4, r5} and
R3 = {r6, . . . , r13}. Let

C1 = {{r1, r6+2i, r6+2i+1} : ∀i ∈ {0, 1, 2, 3}},
C2 = {S ⊂ R : |S| = 4 and S′ �⊂ S,∀S′ ∈ C1}.

Let C = C1 ∪ C2. Using Proposition 1 with C′ = C1 and C = C we can easily
check that C is the set of circuits for a paving matroid of rank 3 defined over R.

Next we define a symmetric congestion game over M. Let the delay function
of r1 be dr1(x) = 1, and for i ∈ {2, 3, . . . , 13} let dri

(x) = x. Let the number
of players be N = 6. The strategy set of each player is the set of bases of the
paving matroid. In a PNE, players 1 and 2 select resources {r1, r2, r3} and for
i ∈ {3, 4, 5, 6}, player i selects resources {r4, r6, r7}, {r4, r8, r9}, {r5, r10, r11},
{r5, r12, r13}, respectively. Note that players will not deviate from r4 or r5 to r1,
since this would form a circuit in C1. The social cost of this PNE state is 26.
In the SO, each player i ∈ [N ] selects resources {r1, r1+i, r7+i}. It can be easily
checked that those strategies contain no circuit and the social cost is 18. Thus,
the PoA of this instance is at least 26/18 = 13/9. �
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5 Upper Bound on the PoA of Paving Matroid
Congestion Games with Affine Delays

In this section, we prove Theorem 3. Consider a symmetric matroid congestion
game with N players over resource set R, and suppose that every delay function
is affine. Let s and q be two arbitrary states of the game such that cost(s) ≥
cost(q), and let R− = R−(s, q), R+ = R+(s, q). We consider the graph G defined
in Sect. 3, where each node r ∈ R− has supply sr − qr and each node r ∈
R+ has demand qr − sr, and we let Φ be an (s, q)-difference flow in G. The
following theorem identifies some special properties of Φ that can be used to
upper bound cost(s)

cost(q) . We sketch the proof of this theorem at the end of the
section. The complete proof of the theorem appears in the full version of this
paper [19].

Theorem 7. Suppose that Φ is an acyclic (s, q)-exchange flow satisfying the
following properties:

1. For every arc (u, v) with positive flow in Φ, costs(u) ≤ cost+s (v).
2. For every path p from u ∈ R− to v ∈ R+, cost+s (v) ≥ 1

4costs(u).
3. Let (v, w) be an arc with positive flow in Φ. If for every path to v starting at

a node u ∈ R− we have costs(v) ≥ 1
2costs(u), then w /∈ R+.

4. For all r ∈ R+, sr = 0 and Φ(δ+(r)) = 0.
5. For all r /∈ R+, the delay function of r is linear.

Then cost(s)/cost(q) ≤ 17/7.

Now consider a symmetric paving matroid congestion game with N players
over resource set R, and suppose that the delay functions d = (dr)r∈R are
affine. Let f and o be a PNE and a SO, respectively, that achieve the PoA.
We consider an (f, o)-exchange flow F . We then apply five steps, to map S =
(R, d, f, o, F ) to a tuple S ′ = (R′, d′, s, q, Φ) that defines a symmetric 1-uniform
matroid congestion game over R′ with affine delays d′ = (d′

r)r∈R, where s and
q are two states of the game, and Φ is an (s, q)-exchange flow satisfying the
assumptions in Theorem 7, and such that

cost(f)
cost(o)

≤ cost(s)
cost(q)

.

Then using Theorem 7 we can conclude that the worst-case PoA of symmetric
paving matroid congestion games is at most 17/7.

Let S0 = (R, d, f, o, F ). F is an (f, o)-exchange flow of a matroid congestion
game, thus for every arc (u, v) with positive flow in F there exists a player i
who could replace resource u with resource v in their strategy. Since f is a PNE,
player i is not able to decrease their cost by exchanging u and v, implying that F
satisfies property 1. Moreover, since for affine delays z(D) = 2, Lemma 2 implies
that also property 7 is satisfied. We apply the following four steps, that preserve
properties 1 and 2. Moreover, the construction guarantees

∑
r∈R sr =

∑
r∈R qr
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in every step. This implies that in every step we can construct an instance of a
symmetric 1-uniform matroid congestion game on resource set R where s and
q are two states that are obtained by assigning players to resources so that for
each r ∈ R we have sr players using r in s and qr players using r in q. The
corresponding (s, q)-exchange flow is redefined accordingly. Note that s and q
are not necessarily a PNE and a SO of the game.

Step 1. First, we let s = f , q = o and Φ = F . We redefine (R, d, s, q, Φ) as
follows. For every resource v ∈ R+(f, o) such that fv > 0, we add a new resource
v′ with constant delay equal to costo(v). We set sv = qv = fv, sv′ = 0 and
qv′ = ov − fv > 0. Note that qv′ > sv′ , i.e., v′ ∈ R+(s, q), while qv = sv, i.e.,
v /∈ R+(s, q). Moreover we define the flow Φ on arc (v, v′) to be ov − fv. At the
end, Φ is an (s, q)-exchange flow that satisfies property 4. Finally we show that
cost(f)
cost(o) ≤ cost(s)

cost(q) after Step 1. Denote the set of nodes we added in this step by
V ′. According to the construction in Step 1, we have

cost(s) =
∑

r∈R

srcosts(r) +
∑

r∈V ′
srcosts(r) =

∑

r∈R

frcostf (r) + 0 = cost(f),

and

cost(q) =
∑

r∈R\V

qrcostq(r) +
∑

r∈V

qrcostq(r) +
∑

r∈V ′
qrcostq(r)

=
∑

r∈R\V

orcosto(r) +
∑

r∈V

frcostq(r) +
∑

r∈V

(or − fr)costo(r)

<
∑

r∈R\V

orcosto(r) +
∑

r∈V

frcosto(r) +
∑

r∈V

(or − fr)costo(r) = cost(o),

where the inequality holds because costq(r) = dr(fr) < dr(or) = costo(r). By
combining the above inequalities we obtain cost(f)

cost(o) ≤ cost(s)
cost(q) .

Step 2. For each resource v ∈ R+(s, q) receiving t1, . . . , th units of flow from
h ≥ 2 resources u1, . . . , uh through arcs (u1, v), . . . , (uh, v) in Φ, we redefine
(R, d) by replacing v with h new nodes v1, . . . , vh, each having delay function
dv. We redefine (s, q) by setting svi

= 0 and qvi
= ti for all i ∈ [h]. Next, we

redefine Φ by replacing arc (ui, v) with (ui, vi) having flow value ti, for all i ∈ [h].
After this step, for each v ∈ R+(s, q) there is only one resource sending flow to
v. Let (s, q), (s′, q′) denote the input and output states of Step 2, respectively.
We show that cost(s)

cost(q) ≤ cost(s′)
cost(q′) holds after Step 2. For each v ∈ R+(s, q) that we

selected in Step 2, we replaced it with v1, . . . , vh. By the construction we have:

svcosts(v) =
h∑

i=1

s′
vi

costs′(vi) = 0,

and

qvcostq(v) =
h∑

i=1

q′
vi

costq(v) =
h∑

i=1

q′
vi

dv(qv) ≥
h∑

i=1

q′
vi

dv(q′
v) =

h∑

i=1

q′
vi

costq′(vi).
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Thus, the social cost of s stays the same and the social cost of q decreases after
Step 2, so we have cost(s)

cost(q) ≤ cost(s′)
cost(q′) .

Step 3. For each resource v ∈ R+(s, q), let r∗ be the most expensive resource
in R−(s, q) that is connected to v along a path carrying at least one unit of flow
in Φ. Let u be the only resource sending flow to v in Φ, and let h be the flow of
Φ on arc (u, v). If cost+s (v) > 1

2costs(r∗), we redefine (R, d) by replacing v with
h new nodes v1, . . . , vh having delay function 1

2cost+s (v)x for i ∈ [h]. Moreover,
we add h new resources w1, . . . , wh with constant delay function 1

2cost+s (v) for
i ∈ [h]. We redefine (s, q) by setting svi

= 1, swi
= 0 and qvi

= qwi
= 1 for

i ∈ [h]. Thus, property 4 is preserved. Finally, we redefine Φ by setting to one
the flow of arcs (u, vi) and (vi, w) for i ∈ [h]. We repeat this step until for all
v ∈ R+(s, q) we have cost+s (v) ≤ 1

2costs(r∗), thus achieving property 3. As in
Step 2, let (s, q), (s′, q′) denote the input and output states of each iteration in
Step 3, respectively. We show that cost(s)

cost(q) ≤ cost(s′)
cost(q′) holds after each iteration of

Step 3. Note that for each v ∈ R+(s, q) that we selected in an iteration of Step
3, v is replaced by v1, . . . , vh and w1, . . . , wh. By our construction we have:

svcosts(v) = 0 <
h∑

i=1

(vicosts′(vi) + wicosts′(wi)) =
h∑

i=1

1
2
cost+s (v),

and

qvcostq(v) = hcostq(v) ≥ hcost+s (v) =
h∑

i=1

1
2
cost+s (v) +

h∑

i=1

1
2
cost+s (v)

=
h∑

i=1

q′
vi

costq′(vi) +
h∑

i=1

q′
wi

costq′(wi).

The above inequalities imply that after each iteration of Step 3 the social cost
of s increases and the social cost of q decreases, so we have cost(s)

cost(q) ≤ cost(s′)
cost(q′) .

Step 4. For every resource r /∈ R+(s, q), suppose dr(x) = ax+b where a, b ≥ 0.
We redefine the delay function of r as costs(r)

sr
x = asr+b

sr
x. Next we show that

cost(s)
cost(q) ≤ cost(s′)

cost(q′) , where (s, q), (s′, q′) are the input and output states of Step 4,
respectively. According to the definition of the new delay functions, it is easy
to conclude that cost(s) = cost(s′). For every resource r ∈ R \ R+(s′, q′), since
we have sr = s′

r ≥ q′
r = qr, then costq′(r) ≤ costq(r). For every resource

r ∈ R+(s′, q′), since we did not change the associated delay function, we have
costq′(r) = costq(r). Thus, we can conclude that cost(q′) ≤ cost(q), implying
cost(s)
cost(q) ≤ cost(s′)

cost(q′) .

Step 5. We delete all the cycles in Φ to make the flow acyclic. At the end, we
set S ′ = {R, d, s, q, Φ} and S = S0. Thus, we achieve property 5.

Based on our discussion we obtain the following lemma.
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Lemma 4. S ′ satisfies the five assumptions in Theorem 7 and cost(f)
cost(o) ≤ cost(s)

cost(q) .

Remark 2. The construction that we use in the proof of Theorem 3 relies on
Lemma 3 to satisfy property 2 in Theorem 7. As discussed in Remark 1, although
there exist instances where the bound in Lemma 3 is tight, these instances might
still have PoA smaller than the upper bound of Theorem 3. Thus, we conjecture
that the upper bound of Theorem 3 is not tight.

We are now left with proving Theorem 7. Here we give a sketch of the proof.
We refer the reader to the full version of this paper [19] for the complete proof.

Proof. [Proof Sketch of Theorem 7]
First, by property 4 and 5 we have

cost(s)
cost(q)

=

∑
r∈R\R+ srcosts(r)
∑

r∈R qrcostq(r)
≤

∑
r∈R\R+

s2
r

sr+1cost+s (r)
∑

r∈R\R+
q2
r

sr+1cost+s (r) +
∑

r∈R+ qrcost+s (r)
.

(9)

Next, let r ∈ R. We define λ(r) = costs(r) − 1
2cost+s (r). Let p = r0, . . . , rk

be a path in Φ carrying one unit of flow, where r0 ∈ R− and rk ∈ R+. For each
i ∈ [k − 1] we define:

Ω(p, 0) :=
k−1∑

j=1

(
1
2

)j

costs(r0), Ω(p, i) :=
k−1∑

j=i+1

(
1
2

)j−i

λ(ri). (10)

Now let P = {p1, . . . , pl} be an arbitrary decomposition of the flow Φ where
each path starts at a node in R− and ends at a node in R+ and carries one unit
of flow. By property 4, Φ(δ+(r)) = 0 for each r ∈ R+, thus in every path p ∈ P
the only node in R+ is the sink of the path, denoted by t(p). Moreover, for each
resource r ∈ R we denote by P (r) the paths in P that contain r and by P 0(r)
the paths in P starting at r. Finally, for each resource r ∈ R and path p ∈ P (r)
we use the notation p(r) to identify the position of r in p, precisely p(r) = 0 if r
is the start node of p, and p(r) = i if r is the i-th node appearing after the start
node of p. Then we can rewrite (9) as:

cost(s)
cost(q)

≤
∑

r∈R\R+ Ar
∑

r∈R\R+ Br
≤ max

r∈R\R+

Ar

Br
, (11)

where

Ar =
(sr)2

sr + 1
cost+s (r) +

∑

p∈P (r)

Ω(p, p(r))− Φ(δ−(r))

2
cost+s (r), (12)

Br =
(qr)2

sr + 1
cost+s (r) +

∑

p∈P (r)

Ω(p, p(r)) +
∑

p∈P0(r)

cost+s (t(p))− Φ(δ−(r))

2
cost+s (r). (13)

In the last part of the proof, we use properties 1, 2 and 3 to show that Ar

Br
≤ 17

7

for all r ∈ R \ R+. �
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6 Conclusion

We have investigated the impact of matroid structures on the PoA of symmetric
congestion games. In the symmetric case, the PoA of general matroid congestion
games is still not completely understood. For graphic matroids and N = 2, 3, 4
or infinity with affine delay functions, the PoA can be as large as the worst-case
PoA of symmetric congestion games [15], which is equal to 5N−2

2N+1 [11]. However,
for arbitrary N or different delay functions we don’t know whether the worst-
case PoA of symmetric congestion games can be achieved by symmetric matroid
congestion games. Our results indicate that if we restrict to paving matroids,
the worst-case PoA is significantly smaller than that of symmetric congestion
games. A similar result had been previously established by de Jong et al. [12]
for k-uniform matroids and affine delays. However, k-uniform matroids are only
a mild generalization of singleton congestion games. Paving matroids, on the
other hand, are a substantial generalization of k-uniform matroids, since they
are conjectured to represent the vast majority of matroids. Since paving matroids
are quite more complex than k-uniform matroids, it is not as easy to characterize
the worst-case PoA. There is still a gap between our upper and lower bounds,
and we conjecture that our upper bounds are not tight (see Remarks 1 and 2).

Our approach to bound the PoA relies on a constant α that we have quantified
for both k-uniform matroids and paving matroids (Theorem 6). In particular,
we can set α = z(D) for k-uniform matroids and α = z(D)2 for paving matroids.
Since paving matroids of rank k contain circuits whose size is smaller than the
circuit size of k-uniform matroids, this suggests that the difference between the
sizes of bases and circuits might impact the PoA. Let δ be a parameter that
is equal to the rank of the matroid minus the size of the smallest circuit in
the matroid. We conjecture that for δ ≥ 0 we can satisfy the assumptions of
Theorem 6 with α = z(D)2(δ+1). Thus, we would get an upper bound on the
PoA which is equal to ρ(D)z(D)2(δ+1). For polynomial delays of highest degree
p, this bound is in O((Cp)(p/ ln p)), where C = 4δ+1. For fixed δ and large p
this bound is still better than the PoA of general congestion games, that is in
O((p/ ln p)p+1). To summarize, it is possible that our approach could be extended
to upper bound the PoA in arbitrary matroid congestion games where we have
an upper bound on δ. On the other hand, our approach might fail to provide
meaningful upper bounds for small values of p or when the circuits can be much
smaller than the rank. Besides the size of the circuits, we suspect that the way
in which the circuits overlap can affect the PoA. For example, circuits of k-
uniform matroids are highly symmetric. When dealing with paving matroids, we
observed that instances with highly symmetric circuits displayed a lower PoA. On
the other hand, the paving matroid congestion game example in Sect. 4, whose
PoA is larger than the worst-case PoA of uniform matroid congestion games, has
circuits that more often overlap on a single resource. In conclusion, it is open
to find lower and upper bounds of symmetric matroid congestion games that
depend on the size of the matroid circuits and/or on their degree of symmetry.
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Abstract. This paper analyzes the quality of pure-strategy Nash equi-
libria for symmetric Rosenthal congestion games with linear cost func-
tions. For this class of games, the price of anarchy is known to be
(5N − 2)/(2N + 1), where N is the number of players. It has been open
if restricting the strategy spaces of players to be bases of a matroid suf-
fices to obtain stronger price of anarchy bounds. This paper answers this
open question negatively. We consider graphic matroids, where each of
the N players chooses a minimum cost spanning tree in a graph with
linear cost functions on its edges. We provide constructions of graphs for
N = 2, 3, 4 and for unbounded N , where the price of anarchy attains the
known upper bounds (5N − 2)/(2N + 1) and 5/2, respectively. These
constructions translate the tightness of algebraic constraints into combi-
natorial conditions which are necessary for tight lower bound instances.
The main technical contribution lies in showing the existence of recur-
sively defined graphs which fulfill these combinatorial conditions, and
which are based on solutions of a bilinear Diophantine equation.

Keywords: Congestion Game · Minimum Spanning Tree · MST ·
Price of Anarchy · POA · Matroid

1 Introduction

Congestion games are strategic games where players select subsets of a finite
set of resources, for example paths in a traffic network. Many players choosing
the same resource may cause congestion, thereby increasing the players’ costs.
Studying resulting equilibria has a long history, specifically in the analysis of
traffic networks. It is known since early works of Pigou [15] that equilibria of
selfishly acting players may be inefficient with respect to total congestion.

The literature distinguishes non-atomic from atomic congestion games. The
prime example of non-atomic congestion games are network routing games [18],
where players need to route demand through a digraph in the form of a network
flow. This is also known as the Wardrop traffic model [20], and a player, e.g.,
a car, may be thought of as an infinitesimally small part of the flow. For linear
cost functions on the network edges, Roughgarden and Tardos [19] have shown
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that for this model the total cost of an equilibrium, also known as Beckmann
user equilibrium [3], can exceed the cost of an optimal solution minimizing total
cost by at most a factor 4/3. This bound is tight. In other words, the price of
anarchy [13] of linear, non-atomic network routing games equals 4/3. It is quite
remarkable that this worst case bound is attained by routing one unit of flow
on a very simple instance with only two vertices and two parallel edges, referred
to as “Pigou example”. And even for cost functions other than linear the worst
case is attained on such simple Pigou-type instances [17]. That implies that for
non-atomic congestion games, the combinatorial structure of the strategy spaces
of the players has no meaningful impact on the price of anarchy.

The situation is different for the “combinatorial” version of congestion games,
atomic congestion games. These were first studied by Rosenthal [16]. In the
network routing connotation, it means that there is a finite number of players, N ,
each choosing a single path in the network. For any one player, a subset of edges
is admissible for that player if it is a path from that player’s origin to destination.
More generally, there is a finite set of resources, and each player’s strategy is
to choose one subset of a collection of player-specific admissible subsets. The
resulting game is a finite strategic form game, and the corresponding equilibrium
concept is Nash equilibrium. In that setting, it is known that a pure-strategy
Nash equilibrium always exists [16]. If the set of admissible subsets differ per
player, the game is asymmetric, and otherwise symmetric.

The state of the art with respect to the price of anarchy for pure-strategy
Nash equilibria is as follows. For asymmetric atomic congestion games with lin-
ear cost functions, the price of anarchy equals 2 for N = 2 players, and it equals
5/2 when N ≥ 3 [2,5]. The price of anarchy remains 5/2 even if the players’
strategy spaces are restricted to choosing just a single resource from two admis-
sible resources [4]. For the symmetric case, the upper bound improves from 5/2
to (5N − 2)/(2N + 1) [5]. This upper bound is attained also for the special case
of symmetric network routing games [6].

The main motivation for this paper is to better understand what impact the
combinatorial structure of players’ strategy spaces has on the price of anarchy
of symmetric and atomic congestion games. Arguably the most natural case to
consider is that each player must select a subset that is a basis of a matroid. One
specific example is the graphic matroid, where given a graph, each player needs
to select a spanning tree in this graph. Generally speaking, matroid congestion
games have favorable properties. E.g., when it comes to computation it is known
that arbitrary best response sequences converge to pure-strategy Nash equilibria
in polynomial time [1], while computing a pure-strategy Nash equilibrium is
generally PLS hard already for network routing games [9]. With respect to the
quality of equilibria in symmetric and atomic congestion games, and in contrast
to non-atomic games, the combinatorial structure of strategy spaces does matter:

– Lücking et al. [14] and Fotakis [10] show that the price of anarchy drops to
4/3 when players select singleton resources. This corresponds to the trivial
matroid of rank 1.
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– Klimm, de Jong and Uetz [8] show that the price of anarchy is strictly larger
than 4/3 but at most 28/13 ≈ 2.15 for k-uniform matroid congestion games.
This upper bound was subsequently improved to ≈ 1.4131 [7].

– Hao and Michini [12] show an upper bound of 2 for the special case of sym-
metric network routing games in series-parallel networks.

– Recently, Hao and Michini [11] proved an upper bound of 17/7 ≈ 2.43 for the
case of a paving matroid.

It is has been open if the general assumption of matroid strategy spaces alone
suffices to improve upon the known upper bound (5N − 2)/(2N + 1). Even the
case of a graphical matroid has remained open so far. In this paper we give a
negative answer to this question, thereby settling the open question if general
matroid congestion games allow improved price of anarchy bounds. Specifically,
the paper gives constructions of graphs with corresponding linear cost functions
on its edges when the number of players N equals 2, 3, or 4, and for N → ∞. For
all cases, we show that the price of anarchy asymptotically reaches the upper
bound (5N − 2)/(2N + 1), respectively 5/2.

Our main contribution lies in a systematic approach to design matching lower
bound constructions. Indeed, while the construction for N = 2 players, achieving
a price of anarchy 1.6 is still fairly simple and can be obtained more or less ad-
hoc, our analysis provides the necessary insights into why this instance does the
trick. Based on these insights, we tackle the more challenging cases with more
than two players. These require more complex, recursive constructions of graphs,
which differ per number of players. In a nutshell, the idea behind our construction
is by translating the tightness of the algebraic constraints in the proof to obtain
the upper bound (5N − 2)/(2N + 1), into combinatorial conditions that the
corresponding lower bound instances have to fulfill. The desired properties of
such instances lead to a bilinear Diophantine equation. This equation has a
solution for N ∈ {3, 4}, and in an asymptotic sense also for N → ∞. Based on
this, one still needs to show that the corresponding graphs can be constructed
and admit solutions which correspond to the desired optimal and equilibrium
solutions, respectively. We show that this is indeed possible.

2 Graphic Matroid Congestion Game

We consider symmetric and atomic congestion games with N players and linear
cost functions on the set of resources. With slight abuse of notation, we also
sometimes use N to denote the set of players. In matroid congestion games, the
strategy space of each player is restricted to the bases of a matroid defined on the
set of resources. The game is symmetric if that matroid is the same for all players.
Specifically, in symmetric graphic matroid congestion games the resources are
edges in a graph G(V,E) and each player must choose a spanning tree in G.
A solution is then denoted by a strategy profile T = (T1, T2, . . . , TN ), where Ti

denotes the spanning tree that is chosen by player i. As we consider linear cost
functions, each edge e ∈ E has an associated cost or weight we ∈ R≥0. For given
edge e ∈ E, denote by ne(T ) = |{i ∈ N | e ∈ Ti}| the number of players that
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choose a spanning tree containing edge e. So if edge e is used by ne(T ) players,
each of these players incurs a cost of we · ne(T ) for this edge. The cost of player
i is then given by

ci(T ) :=
∑

e∈Ti

we · ne(T ),

and the total or social cost c(T ) is given by summing ci over all players:

c(T ) :=
∑

e∈E

we · n2
e(T ).

We assume each player aims to minimize their cost, and are interested in the
price of anarchy for pure-strategy Nash equilibria, measuring the relative loss
of efficiency caused by selfish behaviour [13]. Using the notation T = (Ti, T−i)
for the strategy profile where player i chooses strategy Ti, and the remaining
players T−i, a solution T is a pure-strategy Nash equilibrium if for all players i,
and all spanning trees T ′

i that player i could choose, ci(T ) ≤ ci(T ′
i , T−i).

For an instance I of the game, the (pure) price of anarchy PoA(I) is given
by largest cost of a pure-strategy Nash equilibrium NE(I) relative to the cost of
a solution OPT(I) minimizing the total cost c(T ),

PoA(I) = max
{

c(NE(I))
c(OPT(I))

∣∣∣ NE(I) is a Nash equilibrium for I

}
,

and for a collection of instances I, PoA(I) = supI∈I PoA(I). For the remainder
of the paper, the instances will be graphic matroid congestion games with a given
number of players N , hence we omit the dependence on I and I. Moreover, Nash
equilibrium and price of anarchy is always to be read as Nash equilibrium and
price of anarchy in pure strategies. A Nash equilibrium solution is then denoted
NE, and a solution that (approximately) minimizes total cost c(T ) is denoted
OPT. Instance 1 provides a simple example.

Instance 1. Consider the graph G(V,E) with five vertices and eight edges as
depicted in Fig. 1. All edges have unit cost. �

Fig. 1. Instance for N = 2 players, optimal solution OPT, and a Nash equilibrium NE.
Blue edges are chosen by the blue player, vice versa for orange. Multicolored edges are
chosen by both players, and light grey edges are not chosen by any player. (Color figure
online)
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In Instance 1, both players have a cost of 4 in the optimal solution OPT, which
means that the total cost is 8. In the Nash equilibrium NE, both players have
a cost of 6: the cost is 2 for the two edges which are used by both players.
This gives a total cost of 12. Therefore, the PoA for N = 2 players is at least
12/8 = 1.5.

3 Recap: Proof of the (5N − 2)/(2N + 1) Bound

For linear and symmetric congestion games in general, Christodoulou and Kout-
soupias proved that the price of anarchy for pure-strategy Nash equilibria is at
most (5N − 2)/(2N + 1) [5]. Because this proof lies at the core of our construc-
tions to obtain matching lower bounds, we repeat it here.

Theorem 1 [5]. The price of anarchy of linear and symmetric congestion games
is at most (5N − 2)/(2N + 1).

Proof. Let NE = (NE1,NE2, . . . ,NEN ) be a Nash equilibrium and let OPT =
(OPT1,OPT2, . . . ,OPTN ) be a solution that minimizes the total cost. In the
Nash equilibrium, the players cannot decrease their cost by switching to another
strategy. In particular, player i cannot decrease their cost by switching to OPTj :

ci(NE) ≤ ci(OPTj ,NE−i) =
∑

e∈OPTj

we (ne(NE) + 1) −
∑

e∈OPTj∩NEi

we,

for all i, j ∈ N . Here, recall that (OPTj ,NE−i) denotes the strategy profile NE
where NEi is replaced by OPTj . We sum these inequalities over j to obtain

N · ci(NE) ≤
∑

e∈E

we(ne(NE) + 1)ne(OPT) −
∑

e∈NEi

wene(OPT), (1)

for all i ∈ N . Then we sum over i, obtaining

N · c(NE) ≤ N
∑

e∈E

we(ne(NE) + 1)ne(OPT) −
∑

e∈E

wene(NE)ne(OPT)

= (N − 1)
∑

e∈E

we(ne(NE) + 1)ne(OPT) +
∑

e∈E

wene(OPT).

Therefore,

c(NE) ≤ N − 1
N

∑

e∈E

we(ne(NE) + 1)ne(OPT) +
1
N

∑

e∈E

wene(OPT). (2)

Now we use the fact that, for non-negative integers α and β, we have

(α + 1)β ≤ 1
3
α2 +

5
3
β2, (3)
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which we can use in (2) with α = ne(NE) and β = ne(OPT). This gives the
following upper bound on c(NE)

N − 1
3N

∑

e∈E

wen
2
e(NE) +

5(N − 1)
3N

∑

e∈E

wen
2
e(OPT) +

1
N

∑

e∈E

wene(OPT).

Finally, we bound ne(OPT) by n2
e(OPT), and substitute the summations by

c(NE) and c(OPT), to obtain

c(NE) ≤ N − 1
3N

c(NE) +
5N − 2
3N

c(OPT). (4)

Now rearranging the terms yields the desired bound for the PoA. 	

There are three steps where a strict inequality can occur. The first place is

the Nash equilibrium constraints, which are aggregated in (1). The second is
where we use inequality (3). Finally, where we bound ne(OPT) by n2

e(OPT) to
obtain (4). This allows creating an expression for the price of anarchy where
the difference with the desired upper bound is explained by the slacks in these
inequalities. First, we define s1, s2, s3 ≥ 0, by the following expressions:

sij : = ci(OPTj ,NE−i) − ci(NE)

=
∑

e∈OPTj

we (ne(NE) + 1) −
∑

e∈OPTj∩NEi

we − ci(NE), (5a)

s1 :=
3

2N + 1

N∑

i=1

N∑

j=1

sij , (5b)

s2 :=
N − 1
2N + 1

∑

e∈E

we

(
n2

e(NE) + 5n2
e(OPT) − 3ne(OPT)(ne(NE) + 1)

)
, (5c)

s3 :=
3

2N + 1

∑

e∈E

we

(
n2

e(OPT) − ne(OPT)
)
. (5d)

Then it follows from the above upper bound proof that we can express the price
of anarchy as follows.

Lemma 1. The price of anarchy for linear and symmetric congestion games is
given by

PoA =
c(NE)

c(OPT)
=

5N − 2
2N + 1

− s1 + s2 + s3
c(OPT)

.

To simplify the above expressions, we introduce the following notation.

Definition 1. For 0 ≤ i, j ≤ N , an (i, j)-edge is an edge that is used i times in
OPT and j times in NE. Define the total cost of all (i, j)-edges by

Wij :=
∑

{e∈E | ne(OPT)=i, ne(NE)=j}
we. (6)
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Then we can rewrite s2 and s3:

s2 =
N − 1
2N + 1

∑

0≤i,j≤N

Wij

(
j2 + 5i2 − 3i(j + 1)

) ≥ 0, (7a)

s3 =
3

2N + 1

∑

0≤i,j≤N

Wij (i(i − 1)) ≥ 0. (7b)

Finally, define the penalties Pswitch := s1 and Pedges = s2 + s3, then we rewrite
Lemma 1 to get:

Theorem 2. For linear graphic matroid congestion games, the price of anarchy
can be expressed as

PoA =
5N − 2
2N + 1

− Pswitch + Pedges

c(OPT)
. (8)

The reason to define Pswitch and Pedges is to give them a natural interpretation:

– Pswitch denotes the penalty that is caused by the cost increase when players
switch from their Nash equilibrium strategy NE to a spanning tree in OPT.

– Pedges denotes the penalty that is caused by having non-negligible cost in
(i, j)-edges. Note that only (0, 0)-edges, (1, 1)-edges, (1, 2)-edges and edges
with zero cost do not contribute to this penalty.

Penalty Pedges can be counter intuitive, because if many players use an edge in
the Nash equilibrium, one might expect this edge to contribute to a high price
of anarchy. However, the above tells us that in a tight lower bound instance, the
cost of edges used by more than two players in the Nash equilibrium should be
equal to zero, or should at least be negligible with respect to c(OPT).

4 Lower Bound Constructions

In this section we construct lower bounds for the price of anarchy of graphic
matroid congestion games. When proving a lower bound, we need to provide

– a graph G(V,E), with edge costs we,
– a solution OPT, which is an upper bound for the optimal solution,
– a solution NE, which is a pure-strategy Nash equilibrium.

When all conditions are satisfied, c(NE)/c(OPT) is a lower bound for the price
of anarchy. Alternatively, we can compute Pswitch and Pedges and use Theorem 2.

To check whether a solution NE is indeed a Nash equilibrium, in principle
we need to check for all players that there is no other spanning tree they can
choose to give them a lower cost. However, we can simplify this by the following
consequence from the strong exchange property for matroids; for the simple proof
see the full version of the paper.

Lemma 2. If no player can reduce their costs in NE by exchanging a single
edge from their spanning tree to obtain another spanning tree, then NE is a
Nash equilibrium.
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Fig. 2. Tight lower bound instance for N = 2 players. From top to bottom, G(V,E)
with the edge costs indicated above, OPT and NE. The two players are orange and
blue, unused edges are light grey, and multicolored edges are used by both players.
(Color figure online)
4.1 Tight Instance for 2 Players

We next give a simple construction showing that PoA = (5N −2)/(2N+1) = 1.6
for N = 2 players. The basic idea, which is the path the we take for the rest of
this paper, is to construct instances where penalties Pswitch and Pedges are either
zero, or negligible asymptotically.

Instance 2 (Fence). Consider the 2-player instance in Fig. 2, consisting of
what we will also refer to as a fence construction, consisting of k times a K2,2

“glued together”, with (from the left) exponentially decreasing cost coefficients
1, 1/2, . . . , 1/2k. The fence ends on the right with two parallel edges of cost 1/2k

each. The two left vertices of the leftmost K2,2 are called “visible” for later ref-
erence. The fence is augmented with one additional vertex on the left, which is
connected to the two visible vertices using two edges of cost 1. �

Theorem 3. The price of anarchy for linear graphic matroid congestion games
with N = 2 players equals (5N − 2)/(2N + 1) = 1.6.

Proof. Using Lemma 2, it is easy to verify that NE is indeed a Nash equilibrium,
because no single edge exchange allows any one of the two players to improve.
We compute the price of anarchy as 1.6 by taking k → ∞ because:

c(OPT) = 2 + 4
k∑

i=0

1
2i

+
2
2k

= 10 − 2
2k

,

c(NE) = 8 + 4
k∑

i=0

1
2i

= 16 − 4
2k

. 	
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Because the instance matches the upper bound for k → ∞, we should have
Pswitch = 0 and Pedges = 0, at least asymptotically. To check that Pedges = 0, we
note that we only have (1, 1)-edges, (1, 2)-edges and (1, 0)-edges. Of these, only
the two (1, 0)-edges give a non-zero contribution to Pedges. However the combined
cost of these two edges is W10 = 1/2k−1 → 0 for k → ∞, while c(OPT) → 10.
To see that indeed Pswitch = 0, observe that the total cost of a player in NE
equals 6+ 2(

∑k
i=1 1/2

k) = 8− 2/2k. One calculates the cost of switching to any
of the two trees in OPT as 5 + 3(

∑k
i=1 1/2

k) + 1/2k = 8 − 2/2k.

4.2 Constructions for Three or More Players

The above instance for N = 2 players matches the upper bound 1.6 asymptoti-
cally. One may wonder if there exists a finite instance that does the job. This is
not the case for any number of players N ; the simple proof can be found in the
full version of the paper.

Theorem 4. There exists no finite graph for which a linear congestion game
with N players has a price of anarchy that matches the value (5N − 2)/(2N + 1).

First Attempt for a Lower Bound. One can generalize the idea of Instance 2
to N ≥ 3 players. However, this does not yet match the upper bound.

Instance 3 (N-fence). Consider the N -player instances as illustrated in Fig. 3
for N = 4 players. It is the obvious generalization of the construction of
Instance 2, only replacing K2,2 by KN,N , and keeping the same exponentially
decreasing edge costs per KN,N , namely 1, 1/2, . . . 1/2k. Define the costs of the
edges that connect the additional vertex on the left to the N “visible” vertices of
the N -fence as 2/N . �

Observe that in NE, each of the N edges with cost 2/N is used by all players,
giving a total cost of 2 per player and per edge. One readily verifies that this
is indeed a Nash equilibrium by considering possible edge exchanges. In OPT,
depending on the value of N , it can be cheaper for multiple players to use these
leftmost edges, rather than one player as illustrated in Fig. 3. Players then switch
some edges of cost 1 for edges with cost 2/N , as long as this is cheaper. If we
assume that each edge with cost 2/N is used by q players in OPT, where q ∈ N,
there are N(q − 1) less of the N2 edges with cost 1 being used, and we get the
following costs:

c(NE) = 2N2 +
k∑

i=0

N2

2i
=

(
4 − 1

2k

)
N2,

c(OPT) = min
q∈N

[
2q2 − (q − 1)N +

k∑

i=0

N2

2i

]
+

N(N − 1)
2k

= min
q∈N

[
2
(

q − N

4

)2

+ N

]
+

15
8

N2 − N

2k
.
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Fig. 3. Instance 3 for N = 4 players. At the top is (an approximate) OPT, and at
the bottom is NE. The players are depicted by the colors red, orange, yellow and blue.
Unused edges are colored light grey. Multicolored edges are used by all four players.
(Color figure online)

To minimize for q, we note that the expression in brackets attains its minimum
at q = N/4, so the optimal integer value for q is the integer nearest to N/4,
which gives q =

⌊
N+2
4

⌋
.

Letting k ≥ N to make the negligible terms vanish, and then N → ∞, one
calculates the price of anarchy being 4/(15/8) = 32/15 ≈ 2.13. This is less
than the desired upper bound 2.5. It turns out that the reason for the gap to
the upper bound lies in the “heavily used” leftmost edges (well, together with
roughly N2/4 unused edges in the leftmost KN,N of the N -fence). Together
these cause Pedges ∈ Θ(N2), while c(OPT) = Θ(N2), too. More specifically,
the leftmost edges are used by N players in NE and q players in OPT, so that
we have WqN = N · 2/N = 2. Moreover, because in OPT each player uses
only (3/4)N2 edges of the leftmost KN,N , we also get that W01 = N2/4 +
N(N − 1)/2k. That said, we can compute the penalty term Pedges. One can
verify that Pedges = (9/16)N2 + (1/8)N2 + o(N2) = (11/16)N2 + o(N2), while
c(OPT) = (15/8)N2 + o(N2). This exactly explains the gap between the price
of anarchy 32/15 and the desired upper bound 5/2, which is equal to 11/30. In
turn this implies that Pswitch is negligible, which can also be verified manually.

Avoiding Heavily Used Edges. In an attempt to improve upon the above
instance, one can avoid the penalty Pedges by replacing the leftmost (1, N) edges
of Instance 3: One simply replaces the singleton vertex on the left by a complete
bipartite graph KN−1,N , with edge costs all 1. This creates an instance with
edges that are used exactly twice in NE and only once in OPT. This way, we get
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Pedges = 0 asymptotically, yet at the expense of another issue, namely a non-
negligible penalty Pswitch. The resulting instance yields an even smaller lower
bound in comparison to Instance 3, however.

4.3 Tight Instances for 3 or 4 Players

The idea to deal with the problem of non-vanishing penalty costs is to make
their relative contribution negligible. To achieve that, we construct an instance
recursively in “layers”, where from layer to layer the edge costs decrease by a
factor 3/2. After � recursive layers, we continue with the standard N -fence con-
struction as in the previous Instance 3 (and without the leftmost vertex). To
simplify the corresponding algebraic expressions, these N -fences will from now
on be assumed to be infinite, that is, in the limit k → ∞, so that the con-
tribution of such an N -fence to the total cost equal both in NE and in OPT.
Indeed, the cost of the selected edges equals limk→∞

∑k
i=0 N2/2i = 2N2 in NE

and limk→∞[N(N − 1)/2k +
∑k

i=0(N
2/2i)] = 2N2 in OPT. Note that in NE the

visible vertices remain disconnected, while in OPT they are connected.

Instance 4. First, define gadget B0 to be the N -fence construction as in
Instance 3, consisting of k times KN,N and with the same exponentially decreas-
ing edge costs 1, 1/21, 1/22, . . . , but without the leftmost vertex. Recursively
define a gadget Bi by introducing N vertices that we again call “visible” ver-
tices of gadget Bi, plus q copies of gadget Bi−1. That means that gadget Bi

consists of N + qN many vertices, the N visible vertices of gadget Bi, the qN
visible vertices in the q copies of gadget Bi−1, and the edges among them. The
edges will be discussed separately, keeping in mind that we intend to have only
(1, 2) edges so that penalty Pedges = 0. Define � such recursive layers with gad-
gets B�, B�−1, . . .B0. Note that this implies that we have q�−i many gadgets
Bi. To finish the construction we connect a single vertex to all N visible vertices
of gadget B�, using (1, N)-edges, just as in Instance 3. For convenience, this
final leftmost vertex and its incident edges are called gadget B�+1. Also define
Bi as the union of Bi and recursively all gadgets Bi−1, Bi−2, . . .B0 contained
in it. Figure 4 illustrates the idea behind the recursive construction for N = 4
and q = 3. �

The exact definition of the edges inside each gadget Bi depends on the values
q and N . There is some desiderata, however, to make the overall construction
do the trick. For the case N = 4 and q = 3, the following items can best be
inspected in Fig. 4.

(i) The intention is that every edge of every gadget Bi, i ≥ 1, is used exactly
once in OPT and exactly twice in NE.

(ii) In OPT, the N players select N disjoint spanning trees, such that, for all
i ≥ 0, each of these trees restricted to Bi is still a spanning tree for Bi.

(iii) In NE, each player selects a spanning tree such that, for all 0 ≤ i ≤ �, the
subtree restricted to Bi consists of N connected components, each contain-
ing exactly one of the visible vertices of gadget Bi.
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Fig. 4. Recursive building block for Instance 4, N = 4. On the left is OPT, and on the
right NE. Gadget Bi contains N = 4 visible vertices on the left, q = 3 copies of Bi−1

with qN visible vertices of gadgets Bi−1 on the right, and N(N + q − 1) = 24 edges.
Multicolored edges are used by two players.

(iv) In NE, for each player and each 1 ≤ i ≤ �, within every gadget Bi, for each
of its Bi−1-gadgets (q many), the N visible vertices are connected using
edges from gadget Bi. Likewise, within gadget B�+1 the N visible vertices
of B� are connected.

Note that (ii) and (iii) are indeed also fulfilled for OPT and NE in B0, as in
Instance 3. The following lemma confirms that such a construction is indeed
possible for the values N = 3, 4.

Lemma 3. For N = 3 and N = 4 players, there exist graph constructions so
that all above requirements (i)–(iv) can be fulfilled.

Proof. First, the requirements imply the following conditions as to the number
of edges of each gadget Bi.

In OPT: By (ii), inductively, the visible vertices of each gadget Bi−1 can be
assumed to be connected in Bi−1. Hence to get (ii) for gadget Bi, it suffices to
connect the N visible vertices of Bi with the q disconnected copies Bi−1 using
a spanning tree on N + q vertices. This requires N + q − 1 edges per player. In
Fig. 4, this is a path alternating between visible vertices of Bi and one vertex
per copy of Bi−1. Since by (i) each edge is to be used by only one player in OPT,
we therefore must have N(N + q − 1) edges in layer Bi.

In NE: By (iii), the visible vertices in Bi remain disconnected in Bi. At the
same time, by (iv), for each player the N visible vertices of each Bi−1 need to be
connected within Bi. Together with (iii) that means that for each player the set
of edges of Bi must connect N + qN components to yield N components, which
requires qN edges per player. In Fig. 4, this is the N -stars that connect the N
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vertices of Bi−1 with one vertex of Bi. Since by (i) the intention is that each
edge shall be used twice in NE, this implies that we must have qN2/2 edges in
total in gadget Bi.

As a consequence, as long as we demand (i), that every edge of Bi is used
exactly once in OPT and exactly twice in NE, this is possible only if N(N+q−1)
equals qN2/2, so only if we find an integer solution to the bilinear Diophantine
equation

qN = 2(N + q − 1). (9)

This equation is fulfilled for (q,N) = (3, 4). The existence of the construction
fulfilling (i)–(iv) is testified by Fig. 4. The other integer solution is (q,N) = (4, 3),
and the existence of the construction is testified by Fig. 5. 	


Fig. 5. Recursive building block for Instance 4 for N = 3 players. On the left is OPT,
and on the right is NE. Gadget Bi contains N = 3 “visible” vertices on the left and
q = 4 copies of Bi−1 on the right. Multicolored edges are used by two players.

Next to the above solutions for N = 3, 4, there is a solution also for N → ∞
while taking q = 2 which requires some additional adaptations because we cannot
fulfill (i); we discuss it separately in Sect. 4.4.

In order to finish the description of the constructions for N = 3, 4, we still
need to formally define edge costs. In gadgets Bi, i ≥ 1, edge costs are defined
to be equal to (3/2)i−1. The cost of edges that connect the leftmost vertex to
the visible vertices of B� are defined 3(3/2)�−1/N . Note that (1, N) edges are in
fact not optimal, meaning that the solution OPT where all leftmost edges are
used by only one player in OPT is suboptimal, just as before in Instance 3. But
taking the limit � → ∞, the effect of a suboptimal OPT is negligible.

Lemma 4. For the earlier described instances with N = 3, 4 players, the above
described strategy profile NE constitutes a Nash equilibrium.
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Proof. We use Lemma 2. For the edges inside any of the N -fences B0, we have
already argued in Instance 3. So consider an edge in gadget Bi, i ≥ 1. Players
experience an edge cost equal to 2 · (3/2)i−1. Clearly, edge exchanges within
Bi, if feasible, cannot reduce the costs because all edges are equally loaded and
have the same costs. Next, exchanging a Bi-edge with a Bi−j-edge with j ≥ 2 is
not eligible, because it creates a cycle by Property (iv). Now if a player were to
exchange a B1 edge (in NE used by 2 players) for an eligible B0 edge that again
yields a spanning tree (in NE used by 1 player), the switching cost is 0, as both
edges have cost 1. If for 2 ≤ i ≤ � a player were to exchange a Bi-edge (in NE
used by 2 players) for some Bi−1-edge (in NE used by 2 players), the switching
cost is also 0, as the new edge costs 3 ·(3/2)i−2 = 2 ·(3/2)i−1. Finally, exchanging
a B�+1 edge (in NE used by N players) for some B� edge, the switching cost is
again 0 as the new edge costs 3(3/2)�−1. 	

Theorem 5. The price of anarchy for linear graphic matroid congestion games
with N = 3 players equals (5N − 2)/(2N + 1) = 13/7, and for N = 4 players it
equals (5N − 2)/(2N + 1) = 2.

Proof. The existence of instances for N = 3 and N = 4 players with the desired
combinatorial properties of Nash equilibrium NE and solution OPT follows from
Lemma 3, and by Lemma 4. As to the costs, recall that there are q�−i copies of
gadget Bi, and that each gadget B0 costs 2N2 both in OPT and NE. Moreover
since each Bi has N(N + q − 1) = 6N edges for both (q,N) = (3, 4) and for
(q,N) = (4, 3), we compute the total costs in NE and OPT as follows.

c(NE) = 3
(
3
2

)�−1

N2 +
�∑

i=1

[
q�−i

(
3
2

)i−1

· 24N

]
+ q� · 2N2, (10)

c(OPT) = 3
(
3
2

)�−1

+
�∑

i=1

[
q�−i

(
3
2

)i−1

· 6N

]
+ q� · 2N2. (11)

Now for (q,N) = (4, 3), we take out 4� from (10) and (11), and get:

c(NE) = 4�

[
18

(
3
8

)�

+
1
4

(
8
5

−
∞∑

i=�

(
3
8

)i
)
72 + 18

]
,

c(OPT) = 4�

[
2
(
3
8

)�

+
1
4

(
8
5

−
∞∑

i=�

(
3
8

)i
)
18 + 18

]
.

Then � → ∞ yields c(NE)/c(OPT) → ((2/5)72+18)/((2/5)18+18) = 13/7. For
(q,N) = (3, 4), we take out 3� from (10) and (11), and get:

c(NE) = 3�

[
16
2�−1

+
(
2 − 1

2�−1

)
32 + 32

]
,

c(OPT) = 3�

[
1

2�−1
+

(
2 − 1

2�−1

)
8 + 32

]
.

Letting � → ∞ yields that c(NE)/c(OPT) → 96/48 = 2. 	
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4.4 Tight Instance for Unconstrained N

We finally give a construction that, asymptotically, yields a lower bound 5/2 for
the price of anarchy of linear matroid congestion games.

Instance 5. The instance follows the same recursive design principle as
Instance 4. By inspecting (9), observe that for large N , we must choose q = 2
in the corresponding recursive construction. To define the edges per gadget Bi,
recall that by (i) we wish to have each edge used once in OPT, so by (ii) within
Bi we need N disjoint spanning trees connecting N visible vertices and q = 2
copies of Bi−1, so the number of edges must be N(N +2−1) = N2+N . In NE,
on the other hand, by (iii) and (iv) for each player we need to use the edges of
Bi to connect the N visible vertices of each gadget Bi−1 with one visible vertex
of Bi, which makes 2N edges per player, and since we wish that these edges are
used by two players each, this is N2 edges in total. However that means that
we cannot demand that all of the N2 + N edges are used twice in NE, and we
cannot fulfill condition (i). The solution is that from the N2 + N edges in each
gadget Bi, only N2 −N shall be used by two players, while 2N edges are used by
only one player in NE. This is the set of edges with unique red color in the NE
solutions in Fig. 6. Because we will need to refer to these edges subsequently, call
them “lonely” edges. For defining the edge costs per gadget Bi, we keep everything
as before in Sect. 4.3, except for the costs of the lonely edges, which we define to
be doubly as expensive, so they cost 2 · (3/2)i−1 instead of (3/2)i−1. �
The feasibility of the resulting graph construction is exemplified for uneven num-
ber of players (N = 5) and even number of players (N = 6) in Fig. 6. For N = 5,
gadget Bi has 30 edges, and for N = 6 it has 42 edges. Note that these construc-
tion have a simple symmetry, and it is not hard to see that the same constructions
can be accomplished for any uneven and even number of players N ≥ 2.

Lemma 5. Given Instance 5 as defined above, for any N ≥ 2 the solution NE
is a Nash equilibrium.

Proof. We again use Lemma 2. Denote for simplicity an edge from gadget Bi that
in NE is loaded with 1 or 2 players as e1i and e2i , respectively. We consider the
following additional cases for potential edge exchanges involving lonely edges,
which are not yet covered by the earlier proof of Lemma 4.

– exchange e1i → e2i : new cost 3 · (3/2)i−1 > 2 · (3/2)i−1,
– exchange e2i → e1i : new cost 2 · 2(3/2)i−1 > 2 · (3/2)i−1,
– exchange e1i → e1i−1: new cost 2 · 2(3/2)i−2 > 3(3/2)i−2 = 2 · (3/2)i−1,
– exchange e2i → e1i−1: new cost 2 · 2(3/2)i−2 > 3(3/2)i−2 = 2 · (3/2)i−1,
– exchange e11 → e10: new cost 2 · 1 ≥ 2.

Clearly, as all edges in layer B� have cost equal to or higher than 3(3/2)�−1,
also none of the edges of layer B�+1 can be beneficially exchanged in NE. This
concludes the proof. 	
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Fig. 6. Recursive building block for large N , here for N = 5 and N = 6 players. On
the left is OPT, and on the right is NE. Gadget Bi contains the 5 (resp. 6) “visible”
vertices on the left and q = 2 copies of gadget Bi−1 on the right. The “lonely” edges are
the edges with a unique color (red) in NE. Multicolored edges are used by two players.
(Color figure online)

Theorem 6. The price of anarchy for linear graphic matroid congestion games
equals 5/2 when the number of players N is unconstrained.

Proof. The previously given description yields a set of instances which are para-
metric in the number of players N , and Lemma 5 confirms the existence of a
Nash equilibrium with the desired properties. It remains to compute the costs.
In a nutshell, the so defined instance does the trick because the number of
lonely edges is negligible for N large enough. Indeed, for any finite number of
players and � → ∞ the instance has penalty Pedges = 0 by construction, but
a non-negligible penalty Pswitch. But for N → ∞, the latter penalty becomes
negligible, too. Specifically, for NE we get:

c(NE) = 3
(
3
2

)�−1

N2 +
�∑

i=1

[
2�−i

((
3
2

)i−1

· 4(N2 − N) + 2
(
3
2

)i−1

· 2N
)]

+ 2� · 2N2,

= 3
(
3
2

)�−1

N2 +
�∑

i=1

[
2�−i

(
3
2

)i−1

· 4N2

]
+ 2� · 2N2.

Likewise, observing that the lonely edges have the same costs both in NE
and in OPT, we get:

c(OPT) =
(
3
2

)�−1

+
�∑

i=1

[
2�−i

(
3
2

)i−1

· (N2 + 3N)

]
+ 2� · 2N2.
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Taking out 2� we get

c(NE) = 2�

[
1
2
N2

(
3
4

)�

+
2
3

(
3 −

∞∑

i=�

(
3
4

)i
)

· 4N2 + 2N2

]
,

c(OPT) = 2�

[
1
2

(
3
4

)�

+
2
3

(
3 −

∞∑

i=�

(
3
4

)i
)

· (N2 + 3N) + 2N2

]
.

Now, � → ∞ yields c(NE)/c(OPT) → 10N2/(4N2 + 6N), and for N → ∞, the
limit is indeed 5/2 as required. 	


Note that for N = 2, 3, 4, 5, 6, 7, 8 players, Instance 5 also gives the lower
bounds 1.428, 1.667, 1.818, 1.923, 2, 2.058, and 2.105.

5 Discussion

One idea behind the constructions in this paper is to use (1, 2)-edges in the
recursive definition of graphs, which are edges that are used by one player in
the optimal solution and by two players in the equilibrium solution. This yields
combinatorial constraints for tight lower bound instances which are different
per number of players, and so are the corresponding existence proofs. One may
wonder how to generalize this idea to obtain tight lower bound constructions
for each finite numbers of players N ≥ 5. Obviously, that must be done so as to
circumvent the bilinear Diophantine equation (9), which limits the constructions
shown in this paper to the cases N = 3, 4, and N → ∞. One promising idea is
to vary the number of visible vertices and the number of copies of layers Bi−1

within layer Bi. E.g. making them differ for even and odd index i. Addition-
ally, the requirement to only use (1, 2)-edges might be relaxed, as we did for
the instance for unbounded N . This gives more flexibility in the combinatorial
design. However, two challenges remain. First, to provide an existence proof for
the corresponding combinatorial designs, parametric in the number of players N .
Second, to keep the resulting penalties negligible in those designs.

Acknowledgements. This research started around 2017 with discussions with our
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namely that the price of anarchy for matroid congestion games could be bounded from
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Abstract. We investigate non-adaptive algorithms for matroid prophet
inequalities. Matroid prophet inequalities have been considered resolved
since 2012 when [KW12] introduced thresholds that guarantee a tight 2-
approximation to the prophet; however, this algorithm is adaptive. Other
approaches of [CHMS10] and [FSZ16] have used non-adaptive thresholds
with a feasibility restriction on the items that can be taken; however, this
translates to adaptively changing an item’s threshold to infinity when it
cannot be taken with respect to the additional feasibility constraint,
hence the algorithm is not truly non-adaptive. A major application of
prophet inequalities is in auction design, where non-adaptive prices pos-
sess a significant advantage: they convert to order-oblivious posted pric-
ings, and are essential for translating a prophet inequality into a truthful
mechanism for multi-dimensional buyers. The existing matroid prophet
inequalities do not suffice for this application. We present the first non-
adaptive constant-factor prophet inequality for graphic matroids.

Keywords: Prophet Inequalities · Non-Adaptive Prices · Thresholds ·
Posted Pricings

1 Introduction

We study the classic prophet inequality problem introduced by Krengel and
Sucheston [22]: n items arrive online in adversarial order. A gambler observes
the value of each item as it arrives, and in that moment, must decide irrevocably
whether to take the item or pass on it forever. He can accept at most one item.
The gambler knows in advance the (independent) prior distribution of each item’s
value. What rule should he use to maximize the value of the item he accepts?
In expectation, how does the maximum value that the gambler can guarantee
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compare to the prophet, who knows all of the realized item values in advance
and selects the highest valued one?

The prophet inequality is a standard model for online decision making in
a stochastic/Bayesian setting and has many applications, particularly to mech-
anism design and pricing. Over the last few years many variants of the basic
single-item setting have been studied. One natural generalization is to allow the
gambler to accept more than one item, subject to a feasibility constraint. For-
mally, we can represent a feasibility constraint as a collection S of feasible sets.
Then both the gambler and prophet can each select any feasible set of items
S ∈ S; in the single-item setting, the feasible sets are just all singletons. What
is the gambler’s best algorithm and guarantee?

A seminal result by Samuel-Cahn [25] showed that for the basic single-item
setting, the online algorithm can obtain at least half of the prophet’s value in
expectation by determining a single threshold T and accepting the first item
with value exceeding T . Further, this approximation factor is tight: there exist
instances where the gambler can do no better than 1

2 as well as the prophet. The
threshold T is selected such that the probability that the value of any of the n
items exceeds the threshold is exactly 1

2 .
In 20121, Kleinberg and Weinberg introduced an alternative approach for

setting a single threshold: set T = 1
2Opt. Here, Opt is what the prophet can

achieve in expectation, and this approach guarantees the same 1
2 -approximation

for a single item. Kleinberg and Weinberg showed that this alternate approach
generalizes also to matroid prophet inequalities: where both the gambler and the
prophet are restricted to accepting independent sets in a given matroid. In this
setting, the approach of Kleinberg and Weinberg still achieves a 2-approximation,
matching the single-item lower bound.

There is a significant qualitative difference between Samuel-Cahn’s approach
for the single-item prophet inequality and Kleinberg and Weinberg’s approach
for the matroid setting. In particular, the former computes a single threshold
that is used for the entire duration of the algorithm. The latter, however, recom-
putes thresholds after every decision. The threshold applied to the value of the
second item, for example, depends on whether the first item was accepted by the
algorithm or not, and thus also depends on the realized value of the first item.
As a consequence, the KW algorithm is more complicated and involves more
computation.

In this paper we address a natural problem exposed by this discussion: Can
an online algorithm compete against the prophet using static thresh-
olds under a matroid feasibility constraint?

There is an inherent connection between prophet inequalities and Bayesian
mechanism design. The original problem by Krengel and Sucheston was formu-
lated as an optimal stopping problem; it was Hajiaghayi et al. [18] that made
the first connection to an economic welfare-maximization problem. Chawla et
al. [7] studied this connection much more deeply, defining a truthful class of

1 Their original result appeared in STOC 2012 [20], but we will cite their journal
version from 2019 for the remainder of the paper.
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simple mechanisms called “order-oblivious posted pricings”. They show that one
can translate a prophet inequality for n items with feasibility constraint S into
an order-oblivious posted pricing for an n-unit setting with unit-demand buy-
ers and a service feasibility constraint2 corresponding to S; this mechanism is
truthful and it yields a revenue guarantee that matches its prophet inequality
guarantee. When S is a matroid, by Kleinberg and Weinberg [21], the resulting
mechanism yields 1

2 -approximation to the optimal expected revenue.
This reduction from truthful mechanisms to prophet inequalities crucially

relies on the buyers being unit-demand. If we wish instead to translate the
prophet inequality into a mechanism for a single constrained-additive buyer sub-
ject to feasibility constraint S over n heterogenous items—that is, the buyer is
interested in buying more than one item—then adaptive thresholds will not
translate to a truthful mechanism. Instead, they correspond to offering each
item one-at-a-time to the buyer in any order, but prices change as a function of
previous purchases. This update will not generally preserve truthfullness; that is,
although the buyer may wish to purchase the first item offered when considered
myopically, he may be better off declining, in order to avoid price increases on
later items.

In order to fix this reduction for multi-parameter buyers beyond unit-
demand, we must use only prophet inequalities with non-adaptive thresholds.
This is our primary motivation: constructing non-adaptive prophet inequali-
ties in order to expand the realm of settings where prophet inequalities can be
used for truthful mechanism design (see related work for an understanding of
how integral they are as a tool in this field). However, non-adaptive prophet
inequalities possess numerous other attractive properties as well. For welfare-
maximizing mechanisms, non-adaptive prophet inequalities correspond to prices
that are not only order-oblivious, but also anonymous, using the same prices on
each item regardless of the buyer. Additionally, since the thresholds (prices) are
all computed before the items arrive and are never updated, there is much less
computation required than for adaptive thresholds.

1.1 Our Contribution and Roadmap

We present the first non-adaptive thresholds that give a constant-factor prophet
inequality for graphic matroids. We finish Sect. 1 with additional related work
and in Sect. 2, we introduce mathematical preliminaries. In Sect. 3, we discuss
why extending non-adaptive algorithms to graphic matroids is such a challenging
objective, and why prior methods fail. Section 4 presents the ex-ante relation to
the matroid polytope: a reduction from a given prophet inequality instance to an
alternative setting with convenient properties for designing algorithms. Expert
readers can safely skip this section. Then, in this context, Sect. 5 presents our
construction for non-adaptive thresholds.

2 A service feasibility constraint S says that the set of buyers that are served simul-
taneously must belong to some set S ∈ S.
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The ex-ante relaxation takes a given item i’s value distribution and converts
it into a Bernoulli distribution: with probability pi, item i is “active”, that is, non-
zero, and takes on value ti. Then, the threshold for item i is implicit (just the non-
zero value ti), and the only remaining questions are (1) with what probability
should our algorithm consider this item, and (2) with what probability will the
item be “unblocked”, or feasible to accept, when the algorithm reaches it?

In order to obtain a constant-factor approximation, then for every item,
the probabilities of both its selection and feasibility must be constant. In a
graphic matroid, the elements are the edges and the independent sets are the
forests—that is, any set of edges that does not contain a cycle. Depending on
the given graph, an edge could be “blocked” by many different edges. Our main
idea is to orient the graph to have good properties and then exploit them. For
an edge (u, v), suppose it is oriented into vertex v. Notice that if no other edges
incident to v are selected by the algorithm, then (u, v) will certainly be feasible to
accept—it cannot possibly form a cycle by taking this edge. We orient the graph
such that all edges directed into v have low enough probability mass such that
with probability 1

2 , none are active. Then, our algorithm decides which edges
to consider such that, with constant probability for every v, it will consider the
edges into v and not the edges out of v. Hence, with no edges out of v and a
good chance that no edges into v will be active, any edge into v can be accepted
with constant probability. Our method for determining which edges to consider
is simple: we take a random cut and consider only the edges in one direction
across the cut. Since every edge is oriented into some vertex v, it will be both
considered and unblocked with constant probability, as desired.

Unfortunately, this approach is quite specific to a graphic matroid. While
some properties of the algorithm might extend to other matroids, we know that
it cannot generalize to all matroids: [16] prove a lower bound of Ω( logn

log log n ) for
prophet inequalities that use only non-adaptive thresholds for the class of general
matroids. Their lower bound example is a gammoid.

We pose the following two remaining open (but likely very difficult) open
questions for understanding how far non-adaptive constant-factor approxima-
tions reach between graphic matroids and the lower bound of a gammoid.

Open Problem 1. What is the boundary within matroids for non-adaptive con-
stant-factor approximations?

Open Problem 2. How do approximations decay for non-adaptive thresholds
as matroids become more complex?

1.2 Additional Related Work

Non-Adaptive Thresholds. As mentioned, the two predominant approaches for
achieving 1

2 -approximation in the single-item setting are both non-adaptive [21,
25]. Chawla et al. [7] provide non-adaptive 1

2 -approximations to the prophet for
both k-uniform and partition matroids; they also give a non-adaptive O(log r)-
approximation for general matroids, where r is the rank of the matroid. Recent



Non-Adaptive Matroid Prophet Inequalities 393

work by Gravin and Wang [17] gives a non-adaptive algorithm that guarantees
a 3-approximation to the prophet for online bipartite matching, which is the
intersection of two matroids. Chawla et al. [6] optimize non-adaptive thresholds
for the k-uniform settings depending on the range that k is in, improving existing
guarantees in the k < 20 regime. Jiang et al. [19] provides a framework that
optimizes for tight prophet inequalities in the k-uniform setting and recovers
existing guarantees, such as the guarantee of [6], along with improving guarantees
for the i.i.d. setting. Arnosti and Ma [1] study the question of non-adaptive
thresholds in the k-uniform setting in the prophet secretary problem, where
the order of the items is uniformly random rather than adversarial, as in the
secretary problem (and the distributions of each item remain known), giving a
1− ekkk/k!-approximation, and their results are optimal for k > 4. Importantly,
no non-adaptive algorithms are known beyond uniform and partition matroids
and the special case of bipartite matching.

Constrained Non-Adaptive. Another class of algorithms uses non-adaptive
thresholds and a restricted feasibility constraint. That is, given a feasibility con-
straint S and the prior distributions for n items, prior to the arrival of all items,
the algorithm sets thresholds Ti for each item and a restricted feasibility con-
straint S ′ such that S ′ ⊂ S. Then, an item is accepted if it exceeds its threshold
and is feasible with respect to the items already accepted and the subconstraint
S ′. Notice that an item could exceed its threshold, be feasible with respect to
previously accepted items and S, and yet not be accepted because it is not fea-
sible with respect to previously accepted items and S ′. In essence, imposing a
subconstraint is equivalent to adaptively changing an item’s threshold to Ti = ∞
if the item is not feasible with respect to the subconstraint.

Why is this different than when the gambler rejects an item that exceeds its
threshold but is not feasible with respect to S? We can interpret the gambler’s
value as constrained-additive with respect to S, so the gambler does not have
any marginal gain for items that are infeasible with respect to S and the items
he has already accepted. Hence, he has no reason to take items with no positive
marginal value to him. The original feasibility constrain is not a restriction on
the algorithm, but rather a result of the gambler’s valuation class.

Chawla et al. [7] first produced a 1
3 -approximation to the prophet for graphic

matroids using non-adaptive thresholds with a partition matroid subconstraint.
In a very elegant approach, Feldman et al. [15] produce an Online Contention
Resolution Scheme (OCRS) that yields a 1

4 -approximation for all matroids using
non-adaptive thresholds and a subconstraint built cleverly from the structure of
the given matroid.

Prophet Inequalities Beyond Matroids. Prophet inequalities are well-studied and
the literature is far too broad to cover; see [24] for an excellent survey. Note,
however, that dynamic algorithms yield good approximations to the prophet in
settings reaching beyond matroids. In addition to matroids, the approach of [15]
also applies to matchings, knapsack constraints, and the intersections of each.
Very recent work by Correa and Cristi [9] gives an algorithm guaranteeing a
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constant-factor approximation for the very general setting of multiple buyers
with subadditive valuations.

Direct Applications to Pricing. The Chawla et al. [7] reduction from order-
oblivious posted pricings to prophet inequalities was only the first of many
pricing applications of prophet inequalities. Feldman et al. [14] considers the
setting where buyers arrive online and face posted prices for items; non-adaptive
anonymous prices are posted for each item equal to half its contribution to the
optimal welfare. These prices guarantee 1

2 -approximation to the optimal welfare
for fractionally subadditive valuations. Note that this is a prophet inequality
when there is only one item. Dütting et al. [11,12] connect posted prices and
prophet inequalities: they interpret the Kleinberg and Weinber [21] thresholds as
“balanced prices” and derive an economic intuition for the proof. They extended
these balanced prices to more complex settings, including a variety of feasibility
constraints and valuation classes. The approach is to prove guarantees in the
full information setting, where the realized values are known in advance. Then,
via an extension theorem, they prove that the results hold for Bayesian settings
too, where distributions are known but values are unknown. Note that their
balanced prices result in non-adaptive anonymous prices for all settings they
consider except for matroids feasibility constraints, where they remain adap-
tive and buyer-specific. The recent work of Dütting et al. [13] also implements
posted prices for buyers with subadditive valuations, but rather than balanced
prices, provides a weaker sufficient condition to get a tighter approximation, and
shows the existence of such prices through a primal-dual approach. They also
ask whether there is separation between prophet inequalities and posted pricings.
Correa et al. [10] show that for single-dimensional agents and threshold-based
algorithms, there is none. Banihashem et al. [2] answer this for more general
settings and algorithms via a black-box reduction from prophet inequalities to
posted prices, but this approach is only existential, and must be rectified with
the known strong lower bounds for non-adaptive thresholds.

More Subtle Applications in Mechanism Design and Analysis. Beyond direct
applications to pricing, prophet inequalities have also been used in to build more
complex mechanisms and prove approximation guarantees. Chawla and Miller [8]
design a two-part tariff mechanism to approximate optimal revenue for matroid-
constrained buyers. Their benchmark is an ex-ante relaxation, and they use an
OCRS [15] to achieve a constant fraction of that revenue. Cai and Zhao [4]
prove that the better of a sequential posted price mechanism (where each buyer
can only buy one item) and an anonymous sequential posted price mechanism
with an entry fee yields a constant-approximation to the optimal revenue for
multiple fractionally subadditive buyers (and O(log n)-approximation for fully
subadditive). In a specific case of their analysis that analyzes the core of the core
(a double core-tail analysis follow the original of [23]), they use [14]. Work by
Cai and Zhao [5] approximates the optimal profit—seller revenue minus cost—for
constrained-additive buyers. Like [8], they also construct their benchmark using
the ex-ante relaxation and use OCRS to bound a term here as well. Recent
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work by Cai et al. [3] studies gains from trade approximation in a two-sided
market with a constrained-additive buyer and single-dimensional sellers—both
the single-item prophet inequality of [21] and an OCRS are used to inspire prices
for both the buyer and the sellers simultaneously and then show that enough gains
from trade will be received to approximate one specific part of their benchmark.

2 Preliminaries

Definition 1. A matroid M = (N, I) is defined by a ground set of elements N
(with |N | = n) and a set of independent sets I ⊆ 2N . It is a matroid if and only
if it satisfies the following two properties:

1. Downward-closed: If I ⊂ J and J ∈ I then I ∈ I.
2. Matroid-exchange: For I, J ∈ I, if |J | > |I| then there exists some i ∈ J \ I

such that I ∪ {i} ∈ I.
We review several standard notions for matroids:

– The rank of a set rank(S) is the size of the largest independent set in S:
max{|I| | I ∈ I, I ⊆ S}.

– The span of a set span(S) is the largest set that contains S and has the same
rank as S: {i ∈ N | rank(S ∪ {i}) = rank(S)}.

– An element i is spanned by a set S when i ∈ span(S).

We will informally use the language “blocked” (by a set S) to mean that an
element is spanned (by the set S), and similarly “unblocked” to mean that an
element is not spanned (by the set S).

For any matroid M , we have the matroid polytope PM = {p ∈ R
M
≥0 | ∀S ∈

2N ,
∑

i∈S pi ≤ rank(S)}. That is, PM is the convex hull of the independent sets
I.

Definition 2. A Matroid Prophet Inequality instance (X,M) is given by a
matroid M = (N, I) and distribution of values X for the n items that are the
ground set N . Xi denotes the random variable representing the value for item i.

For any given matroid prophet inequality instance, we let Opt(X,M) denote
the value of the prophet’s set in expectation of the value of the items. Formally,
Opt(X,M) = E

[
maxI∈I

∑
i∈I Xi

]
. We omit the distributions X or matroid M

when it is obvious from context.

Definition 3. A non-adaptive threshold algorithm is given an instance (X,M)
and determines thresholds T . A threshold Ti for each item i is a function only of
the random variables X (and, in particular, not as a function of any realizations
of X or whether previous items have exceeded thresholds thus far).

For any non-adaptive thresholds T , we let Alg(X,M,T ) denote the
expected value obtained by the algorithm. Again, we omit the parameters when
they are clear from context.
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3 Where Straightforward Extensions Fail

Both of the non-adaptive single-item approaches—the probabilistic approach of
Samuel-Cahn [25] and the 1

2Opt approach of Kleinberg and Weinberg [21]—
extend to the k-uniform matroid setting, in which any set of size at most k
is feasible. We first see why these approaches work for k-uniform matroids yet
break down for graphic matroids. Then, we attempt to use an idea for graphic
matroids from Chawla et al. [7] to develop a non-adaptive algorithm, and again
highlight where the approach breaks down.

We begin with the two generalizations to k-uniform methods. Note that we
do not claim either as part of our contribution, although to the best of our knowl-
edge, neither approaches’ generalized thresholds and proof is written anywhere.

Formally, a k-uniform matroid is the matroid where, for any given ground
set N , I = {I ⊂ N : |I| ≤ k}. Bear in mind that k = 1 returns to the single-item
case.

The Probabilistic Approach. (Extension of Samuel-Cahn [25] single-item algo-
rithm to non-adaptive thresholds for the k-uniform matroid.) Determine the
thresholds T by setting Pr[< k item values exceed T ] = Pr[≥ 1 slot empty] =
p = 1

2 .

Alg(X, T ) ≥
∑

i

Pr[i not blocked]E[(Xi − T )+] + Pr[≥ k above T] · kT

≥ Pr[< k above T]
∑

i

E[(Xi − T )+] + Pr[≥ k above T] · kT

≥ pE

[

max
S:|S|≤k

∑

i∈S

(Xi − T )+
]

+ (1 − p)kT

≥ pE

[

max
S:|S|≤k

∑

i∈S

Xi − kT

]

+ (1 − p)kT

=
1
2
(E

[

max
S:|S|≤k

∑

i∈S

Xi

]

) − 1
2
kT +

1
2
kT

=
1
2
E

[

max
S:|S|≤k

∑

i∈S

Xi

]

=
1
2
Opt(X).

For uniform matroids, a simple characterization based on size exists for sets
that do not span any elements that have yet to arrive: they need only be of size
strictly less than k. This property does not hold for more complex matroids.

The “Thresholds as Constant-Fraction of Prophet” Approach. (Extension of
Kleinberg and Weinberg [21] single-item algorithm to non-adaptive thresholds
for the k-uniform matroid; almost identical to those in Chawla et al. [7]). Set
T = 1

2kE
[
maxS:|S|≤k

∑
i∈S Xi

]
= 1

2kOpt(X).
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Alg ≥
∑

i

Pr[i not blocked]E[(Xi − T )+] + Pr[≥ k above T]kT

≥ Pr[< k above T]E[
∑

i

(Xi − T )+] + Pr[≥ k above T]kT

≥ pE

[

max
S:|S|≤k

∑

i∈S

(Xi − T )+
]

+ (1 − p)kT

= p

(

E

[

max
S:|S|≤k

∑

i∈S

Xi

]

− kT

)

+ (1 − p)
1
2
E

[

max
S:|S|≤k

∑

i∈S

Xi

]

=
1
2
E

[

max
S:|S|≤k

∑

i∈S

Xi

]

=
1
2
Opt(X).

In uniform matroids, any element is exchangeable for any other element.
Then so long as it contributes enough value, such as at least a constant fraction
of the average contribution to the optimal basis, there is no reason not to accept
an element. However, this does not hold for more complex matroids. A particular
element, even if extremely high value, may cause so many other elements to be
spanned that it is not worth taking.

One can imagine more nuanced extensions of either such approach: prob-
abilistic thresholds for i according to how many elements it might block, or
value-based thresholds for i based on the value of the sets it might block. How-
ever, any such extension would require a matroid-specific understanding of the
relationship between elements, and element-specific thresholds.

Note that in addition to uniform matroids, both approaches easily extend to
partition matroids by applying the approach to thresholds specific to the uniform
matroid in each partition.

The Constrained Non-Adaptive Approach. Chawla et al. [7] construct non-adap-
tive thresholds for a graphic matroid that work so long as the algorithm can
enforce an additional subconstraint. Specifically, they cleverly partition the
graph such that, so long as at most one edge is accepted from each partition,
then an independent set is guaranteed. Then as items arrive, they are accepted
if and only if they exceed their threshold and are feasible with respect to the
subconstraint—that is, no previous item from its partition has been accepted.
This approach guarantees a 1

3 -approximation.
As discussed in the introduction, enforcing a subconstraint is in fact adaptive.

But, we could, for example, randomly select one item from each partition in
advance, defining our set for consideration C. Then, as items arrive, in each
partition, we consider only the item in C, ignoring all other items from each
partition. That is, we leave thresholds the same for all items in C and a priori set
Ti = ∞ for all i 
∈ C. This ensures that we only consider a set that complies with
our feasibility constraint without making any modifications online. Note that we
can select items to be in the consideration set C with whatever probabilities
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we choose, even in a correlated fashion—as long as we make them prior to
items arriving—thus setting all thresholds to Ti or ∞ in advance. Is there some
clever way that we can implement our feasibility constraint, or any feasibility
constraint, yet maintain a constant-factor approximation?

For the approach of CHMS, we might observe that a convenient property
that bounds the probability mass of each partition could allow us to form a
probability distribution over elements in each partition (i.e. place item i in C
with probability pi/2). However, this approach in fact reduces the probability
too much, as it combines the probability that the element is active with the
probability it is considered, and is no longer constant. If we use a constant
probability, it would instead sell to too low of a quantile.

If such an approach were to work, we could convert any non-adaptive
matroid prophet inequality to a prophet inequality, as a greedy OCRS exists
for all matroids and constructs constrained non-adaptive thresholds all matroids
[15]. However, Feldman et al. [16] also prove a super-constant lower bound of
Ω( logn

log log n ), so guarantees cannot possibly go through for every matroid. Thus,
an interesting direction for future work is to characterize when an approach of
converting constrained non-adaptive thresholds to a fully non-adaptive algorithm
in this way would maintain good guarantees.

4 The Ex-Ante Relaxation to the Matroid Polytope

Reducing a given matroid prophet inequality instance to one with Bernoulli
distributions that sits within the matroid polytope is “standard”, and is used
in [15]. It’s “just” an ex-ante relaxation to the matroid polytope, and expert
readers can safely skip this section. However, we present the reduction in detail
for comprehensiveness and ease of reading, as we did not find it elsewhere.

First, given arbitrary independent random variables Xi, we reduce the prob-
lem to designing an algorithm for independent Bernoulli random variables X ′

i:

X ′
i =

{
ti w.p. pi

0 w.p. 1 − pi,

where p ∈ PM and there exist ti ∈ R∀i.
Reducing to Bernoulli random variables gives two properties which greatly

simplify the design of an algorithm:

1. Each element of the ground set is either active or inactive; and
2. There exists a worst-case total ordering of the elements.

The worst-case ordering is the typical greedy ordering. Assume ti ≤ ti+1; then
greedily selecting elements in order (maintaining independence and according to
the rules of our algorithm) results in the lowest weight outcome over all orderings.
For the rest of the paper, we assume ti ≤ ti+1 for 1 ≤ i < n.

We now state our reduction formally.
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Lemma 1. Given a matroid M = (N, I) and independent random weights Xi,
i ∈ N , there exist independent Bernoulli weights X ′

i, where X ′
i = ti w.p. pi and

p ∈ PM , such that
Opt(X,M) ≤

∑

i

piti.

Furthermore, for any algorithm Alg,

Alg(X) ≥ Alg(X′).

Proof. First, rewrite the original optimal value as a sum over the ground set:

Opt(X,M) = E
[
max
I∈I

∑

i∈I

Xi

]

=
∑

i∈N

Pr[i ∈ I∗] · E[Xi | i ∈ I∗],

where I∗ is the maximum weight basis: I∗ = argmaxI∈I
∑

i∈I Xi. Now let pi =
Pr[i ∈ I∗]—the ex-ante probability that i is in the prophet’s solution. Since p is
a convex combination of basis vectors, then p ∈ PM .

Now, observe that E[Xi |Xi ≥ F−1
i (1− pi)] ≥ E[Xi|H] for any event H with

Pr[H] = pi. Let ti = E[Xi |Xi ≥ F−1
i (1 − pi)]; then in particular ti ≥ E[Xi | i ∈

I∗]. Hence
Opt(X,M) ≤

∑

i

piti.

Finally, to see that Alg(X) ≥ Alg(X′), we simply couple X and X′, so that
Xi ≥ ti if and only if X ′

i = ti. For any ordering of the elements, the algorithm
applied to the original instance selects the same items as the algorithm applied
to the Bernoulli instance. ��

5 A Constant-Factor Approximation for Graphic
Matroids

Given a Bernoulli instance from the matroid polytope, we show how to utilize
it to obtain a constant-factor non-adaptive algorithm for graphic matroids.

A graphic matroid is defined by an undirected graph G with vertices V and
edges E. The edges of the graph form the ground set, and the independent sets
I are forests, i.e. cycle-free sets of edges: I = {I ⊆ E : I contains no cycles};
every spanning tree is a basis. In light of Lemma 1, each edge i ∈ E has an
associated weight ti and is active (non-zero) with probability pi, where p ∈ PG,
the matroid polytope for the graphic matroid G. The objective is then to select a
maximum weight spanning tree. As discussed in the previous section, we assume
without loss that the edges arrive in order with ti ≤ ti+1 for all 1 ≤ i ≤ n − 1;
this order obtains the worst-case performance.

Our approach works by considering only a subset of the edges which has the
properties that (1) a significant fraction of the prophet’s benchmark is accounted
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for and yet (2) with constant probability, elements selected earlier in the ordering
do not block later elements.

Specifically, we do this in two steps. First, we show there exists a way to
direct the edges such that every edge has at most a constant probability of being
spanned by edges except for those leaving the vertex into which it is directed.
Then, we take a random cut in the graph and allow our algorithm to select
only edges crossing the cut in one direction, ensuring that for every vertex, the
edges entering it are considered while the edges leaving it are not with constant
probability.

Notation. We use bi(S) to denote the probability that element i is “blocked”
or spanned by the active elements in a set S with respective to active prob-
abilities p ∈ PM . For p ∈ PM , let Rp(S) be the random set containing
i ∈ S independently with probability pi. We call this the “active” set. Formally,
bi(S) = Pr[i ∈ span(Rp(S \ {i}))]. Notice that even if i ∈ S, we do not worry
that it would span itself.

One convenience of using the ex-ante relaxation is that, so long as each
element is unblocked with constant probability, that is, 1− bi(S) ≥ c, we obtain
a constant-factor approximation.

5.1 Directing the Graph

Lemma 2. For p ∈ 1
4PG, there exists a way to orient the edges of G such that

for each vertex the total probability mass of incoming edges is at most 1/2.

Proof. Any vector from the graphic matroid polytope PG is a convex combina-
tion bases, or spanning trees. The average vertex degree in any spanning tree
is at most 2, so the average fractional degree in a convex combination of span-
ning trees is at most 2, and hence the average fractional degree under the scaled
p ∈ 1

4PG is at most 1
2 .

Let in-deg(v) denote the fractional in-degree of v in the constructed directed
graph. That is, the sum of the “active” probabilities for the edges directed into
v. We can find an orientation of the edges in the graph given probabilities p
such that in-deg(v) ≤ 1

2 for all vertices v: because the average degree is at most
1
2 , there exists some vertex v with degree at most 1

2 . Orient all of the edges
incident to v toward v, as in-deg(v) ≤ 1

2 , and then recurse on the graph among
the remaining vertices. ��
Corollary 1. Given a graph as guaranteed by Lemma 2, let in(v) be the set of
incoming edges to vertex v and let out(v) be the outgoing edges. For any i, let v
be the vertex such that i ∈ in(v). Then for any S ⊆ E,

bi(S \ out(v)) ≤ 1
2
.

Proof. Observe that for i ∈ in(v), v cannot be spanned by a set that contains no
other edges incident to v. Then in order for i to be spanned in S \out(v), at least
one edge in in(v) other than i must be active. By construction,

∑
i∈in(v) pi ≤ 1

2 .
So the probability that no edges are active is at least 1

2 by the union bound. ��
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5.2 Random Cut

Assume p ∈ 1
4PG, and direct the graph as described above. We consider a random

cut of the graph Ŝ: let A ⊆ V be a random set of vertices such that each vertex
is included in A independently with probability 1/2, and let Ā = B = V \ A.
Let Ŝ be the set of directed edges across the cut from A to B, formally, Ŝ = {i :
i ∈ out(u) ∩ in(v), u ∈ A, v ∈ B}. Then the edges crossing the cut from A to B
give a good approximation to our benchmark.

Claim.

E
̂S

⎡

⎣
∑

i∈̂S

piti(1 − bi(Ŝ))

⎤

⎦ ≥ 1
8

∑

i∈E

piti.

Proof.

E
̂S

[
∑

i∈̂S

piti(1 − bi(Ŝ))

]

=
∑

(u,v)∈E

puvtuv Pr[(u, v) ∈ Ŝ]E
[
1 − buv(Ŝ)

∣
∣
∣(u, v) ∈ Ŝ

]

=
∑

(u,v)∈E

puvtuv Pr[u ∈ A]Pr[v ∈ B]E
[
1 − buv(Ŝ)

∣
∣
∣u ∈ A, v ∈ B

]

=
1
4

∑

(u,v)∈E

puvtuv E
[
1 − buv(Ŝ)

∣
∣
∣u ∈ A, v ∈ B

]

≥ 1
8

∑

(u,v)∈E

puvtuv

where the last inequality follows from Corollary 1. ��

5.3 Final Algorithm

For discrete random variables X, our algorithm is constructive, albeit not effi-
cient, because we can compute p and t as guaranteed by Lemma 1. (Of course,
we can discretize continuous random variables to arbitrary approximation).

1: Compute p and t as guaranteed by Lemma 1.
2: Direct the graph as outlined in Lemma 2.
3: Choose a cut (A,B) uniformly at random; let

̂S = {i : i ∈ out(u) ∩ in(v), u ∈ A, v ∈ B}.
4: For all edges i ∈ ̂S, set Ti = ti.
5: For all edges i �∈ ̂S, set Ti = ∞.

Step 3 can be derandomized using the standard Max-Cut derandomization.
Our main result is that this algorithm gives a 1

32 -approximation.



402 S. Chawla et al.

Theorem 1. Let G be a graphic matroid with independent edge weights X. Then

32E[Alg(G,X)] ≥ Opt(G,X).

Proof. Let p ∈ PG and t be the probabilities and values guaranteed by Lemma 1.
Let p′

i = 1
4pi. Then our algorithm obtains Alg = E

̂S

[∑
i∈̂S p′

iti(1 − bi(Ŝ))
]
,

which by our construction of Ŝ and Claim 5.2, gives

Alg ≥ 1
8

∑

(u,v)∈E

p′
uvtuv =

1
32

∑

i∈E

piti.

��
Our approximation factor is, of course, a factor of 16 worse than the dynamic

thresholds of [21] and a 10.67-factor worse than the constrained non-adaptive
thresholds of [7]. However, our guarantee holds for fully non-adaptive thresh-
olds, and thus will guarantee truthful mechanisms in multi-parameter mechanism
design applications.

Acknowledgments. Shuchi Chawla was supported in part by NSF awards CCF-
1617505, CCF-2008006, and CCF-2225259. Kira Goldner was supported in part by
NSF award DMS-1903037 and a Columbia Data Science Institute postdoctoral fellow-
ship, and in part by a Shibulal Family Career Development Professorship. Work by
J. Benjamin Miller completed while at UW-Madison, and was supported in part by
a Cisco graduate fellowship. Anna R. Karlin was supported by Air Force Office of
Scientific Research grant FA9550-20-1-0212 and NSF grant CCF-1813135.

References

1. Arnosti, N., Ma, W.: Tight guarantees for static threshold policies in the prophet
secretary problem. Oper. Res. 71(5), 1777–1788 (2023)

2. Banihashem, K., Hajiaghayi, M., Kowalski, D.R., Krysta, P., Olkowski, J.: Power
of posted-price mechanisms for prophet inequalities. In: Proceedings of the 2024
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 4580–4604.
SIAM (2024)

3. Cai, Y., Goldner, K., Ma, S., Zhao, M.: On multi-dimensional gains from trade max-
imization. In: ACM-SIAM Symposium on Discrete Algorithms (SODA21) (2021)

4. Cai, Y., Zhao, M.: Simple mechanisms for subadditive buyers via duality. In: Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2017, pp. 170–183. ACM, New York (2017). https://doi.org/10.1145/
3055399.3055465

5. Cai, Y., Zhao, M.: Simple mechanisms for profit maximization in multi-item auc-
tions. In: Proceedings of the 2019 ACM Conference on Economics and Compu-
tation, EC 2019, p. 217–236. Association for Computing Machinery, New York
(2019). https://doi.org/10.1145/3328526.3329616

6. Chawla, S., Devanur, N., Lykouris, T.: Static pricing for multi-unit prophet inequal-
ities (2020)

https://doi.org/10.1145/3055399.3055465
https://doi.org/10.1145/3055399.3055465
https://doi.org/10.1145/3328526.3329616


Non-Adaptive Matroid Prophet Inequalities 403

7. Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism
design and sequential posted pricing. In: Proceedings of the forty-second ACM
symposium on Theory of Computing, pp. 311–320. ACM (2010). http://dl.acm.
org/citation.cfm?id=1806733

8. Chawla, S., Miller, J.B.: Mechanism design for subadditive agents via an ex ante
relaxation. In: Proceedings of the 2016 ACM Conference on Economics and Com-
putation, EC 2016, pp. 579–596. ACM, New York (2016).https://doi.org/10.1145/
2940716.2940756

9. Correa, J., Cristi, A.: A constant factor prophet inequality for online combinatorial
auctions, STOC 2023, pp. 686–697. Association for Computing Machinery, New
York (2023). https://doi.org/10.1145/3564246.3585151

10. Correa, J., Foncea, P., Pizarro, D., Verdugo, V.: From pricing to prophets, and
back! Oper. Res. Lett. 47(1), 25–29 (2019)

11. Dütting, P., Feldman, M., Kesselheim, T., Lucier, B.: Prophet inequalities made
easy: Stochastic optimization by pricing non-stochastic inputs. In: Umans, C. (ed.)
58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, 15–17 October 2017, pp. 540–551. IEEE Computer Society
(2017). https://doi.org/10.1109/FOCS.2017.56

12. Dütting, P., Feldman, M., Kesselheim, T., Lucier, B.: Prophet inequalities made
easy: Stochastic optimization by pricing nonstochastic inputs. SIAM J. Comput.
49(3), 540–582 (2020). https://doi.org/10.1137/20M1323850

13. Dütting, P., Kesselheim, T., Lucier, B.: An o(log log m) prophet inequality for sub-
additive combinatorial auctions. In: 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020 (2020). https://arxiv.org/abs/2004.09784

14. Feldman, M., Gravin, N., Lucier, B.: Combinatorial auctions via posted prices.
In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 123–135. SIAM (2015)

15. Feldman, M., Svensson, O., Zenklusen, R.: Online contention resolution schemes.
In: Krauthgamer, R. (ed.) Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
10–12 January 2016, pp. 1014–1033. SIAM (2016). https://doi.org/10.1137/1.
9781611974331.ch72

16. Feldman, M., Svensson, O., Zenklusen, R.: Online contention resolution schemes
(2019)

17. Gravin, N., Wang, H.: Prophet inequality for bipartite matching: merits of being
simple and non adaptive. In: Proceedings of the 2019 ACM Conference on Eco-
nomics and Computation, EC 2019, pp. 93–109. Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3328526.3329604

18. Hajiaghayi, M.T., Kleinberg, R., Sandholm, T.: Automated online mechanism
design and prophet inequalities. In: Proceedings of the 22nd National Conference
on Artificial Intelligence, AAAI 2007, vol. 1, pp. 58–65. AAAI Press (2007)

19. Jiang, J., Ma, W., Zhang, J.: Tightness without counterexamples: a new approach
and new results for prophet inequalities. arXiv preprint arXiv:2205.00588 (2022)

20. Kleinberg, R., Weinberg, S.M.: Matroid prophet inequalities. In: Karloff, H.J.,
Pitassi, T. (eds.) Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, New York, NY, USA, 19–22 May 2012, pp. 123–136.
ACM (2012). https://doi.org/10.1145/2213977.2213991

21. Kleinberg, R., Weinberg, S.M.: Matroid prophet inequalities and applications to
multi-dimensional mechanism design. Games Econ. Behav. 113, 97–115 (2019).
https://doi.org/10.1016/j.geb.2014.11.002

http://dl.acm.org/citation.cfm?id=1806733
http://dl.acm.org/citation.cfm?id=1806733
https://doi.org/10.1145/2940716.2940756
https://doi.org/10.1145/2940716.2940756
https://doi.org/10.1145/3564246.3585151
https://doi.org/10.1109/FOCS.2017.56
https://doi.org/10.1137/20M1323850
https://arxiv.org/abs/2004.09784
https://doi.org/10.1137/1.9781611974331.ch72
https://doi.org/10.1137/1.9781611974331.ch72
https://doi.org/10.1145/3328526.3329604
http://arxiv.org/abs/2205.00588
https://doi.org/10.1145/2213977.2213991
https://doi.org/10.1016/j.geb.2014.11.002


404 S. Chawla et al.

22. Krengel, U., Sucheston, L.: Semiamarts and finite values. Bull. Am. Math. Soc.
83(4), 745–747 (1977)

23. Li, X., Yao, A.C.C.: On revenue maximization for selling multiple independently
distributed items. Proc. Natl. Acad. Sci. 110(28), 11232–11237 (2013). https://
doi.org/10.1073/pnas.1309533110

24. Lucier, B.: An economic view of prophet inequalities. SIGecom Exch. 16(1), 24–47
(2017). https://doi.org/10.1145/3144722.3144725

25. Samuel-Cahn, E.: Comparison of threshold stop rules and maximum for indepen-
dent nonnegative random variables. Ann. Probab. 1213–1216 (1984)

https://doi.org/10.1073/pnas.1309533110
https://doi.org/10.1073/pnas.1309533110
https://doi.org/10.1145/3144722.3144725


Matroid Bayesian Online Selection

Ian DeHaan and Kanstantsin Pashkovich(B)

Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Canada

{ijdehaan,kpashkovich}@uwaterloo.ca

Abstract. We study a class of Bayesian online selection problems with
matroid constraints. Consider a vendor who has several items to sell, with
the set of sold items being subject to some structural constraints, e.g.,
the set of sold items should be independent with respect to some matroid.
Each item has an offer value drawn independently from a known distri-
bution. Given distribution information for each item, the vendor wishes
to maximize their expected revenue by carefully choosing which offers to
accept as they arrive.

Such problems have been studied extensively when the vendor’s rev-
enue is compared with the offline optimum, referred to as the “prophet”.
In this setting, a tight 2-competitive algorithm is known when the vendor
is limited to selling independent sets from a matroid [29]. We turn our
attention to the online optimum, or “philosopher”, and ask how well the
vendor can do with polynomial-time computation, compared to a ven-
dor with unlimited computation but with the same limited distribution
information about offers.

We show that when the underlying constraints are laminar and
the arrival of buyers follows a natural “left-to-right” order, there is a
Polynomial-Time Approximation Scheme for maximizing the vendor’s
revenue. We also show that such a result is impossible for the related
case when the underlying constraints correspond to a graphic matroid. In
particular, it is PSPACE-hard to approximate the philosopher’s expected
revenue to some fixed constant α < 1; moreover, this cannot be alleviated
by requirements on the arrival order in the case of graphic matroids.

1 Introduction

In this paper, we study the problem of Bayesian online selection subject to
structural constraints given by matroids. Let us consider a scenario where a
vendor posts and updates prices in order to maximize their profit subject to
structural constraints. This type of problems is omnipresent in our everyday life.
Consider vendors, e.g., big e-commerce platforms or independent crafters, who
sell items by posting prices. In order to maximize their profits, vendors usually
calculate prices taking into account partial information about potential buyers
and the constraints on inventory, transportation networks, legal regulations, etc.
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One of the most prominent examples of this setting is the single-item prophet
inequality problem [30]. In this problem, the vendor is selling one item, for which
they observe a sequence of offers. The offers correspond to random variables
v1, v2, . . . , vn drawn independently from distributions known to the vendor. At
each timestamp t, the vendor may choose to stop by selling their item and gaining
the value vt, or the vendor may choose to discard this offer and continue. The
prophet in this problem represents a person who knows the realizations of all
offers v1, v2, . . . , vn ahead of time. Moreover, the expected gain of the vendor
is evaluated using the maximum gain of the prophet as a benchmark. In this
scenario, the vendor can do at least half as well as the prophet and no better
[30,39]. This result generalizes to the setting of matroid prophet inequalities, in
which the vendor is selling items from a matroid, and is limited to selling an
independent set in this matroid [29].

The classical prophet inequality problems make the vendor compete with the
prophet, where only the prophet knows the realizations of v1, v2, . . . , vn ahead
of time. Clearly, such a competition between the vendor and the prophet is very
unfair. Indeed, in many cases the advantage of knowing all realizations cannot
be alleviated through any efforts of the vendor. So let us change the benchmark
and introduce the philosopher. The philosopher does not know the realizations
of v1, v2, . . . , vn but has unlimited computational power. The central question
for our work is as follows. How well can a vendor limited to polynomial time
computation compete with the philosopher, where both know only the distributions
of v1, v2, . . . , vn but the latter has unlimited computational power? Answering
this question, we provide both positive and negative results for the ability of the
vendor.

1.1 Our Results

In the single-item case, the vendor can achieve the same profit as the philosopher.
Indeed, in this case the vendor can set a straightforward dynamic program that
computes the optimal strategy.

Gupta posed the question of whether the vendor can achieve the same gain
as the philosopher in the matroid setting, and more specifically in the graphic
and laminar matroid settings [25]. We answer this question in the negative for
graphic matroids. We show that for graphic matroids, it is PSPACE-hard for the
vendor to approximate the expected gain of the philosopher up to some fixed
constant. Moreover, for the graphic matroids there is no arrival order which
“substantially increases competitiveness” of the vendor.

On the positive side, we provide a Polynomial-Time Approximation Scheme
(PTAS) for all laminar matroids with “left-to-right” arrival orders, in which
elements from each constraint arrive consecutively. Furthermore, the provided
PTAS also holds for arrival orders that are “close” to “left-to-right” orders, i.e.,
to orders where each element is contained only in constantly many bins on which
the arrival order is not “left-to-right”. We note that our policy relies on the “left-
to-right” order only in the analysis. We leave it as an open question to determine
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whether there are substantially different requirements that guarantee our policy
to lead to a PTAS.

The defined order is called left-to-right because when the laminar matroid
is drawn with all elements on one horizontal line, the elements can be arranged
in order from left to right if and only if they are in a “left-to-right” ordering.
These orderings are exactly those orderings that are obtained when the tree
corresponding to the laminar family is explored with depth-first-search.

Let us provide an example of a Bayesian selection problem with a “left-to-
right” arrival order. Consider a situation where items correspond to clients, and
the vendor knows clients’ arrival order and distributions for their offers. Let the
parameter p represent some crucial resource and so determine restrictions on
the number of clients the vendor can serve. In particular, let there be several
critical thresholds p1, p2,. . . for p and limits γ1, γ2,. . . . For each i, if the value
of p drops below pi at some timestamp then we can serve at most γi clients
between this timestamp and the next timestamp when the value of p is again
at least pi. In Fig. 1, one can see the example of how the parameter p changes
over time and the corresponding laminar family. We note that the arrival order
in the “production constrained Bayesian selection” from [5] corresponds to the
case when p is a resource that is being delivered to us over time, see Fig. 2, plus
one additional global constraint.

Fig. 1. Here, the horizontal axis is associated with clients and so with the timestamps,
since their arrivals provide a measure for time. The vertical axis is associated with
the value of the parameter p. The critical thresholds p1, p2, p3 and p4 for the value
of p are depicted on the vertical axis. Below the picture of the graph, one can find
the illustration for the corresponding laminar matroid. In particular, the picture below
contains an interval for each critical threshold and the timestamps, when the value of
p drops below the threshold and the next timestamp when the value of p reaches the
value of the threshold.

Our PTAS holds for more general matroid Bayesian selection problems than
the ones described above. We can handle the cases where the limits γ1, γ2,. . . are
functions of timestamps when the value of p drops below pi. Moreover, we allow
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Fig. 2. Here the legend of the figure is the same as in Fig. 1. The structure of the
function for the parameter p corresponds to the situation when p represents a resource
that is being delivered over time, and is spent only on servicing clients. In this scenario,
the vendor can serve only a certain number of clients until the next delivery of the
resource.

the arrival order to be more complicated than just “left-to-right”. One can imag-
ine that the vendor runs several services in parallel, which mostly depend on
different resources, however each type of service depends on at most a constant
number of resources that are needed also for other types of service. In this situa-
tion, as long as the dependence on the “overarching” resources leads to a laminar
matroid, our policy provides a PTAS for the arising Bayesian selection problem.

Thus our results provide a generalization and extension of the previous results
for laminar matroids. The study of laminar Bayesian selection problems was
initiated by Anari et al. [5]. They gave a PTAS for the special cases of bounded-
depth laminar matroids and production constrained selection. Note that both of
these special cases have required structure on the laminar family, with production
constrained selection also having a special arrival order. In contrast, our results
do not impose any requirements on the structure of the laminar matroids, but
only on the arrival order.

1.2 Our Techniques

PTAS for Left-to-Right Laminar Bayesian Selection. We capture the
optimal online policy for left-to-right laminar Bayesian selection with an
exponential-sized linear program introduced in [5]. While this linear program
is too large to solve efficiently, we create a polynomial-sized relaxation by parti-
tioning bins into “big” and “small” based on their capacities. For each maximal
“small” bin, we require the constraints from the exponential-sized linear program
to hold exactly. But for each “big” bin, we only require its capacity constraints
to “hold in expectation”.
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We show that by solving the linear program, we can efficiently obtain an
online policy that is feasible for all “small” bins and has total expected gain
equal to the optimal value of the linear program. In fact, the obtained online
policies are optimal for the maximal “small” bins subject to changes in the value
distributions. The argumentation about the above online policies goes generally
along the lines of the analysis in [5]. One of our main technical contributions
is showing that, with some pre-processing on capacities, “big” bins are unlikely
to be violated by the obtained policies, see Lemma 7. To show this, we need
concentration bounds on the number of items selected from each maximal “small”
bin. The fact that the obtained policies act optimally on the maximal “small”
bins does not guarantee us that selections of items are negatively correlated,
see Fig. 3, and not even that the selection of an item is negatively correlated
with the number of items selected before it, see Fig. 4. Thus, we cannot rely
on the analysis from [5] and have to develop new tools. Nevertheless, we are
able to show a more “global” version of negative dependence; we show that the
number of items selected from each small bin is concentrated closely around the
mean. Roughly speaking, we obtain this by showing that the selection of an item
has a limited impact on the expected number of the items selected after it, see
Lemma 5. This gives us the building blocks needed for Chernoff type results, see
Lemma 6, which we use to bound the probability of “big” bins being violated in
Lemma 7.

These concentration results are only possible for restricted arrival orders. We
show in Theorem 2 that there exist laminar Bayesian online selection instances
where the number of elements selected by the optimal policy is anti-concentrated.
Due to the constructions done in the proof of Theorem 2, straightforward count-
ing arguments show that given natural numbers r and n ∈ Ω(r2), for a ran-
domly chosen laminar matroid over n elements with rank r and a randomly
chosen order, asymptotically almost surely one can choose value distributions
and capacities such that the resulting instance exhibits anti-concentration for the
number of elements selected by the optimal policy. This is a significant roadblock
on the way to giving a good approximation for laminar Bayesian online selection
problems with no restriction on arrival order. Most known results for problems
of this type first break the problem into smaller pieces, solve the philosopher’s
problem optimally on each part, and then use some concentration result to show
that combining the solution for these parts is unlikely to produce infeasible solu-
tions for the global problem. Without strong concentration on the number of
elements selected by the philosopher, this framework cannot work - further new
ideas are needed to tackle the general problem.

Hardness of Graphic Matroid Bayesian Selection. To obtain PSPACE-
hardness result for approximating Bayesian online selection for graphic matroids,
we reduce from Stochastic MAX2SAT (MAX-S2SAT). The arrival order of edges
is organized in three phases. In the first phase, the optimal policy for the con-
structed instance would need to make decisions that are equivalent to assigning
the variables in MAX-S2SAT True and False values. In the second phase and
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Fig. 3. Here, the vendor receives four clients u1, u2, u3 and u4 in the corresponding
order, but can serve at most 2 clients. The distributions for the offers are as in the
figure, e.g., u2 offers 3 with probability 0.5 and otherwise offers 0, u4 always offers 1.
Let Xi, i = 1, . . . , 4 be the event (and the corresponding indicator variable) that ui

was served by the optimal online policy. We have Pr[X3] = 3/4, Pr[X4] = 1/4 while
Pr[X3 ∧ X4] = 1/4. Thus, we have Cov(X3, X4) = 1/16.

Fig. 4. Here, the vendor receives six clients u1,. . . , u6 in the corresponding order, but
can serve at most 3 clients. Moreover, among u3 and u4 the vendor can serve at most
one client. The distributions for the offers are as on the figure, e.g. u2 makes offer 3 with
probability 0.5 and otherwise makes offer 0, u5 always offers 1. Let Xi, i = 1, . . . , 6
be the event (and the corresponding indicator variable) that ui was served by the
optimal online policy. We have Pr[X1] = Pr[X2] = 1/2, Pr[X3] = 1/4, Pr[X4] = 3/8,
Pr[X1 ∧ X4] = Pr[X2 ∧ X4] = 1/4 and Pr[X3 ∧ X4] = 0. Thus, we have Cov(X1 +
X2 + X3, X4) = 1/32.

the third phase, the optimal policy would make greedy decisions, with expected
payoff depending on the choices made in the first phase. Having shown that the
behaviour of the optimal policy indeed follows the above rules, the expected gain
of any such policy would be equal to the expected number of satisfied clauses plus
a fixed term and a negligible error term. Our analysis to estimate the expected
gain follows the lines of the work [34] on stochastic online matching. Later, we
show that for graphic matroids, there are no orders like left-to-right orderings for
laminar matroids. In particular, without knowing value distributions we cannot
associate an arrival order to each graphic matroid such that the resulting class of
instances admits a PTAS. To obtain this result, we show that we can embed our
hardness instance into a sufficiently large complete graph for any arrival order
on that complete graph.

1.3 Further Related Work

Study of prophet inequalities was initiated by [30] in which they considered adap-
tive algorithms for the single-item setting. Several years later, a simple single-
threshold 1

2 -competitive algorithm was given in [39]. In the decades following,
many variants of the classic prophet inequality problem have been considered.
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We give a brief snapshot of work on variants related to this paper, and recom-
mend reading surveys on the area for a more complete picture [11,28,31].

In recent years, there has been much work dedicated to the study of prophet
inequalities under combinatorial constraints. Beginning with uniform matroid
constraints [3,26], there has been exploration of general matroid constraints [29],
knapsack constraints [20], matching constraints [4,17,24], downwards-closed con-
straints [36,37], and many more. Many other variations of the classic prophet
inequality problem have been studied extensively. Some examples include set-
tings where the arrival order of elements is random [7,12,15,16], where every
element has its value drawn independently from the same distribution, [1,10,27],
single sample prophet inequalities [6,38], and non-adaptive prophet inequalities
[9,35].

Our work is far from the first to consider approximation of the online opti-
mum for Bayesian online selection problems. Online stochastic weighted bipartite
matching has been extensively studied in the last several years, with a series of
improved approximation factors given in [8,32,34]. In a variant of the single-
item prophet inequality problem where the order of elements is unknown and
uniformly random, there is a Polynomial-Time Approximation Scheme [14]. [2]
shows that even in the single-item prophet inequality problem, it is NP-hard
to select the best order to observe elements in. Additional approximations on
the online optimum in stochastic and Bayesian online selection problems have
been given in a variety of settings [21–23,40]. More recently, there has been work
comparing order-unaware algorithms to the philosopher benchmark [18,19].

During the preparation of our paper, we became aware also of an unpublished
PSPACE-hardness result for graphic Bayesian online selection obtained indepen-
dently by another group [41].

2 Problem Definition and Preliminaries

In this paper, we consider structural constraints defined by matroids. Each
matroid M is defined by a ground set U and a collection of subsets of U , which
are called independent sets. We work with two types of matroids: laminar and
graphic. A matroid M over a ground set U is laminar if there is some laminar
family of sets L over U and a capacity function c : L → N such that a set I is
independent if and only if |I ∩ A| ≤ c(A) for all A ∈ L. In this case, we write
M = (U,L, c). Given a laminar matroid M = (U,L, c), we call the sets in L
bins. The depth of a bin A ∈ L is defined as |{B : A ⊆ B, B ∈ L}|. A matroid
M over a ground set U := E is graphic if there is some graph G = (V,E) such
that a set I ⊆ E is independent if and only if (V, I) has no cycles. For further
reading about matroids and their properties, we refer to [33].

From now on, we refer to the vendor as a gambler and to the items as
elements. In the matroid Bayesian online selection problem, the gambler is given
the matroid M over a ground set U = {u1, . . . , un}, an arrival order of the
elements in U , and for each element ui ∈ U , a distribution Fi for its value vi.
Over the course of the game, the gambler maintains an independent set I which
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starts as the empty set. The set I consists of all elements selected by the gambler
at the given timestamp.

Elements arrive one by one in the given order. When ui arrives, the value vi ∼
Fi is drawn from its distribution independently from values of other elements
and presented to the gambler. The gambler may then choose to either select
the element as long as independence is maintained, updating I ← I ∪ {ui} and
gaining the associated value vi, or reject the element, gaining no value. This
decision is final and may not be changed later in the game.

The goal of the gambler is to gain as much value as possible over the course
of the game. Let OPTM indicate the maximum expected gain that the gam-
bler can achieve for the instance M. Here, we abuse notation and associate the
matroid Bayesian selection instance to the underlying matroid M when the value
distributions and arrival order are not relevant or are clear from the context.

The Laminar Matroid Bayesian Selection (LMBS) problem is the
matroid Bayesian online selection problem restricted to laminar matroids. The
Graphic Matroid Bayesian Selection (GMBS) problem is the matroid
Bayesian online selection problem restricted to graphic matroids.

To conserve space, most proofs are omitted and can be found in the prelim-
inary version [13].

3 Left-to-Right Laminar Bayesian Selection

In this section, we show that the laminar Bayesian online selection problem with
certain types of arrival orders admits a PTAS.

Definition 1. Given a laminar matroid M = (U,L, c) and an ordering u1, u2,
. . . , un of the elements U , we say that this is a left-to-right ordering if for every
bin A ∈ L of the laminar family, A = {ui, ui+1, . . . , uj} for some i, j.

In other words, the left-to-right ordering captures the rule that once elements
from some bin start to arrive, they must not stop until they have all arrived. We
say that an LMBS instance has a left-to-right arrival order (or equivalently it is
a left-to-right LMBS instance) if the elements arrive according to a left-to-right
ordering.

In this section, we assume that each distribution in the input is atomic.
Moreover, each distribution is given to us explicitly as the list of values and the
corresponding probabilities. This allows us to efficiently represent all distribu-
tions and to perform computations on them in polynomial time.

3.1 Warm-Up: QPTAS

To design a QPTAS and PTAS, we rely on the concept of states. A state has
an entry for each considered bin A in L, and this entry equals c(A) minus the
number of currently selected elements from A. Informally, a state represents the
remaining capacities of the bins under consideration.
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In an LMBS instance, given a timestamp let us call a bin A active if at least
one element of A already arrived and there are still some elements of A left to
arrive. The next lemma is based on the fact that in an LMBS instance, we can
use a dynamic programming algorithm that only keeps track of states for active
bins.

Lemma 1. Let M = (U,L, c) be a left-to-right LMBS instance with depth at
most L. Then the optimal gain and an optimal policy of the gambler in M can
be computed in nO(L) time.

Corollary 1. The optimal gain and an optimal policy of the gambler in a
constant-depth left-to-right LMBS instance can be computed in polynomial time.

Lemma 2. Let M = (U,L, c) be an LMBS instance and α be in (0, 1). We can,
in polynomial time, construct an LMBS instance M′ = (U,L′, c′) such that:

– L′ ⊆ L,
– for all A, B ∈ L′ with A � B, we have c′(A) ≤ 
α · c′(B)�,
– all independent sets in M′ are also independent in M,
– α · OPTM ≤ OPTM′ ≤ OPTM, and
– if M is a left-to-right instance then M′ is also a left-to-right instance.

Corollary 2. There is a QPTAS for left-to-right LMBS through Lemma 1 and
Lemma 2 with α = 1 − ε.

3.2 Linear Programming Formulation and Rounding Algorithm

To design a PTAS, we build on a linear programming formulation from [5]. The
linear program from [5] encodes dynamic programming ideas, allowing us to
construct a relaxation by decomposing a given instance of LMBS into tractable
parts and concentrating on optimal policies for each of these tractable parts.
For the sake of completeness, we present the linear program and relevant results
from [5] in this section.

Small and Big Bins. To decompose an instance of LMBS into tractable parts,
we partition L into “big” and “small” bins based on their capacities. If a bin is
small, we use a linear program based on dynamic programming to guarantee
its “feasibility”. If a bin is big, we enforce that its “feasibility” is guaranteed in
expectation.

Consider a threshold K ∈ N. Call a bin A ∈ L big if c(A) ≥ K, and small
otherwise. Let B ⊆ L indicate the set of big bins and S ⊆ L indicate the
set of inclusion-wise maximal small bins, i.e., the set of small bins that are not
contained in any other small bin.

Without loss of generality, we assume that each element of U is contained in
some small bin. If we have an element not contained in any small bin, then we
can add a bin with capacity 1 containing only this element. So, we can assume
that S partitions U .
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Feasibility on Small Bins. Let us consider a maximal small bin B ∈ S . Let
LB = {B′ ∈ L : B′ ⊆ B} be the set of bins contained in B. To capture states
with respect to B at each timestamp, we use SB ⊆ Z

LB

to indicate the set of
feasible states. Again, each vector s ∈ SB has an entry for every A ∈ LB which
represents c(A) minus the number of selected elements from A. Note that |SB |
is at most nO(c(B)) because no more than c(B) elements can be selected from B
by an online policy.

Let dt ∈ {0, 1}LB

be the indicator vector for the bins in LB containing the
element ut. Let us define the set of forbidden neighboring states

∂SB := {f ∈ Z
LB \ SB : there are ut ∈ B and s ∈ SB such that s = f + dt} .

In other words, ∂SB contains the set of all states that can be reached by an
online policy immediately after violating feasibility in addition to some irrelevant
unreachable states.

We use allocation variables Xt(s, v), which represent the probability that the
gambler accepts the tth item ut and the state upon its arrival is s, conditioned on
v being the realized value of vt. We then use Xt(v) to represent the conditional
probability that we accept ut, conditioned on v being the realized value of vt.
The state variables Yt(s) represent the probability that the gambler is at state
s upon the arrival of ut.

Now we introduce a polytope PB to capture transitions between states
through an application of an online policy on the bin B.

Xt(v) =
∑

s∈SB

Xt(s, v) ∀ut ∈ B, v

0 ≤ Xt(s, v) ≤ Yt(s) ∀s ∈ SB , ut ∈ B, v

Yt+1(s) = Yt(s) − Evt
[Xt(s, vt)] + Evt

[Xt(s + dt, vt)] ∀s ∈ SB , ut, ut+1 ∈ B

Yt0([c(A)]A∈LB ) = 1 t0 = min{t : ut ∈ B}
Yt(s) = 0 ∀s ∈ ∂SB , ut ∈ B.

One can see that any online policy for the restriction of M on B induces a
feasible point in PB . Let us show that the opposite also holds.

Proposition 1 (Proposition 2.1 from [5]). Given a bin B ∈ S and a point
{Xt(s, v),Xt(v),Yt(s)} ∈ PB, there is an online policy for the restriction of M
on B which guarantees the expected gambler’s gain to be

∑
ut∈B Evt

[vt · Xt(vt)]
and the expected number of selected elements to be

∑
ut∈B Evt

[Xt(vt)]. Moreover,
this policy can be found in polynomial time.

Feasibility on Big Bins. For each maximal small bin B ∈ S , we introduce a
variable NB to represent an upper bound on the expected number of elements
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selected from B. Using these variables we construct our final linear program.

maximize
n∑

t=1

Evt
[vt · Xt(vt)] (LP)

subject to
∑

A∈S :A⊆B

NA ≤ c(B) ∀B ∈ B

∑

ut∈B

Evt
[Xt(vt)] ≤ NB ∀B ∈ S

{Xt(s, v),Xt(v),Yt(s)} ∈ PB ∀B ∈ S

Note that in (LP) the first type of constraints are global ex-ante constraints.
They enforce the “feasibility” of big bins in expectation. The second type of
constraints enforces that for each B ∈ S the variable NB is a correct upper
bound on the expected number of selected elements. Finally, the third type of
constraints guarantees “feasibility” on all small bins. One can see that any online
policy induces a feasible solution for (LP).

Algorithm. Now we are ready to state the algorithm. We pre-processes an input
LMBS instance as in Lemma 2 with α = (1− ε). Next, we decrease the capacities
for big bins in order to introduce “slack” for our online policy to satisfy their
constraints, and solve the resulting (LP).

ALGORITHM 1: ALG(M = (U, L, c), K, ε)

1 Obtain M′ = (U, L′, c′) from M = (U, L, c) as in Lemma 2 based on α = (1 − ε) ;
2 Compute maximal small bins S and big bins B for M′ based on K ;
3 Obtain M′′ = (U, L′, c′′) from M′ = (U, L′, c′) by setting c′′(B) := (1 − ε) · c′(B) for

B ∈ B; and c′′(B) := c′(B) for B ∈ L′ \ B ;
4 Compute the optimal solution {X �

t (s, vt), X �
t (vt), Y∗

t (s), N ∗
A} for the linear

program (LP) with respect to M′′ ;
5 Extract an online policy from {X �

t (s, vt), X �
t (vt), Y∗

t (s)} for each B ∈ S ;
6 Independently run the obtained online policies on B ∈ S . Select an element as long

as the obtained policy suggests to select it and the selection is feasible with respect to
M′ ;

3.3 Analysis

In this subsection, we estimate the approximation guarantees achieved by Algo-
rithm 1 with respect to an optimal online policy.

Losses from Transformations in Steps 1–3 of Algorithm 1. There are two
steps in Algorithm 1 where we transform the original LMBS problem: Step 1 and
Step 3. The next lemma captures how the optimal gain changes between these
transformations. Define LPM′′ to indicate the optimal objective value of (LP)
with respect to M′′.

Lemma 3. In Algorithm 1, we have that LPM′′ ≥ (1 − ε)2 · OPTM.
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Losses from Discarding Elements in Step 6 of Algorithm 1. The key
challenge of analyzing Algorithm 1 is to estimate the expected value of elements
that were not selected in Step 6 due to the feasibility restrictions of M′. Lemma 7
shows that each element has a rather small probability of being not selected due
to the feasibility restrictions of M′. To show this, we first need some technical
results about the concentration on the number of elements chosen in each small
bin.

To obtain this concentration bound, we show that the online policy given by
Algorithm 1 on any small bin B is actually an optimal algorithm for B with
shifted values. Given this, we can analyze the behavior of the optimal algorithm
on B.

Lemma 4. Let B ∈ S be a maximal small bin. Then there exists λ∗ such that
the online policy for B computed in Step 5 is an optimal online policy for B with
values of ut, t ∈ B being vt − λ∗.

Lemma 5. Let M̃ = (Ũ , L̃, c̃) be a left-to-right LMBS instance with ordering
of elements ũ1, ũ2, . . . , ũn. Consider the selections done by an optimal online
policy when the policy encounters a fixed realization of values ṽ2, ṽ3, . . . , ṽn.
For this fixed realization, let μ0 and μ1 be the number of elements selected by
an optimal online policy from {ũ2, . . . , ũn} starting at t = 2 with S being ∅ and
{ũ1}, respectively. Then we have that μ1 ≤ μ0 ≤ μ1 + 1.

Lemma 6. Given a maximal small bin B ∈ S and an element ut ∈ B, let Xt

be the event that the online policies computed in Step 5 of Algorithm 1 suggest
to select ut. Then, for every α > 0 we have that

E[eα·XB ] ≤ e(e
α−1)·E[XB ] ,

where XB :=
∑

ut∈B Xt.

The Chernoff-like result of Lemma 6 then allows us to bound the failure
probability of Step 5 and thus show that Algorithm 1 is a PTAS.

Lemma 7. In left-to-right LMBS, for each ut ∈ U , the probability that upon the
arrival of ut the online policies computed in Step 5 suggest to select ut but it is
not feasible with respect to M′ is at most 3/(K · ε3).

Theorem 1. Algorithm 1 is a (1 − ε)3 approximation for left-to-right LMBS
instances when K = 3ε−4.

We note that Lemmas 5 and 6 crucially rely on the left-to-right arrival order
assumption. If this assumption is dropped, instances with essentially worst-
possible concentration can be constructed.
Theorem 2. For any r ≥ 1 and ε > 0, there exists an instance of laminar
Bayesian online selection M = (U,L, c) with rank(M) = r and |U | ≤ (r + 1)2

such that

Pr [ |OPT (M)| = 0 ], Pr [ |OPT (M)| = r ] ∈ [
1
2

− ε,
1
2
+ ε],

where OPT (M) ⊆ U is a random variable denoting the items selected by an
optimal algorithm.
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3.4 Extending to Arrivals “Close” to Left-to-Right

In this section, we extend the results for left-to-right LMBS instances to LMBS
instances that are “close” to being left-to-right. Let M = (U,L, c) be an LMBS
instance and B ∈ L a bin. We say that B is a left-to-right bin if the instance M
restricted to B is a left-to-right LMBS instance.

We are able to extend the results because we do not need every bin in laminar
matroid to be left-to-right. For our analysis to go through, it is enough for every
maximal small bin to be left-to-right. Given the above observation, we obtain
the following theorem by using a modified definition of small and big bins, which
is inspired by [5].

Theorem 3. Let L ∈ N be a constant. There is a PTAS for LMBS instances
where every element lies in at most L bins that are not left-to-right.

Corollary 3 (Theorem 3.5 from [5]). There is a PTAS for constant-depth
LMBS instances.

The production constrained Bayesian selection problem from [5] consists of
LMBS instances in which all bins except the largest are left-to-right, plus some
additional structure. This gives us the following corollary with L = 1.

Corollary 4 (Theorem 2.3 from [5]). There is a PTAS for production con-
strained Bayesian selection.

4 Graphic Bayesian Selection

LMBS can be viewed as a special case of the more general Matroid Bayesian
Online Selection problem, where instead of a laminar matroid, we are given any
matroid M. Gupta questioned in 2017 whether the best strategy for Matroid
Bayesian Online Selection is computationally hard to find [25]. We answer this
question in the affirmative, even for the special case of graphic matroids.

Theorem 4. There is an absolute constant α ∈ (0, 1) such that it is PSPACE-
hard to approximate Graphic Matroid Bayesian Selection (GMBS) to a factor of α.

Note that we can compute the optimal strategy for GMBS in polynomial space
with a simple brute-force recursive algorithm, so GMBS is in fact PSPACE-complete.
Also note that Theorem 4 says it is PSPACE-hard to approximate the expected
value of an optimal strategy. This does not immediately imply that it is PSPACE-
hard to act according to an approximate optimal strategy, but the proof of
Theorem 4 shows this as well.

Definition 2. We say that a class of matroids M admits a PTAS-compatible
distribution-agnostic order if there exists an order σ(M) for every matroid M ∈
M such that there is a Polynomial-Time Approximation Scheme for instances
of Matroid Bayesian Online Selection with matroids from M and arrival orders
given by σ.
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We show the following result by demonstrating that the hardness construc-
tion of Theorem 4 can be embedded in any arrival order of sufficiently large
complete graphs.

Theorem 5. The set of graphic matroids does not admit a PTAS-compatible
distribution-agnostic order unless PSPACE = P.

As a corollary of Theorem 1, we have that the set of laminar matroids admits
a PTAS-compatible distribution-agnostic order by taking σ(M) to be any left-
to-right ordering on M. Theorem 5 provides a separation between graphic and
laminar matroids.

4.1 Hardness for Graphic Bayesian Selection

PSPACE-Hard Problem: MAX-S2SAT. To prove Theorem 4, we first need some
results about Stochastic Max 2SAT.

Definition 3. In the Stochastic Max 2SAT problem, henceforth referred to as
MAX-S2SAT, the input is a 2CNF formula φ over an ordered list of variables
(x1, x2, . . . , xn), where n is even and for every i = 1, . . . , n−1, either xi or xi+1

is contained in some clause of φ. We choose a value of True or False for x1.
Then, nature sets x2 to either True or False with a probability of 0.5. We then
get to choose the value of x3, nature sets the value of x4 to either True or False,
and so on. Our goal is to maximize the expected number of satisfied clauses in φ
after all the variables have been assigned a value. A variable is called a random
variable if it is set by nature, and is called deterministic otherwise.

Lemma 8. There exist absolute constants k ∈ N and α ∈ (0, 1) so that it is
PSPACE-hard to compute an α-approximation for a MAX-S2SAT instance φ satis-
fying the requirement that each variable appears in at most k clauses of φ.

Reduction from MAX-S2SAT to GMBS. Now, we can state our reduction from
MAX-S2SAT to GMBS. Let φ be an instance of MAX-S2SAT as in Lemma 8 with
variables (x1, x2, . . . , xn) and constant k. Let m indicate the number of clauses
in φ. We construct an instance Iφ of GMBS as follows.

The vertex set in the graph for Iφ consists of a single central vertex w and
two vertices for each variable xi, i = 1, . . . , n in φ. We label the vertices for the
variable xi, i = 1, . . . , n as xi and ¬xi

V := {w} ∪ {xi, ¬xi : 1 ≤ i ≤ n} .

The edges of Iφ arrive in three distinct phases and have distinct value distri-
butions. Before specifying Iφ in full detail, let us explain the intuition behind the
construction. The first phase simulates the selection of truth values for variables
in the same order as they appear in φ. The second phase accounts for the number
of clauses satisfied by the value selection of phase one. For this, the edges in the
second phase correspond to clauses and attain very high values with very small
probability, so that multiple clause edges attaining value is very unlikely. The
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third phase guarantees that for each variable at most one truth value is selected
in the first phase by the optimal online policy.

First Phase. Respecting the order of variables as in φ, two edges wxi and
w¬xi arrive for each variable xi, i = 1, . . . , n. The edge wxi arrives immediately
before w¬xi. If xi is a deterministic variable, both edges wxi and w¬xi have
deterministic value 1. If xi is a random variable, the edge wxi has value 2 with
probability 0.5 and value 0 otherwise; the edge w¬xi has deterministic value 1.

Second Phase. An edge ¬
1¬
2 arrives for each clause (
1 ∨ 
2) in φ. Each such
edge has value m4/2k with probability m−4, and value 0 otherwise. For each
clause (
) in φ, i.e., for each clause with a single literal, an edge w¬
 arrives with
the same value distribution.

Third Phase. An edge xi¬xi arrives for each variable xi, i = 1, . . . , n. The edge
xi¬xi has deterministic value 2.

Note that within the first phase, the order of arrivals is important. In contrast,
the order of edge arrivals within the second or third phase can be arbitrary.

Optimal Online Policy for Iφ . Let OPTon(φ) refer to the expected value of
the optimal online algorithm for MAX-S2SAT on φ. Let ALGopt denote an optimal
algorithm for GMBS. We can assume that ALGopt selects only arrived edges. We
say that an edge arrived if the value of the edge is nonzero.

Then the following properties hold.

– ALGopt selects exactly one of wxi, w¬xi for each variable xi.
– For a random variable xi, ALGopt selects wxi if and only if wxi arrives.
– After the first phase, ALGopt selects every edge that arrives and can be

selected without introducing a cycle.

Note that, given these properties, the first clause edge to arrive will be
selected exactly when the truth assignment selected in phase 1 satisfies the
clause. This along with the fact that the event in which more than 1 clause
edge arrives is extremely unlikely can be used to show that the optimal algo-
rithm obtains value

1.25n + 2n · γ + 2n · m−3 · γ + δA + OPTon(φ) ·
(

m4

2k
− 2

)
· m−4 · γ ,

where γ := (1 − m−4)m−1 and δA ∈ [0, 2m−1]. Finally, we can see that
OPTon(φ) ≥ m

2 ≥ n
8 due to the fact that a random assignment of variables will

satisfy m
2 clauses in expectation. From here, standard techniques and the fact

that MAX-S2SAT is PSPACE-hard to approximate finish the proof of Theorem 4.

4.2 No PTAS-Compatible Distribution-Agnostic Order

Let us show that for a graphic matroid on a complete graph there is no PTAS-
compatible distribution-agnostic order. Let us be given a complete graph G =
(V,E) with |V | = 3n+2m+1, where n is even, and let us be given some arrival



420 I. DeHaan and K. Pashkovich

order for E. Let us show how one can construct a reduction for MAX-S2SAT
analogously to Sect. 4.1.

Edges for Third Phase. In the reverse order of arrival, greedily construct a
matching A := {a1, . . . , an} such that |A| = n. Each edge in A has deterministic
value 2.

Edges for Second Phase. In the reverse order of arrival, after constructing A,
greedily keep adding edges to B := {b1, . . . , bm} such that A ∪ B is a matching
and |B| = m. Each edge in B has value m4/2k with probability m−4, and value 0
otherwise.

Edges for First Phase. Consider the vertex set U , which are the vertices not
matched by the matching A ∪ B. Consider a vertex w ∈ U and let v1, v1, v2,
v2, . . . , vn, vn be such that the edges wv1, wv1, wv2, wv2, . . . , wvn, wvn are
the first n edges adjacent to w and their arrivals are in the above order. If i is
odd, both edges wvi and wvi have deterministic value 1. If i is even, the edge
wvi has value 2 with probability 0.5 and value 0 otherwise; and the edge wvi

has deterministic value 1.

Auxiliary Edges. For each i = 1, . . . , n both edges viαi and viγi have deter-
ministic value 3, where αi and γi are the endpoints of ai. For each j = 1, . . . ,m
both edges ujβj and ljτj have deterministic value 3, where βj , τj are the end-
points of bj and lj , uj correspond to “negations” of the literals in the jth clause
of φ.

Every remaining edge has deterministic value 0. Note, that all auxiliary edges
arrive before the edges in the second and third phase due to the greedy construc-
tion of A and B. Also all auxiliary edges are selected by an optimal online policy.
A similar analysis as the one presented in Sect. 4.1 then yields Theorem 5.
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Abstract. Two firms are engaged in a competitive prediction task.
Each firm has two sources of data—labeled historical data and unla-
beled inference-time data—and uses the former to derive a prediction
model and the latter to make predictions on new instances. We study
data-sharing contracts between the firms. The novelty of our study is to
introduce and highlight the differences between contracts to share pre-
diction models only, contracts to share inference-time predictions only,
and contracts to share both.

Our analysis proceeds on three levels. First, we develop a general
Bayesian framework that facilitates our study. Second, we narrow our
focus to two natural settings within this framework: (i) a setting in which
the accuracy of each firm’s prediction model is common knowledge, but
the correlation between the respective models is unknown; and (ii) a set-
ting in which two hypotheses exist regarding the optimal predictor, and
one of the firms has a structural advantage in deducing it.

Within these two settings we study optimal contract choice. More
specifically, we find the individually rational and Pareto-optimal con-
tracts for some notable cases, and describe specific settings where each
of the different sharing contracts is optimal. Finally, on the third level
of our analysis we demonstrate the applicability of our concepts in a
synthetic simulation using real loan data.

Keywords: Data Sharing · Strategic Machine Learning · Strategic
Classification · Information Sharing

1 Introduction

Machine learning (ML) is becoming a highly distributed endeavor. Data is spread
among different firms, each of whom may have their own ML capabilities and
economic utilities. In many cases, one firm’s data and prediction capabilities are
complemented by those available to a competing firm, and each firm would ben-
efit from access to the other’s predictions. For example, two investment banks
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that attempt to predict loan defaults could each improve their respective predic-
tions by accessing the other’s predictions. Indeed, this is in the spirit of one of the
most fundamental ideas in ML—aggregating weak learners into strong ones [9].
However, the distributed nature introduces a major obstacle: Why, and under
what conditions, would firms willingly share their predictions with competitors?
And what would equilibrium behavior look like, given such sharing?

Our main innovation in this paper is the observation that this obstacle actu-
ally consists of two separate questions: Would firms share the labels they have
in the training phase? And would firms share their predictions for unlabeled
instances?

In order to tackle this question of training/inference-stage prediction-sharing,
we proceed on three levels. First, we develop a general Bayesian model that cap-
tures the two kinds of sharing. The Bayesian model specifies the informational
environment, while a utility model specifies the economic implications. In the
Bayesian model, each firm obtains a training signal that represents the prediction
model (a.k.a. classifier) learned by that firm via its labeled historical data. The
firm also obtains an inference-time signal that represents the classifier’s predic-
tion on unlabeled inference-time data. In the utility model we associate a real
number with each outcome quadrant: True-positive, true-negative, false-positive,
and false-negative predictions. We moreover assume that if both firms arrive at
the same outcome, then the associated utility is split between them.

In the second level of our analysis, we apply our model to a game-theoretic
study of two natural settings. In the first setting, the accuracy of each firm’s pre-
diction model is common knowledge, but the correlation between the respective
models is unknown. As for utilities, firms have a safe prediction with utility zero
(whether right or wrong), and a risky prediction. An example is a firm predicting
a customer’s trustworthiness to decide if to issue a loan. If a loan is provided,
the firm’s utility depends on the accuracy of the trustworthiness prediction, and
whether or not the customer has other offers. If no loan is provided, the firm’s
utility is fixed at 0. In the second setting we study, there are two hypotheses
regarding the optimal predictor, and one of the firms has a structural advantage
in deriving it. Furthermore, firms’ utilities are symmetric across prediction types
(unlike the first setting), and depend only on the predictions’ correctness. An
example is a firm recommending a movie to a viewer, where the firm’s utility
depends on whether or not it accurately predicts the viewer’s tastes.

Finally, in the third level of our analysis, we demonstrate the applicability of
our ideas in a synthetic simulation using real loan data. This is intended to pro-
vide an accessible, practical recasting of our abstract model’s results. In broad
terms, if we take a single firm’s perspective, the no-sharing contract allows it to
build a classifier based on its own historical data. Then, based on its assessment
(prior) of the competitor, it decides whether or not to act in accordance with
the classifier’s prediction (signal). An example of choosing to ignore the classi-
fier’s signal would be if the firm knows that its competitor can perfectly predict
whether a loan would be repaid. Then, all the benefit of issuing a good loan is
split (e.g., by the random decision of the consumer as to which of the offered loans
to accept). However, since the firm knows that its own classifier is imperfect, it
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knows it will also end up issuing some bad loans. If the cost of bad loans out-
weighs the benefit of splitting the profit from good loans, the firm would decide to
ignore its classifier and not issue any loans. Expanding on this example, the train-
sharing contract can allow the firm to make a more refined decision: Based on
seeing how the other firm predicts on the historical data, it can assess whether or
not to follow its own classifier. The full-sharing contract allows even more intri-
cate decision rules: They can depend both on what the firm learns about the
competitor’s predictions on historical data, and also on the competitor’s predic-
tion on each specific consumer. Lastly, the infer-sharing contract does not reveal
the competitor’s predictions on historical data, so it must maintain its prior over
the other firm’s classifier, but can use the competitor’s prediction on the real-
time consumer to decide whether to follow its own classifier’s prediction. In our
practical implementation of Sect. 5 we examine the performance of the optimal
decision rules under different contracts, and show that each of no-sharing, full-
sharing, and train-sharing is uniquely optimal for some set of parameters.

The emphasis of our work in game theoretic terms is to require that a con-
tract is both individually rational and Pareto-optimal (IRPO). This follows the
assumption that the natural state of affairs is that no contract is signed (no-
sharing). Thus, for the firms to agree for any kind of prediction-sharing, it must
be that for each of them, the expected utility under the prediction-sharing con-
tract is at least as good as under no-sharing. We refer to this property as the
contract being individually rational. Moreover, the contract must be Pareto-
optimal with respect to the four possible contracts. That is, if the utilities under
full-sharing dominate these under train-sharing, even if train-sharing is by itself
individually rational, it would make sense that the firms choose to sign the
Pareto-optimal contract rather than a Pareto dominated one. As we will see,
there are different settings so that each of the contract types may be the unique
IRPO contract.

Lastly, we note that in order for the firms to share their predictions, they
need a way to match records. Facing this issue is common in the industry and
there are companies that specialize in this task.1 This type of prediction-sharing
is valuable, even if done for identifiers both firms hold, as different firms may
be exposed to different properties of the same identifier. As an example, think
of firms that know different social and financial features associated with the
same social security number. In this case, there is a difference between sharing
each firm’s binary prediction regarding the user, or the entire data it holds for
that identifier. Importantly, our model assumes that firms share their training
and inference-time signals, and not their entire data. In practice, in the training
stage the signals come in the form of true labels in the historical data, and in the
inference stage in the form of the classifier’s predictions. The fact that this still
proves to be useful is by itself interesting, as it suggests a path to data sharing
that protects both the firm’s intellectual property (in terms of both data and
models used in training), and possibly the users’ privacy.

1 E.g., in advertising, identifying the same user on different devices is called cross-
device targeting, enabled by “attribution providers” such as AppsFlyer and Singular.
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1.1 Our Contribution

In Sect. 2, we provide the first model to reason about contracts that may involve
sharing prediction both in the training and inference stage. In Sects. 3 and 4 we
then focus on two natural sub-models of the general model we present:

1. A Correlation Model: Both firms know their own and their competitor’s pre-
diction accuracy, but not the correlation between the two prediction models.
We characterize the uniquely individually rational and Pareto-optimal con-
tracts for some notable cases. We also show that all contracts except inference-
sharing can be optimal in this setting.

2. A Two Hypotheses Model: One firm is able to determine the correct hypothesis
during training, while the other has information about customers that is
valuable during inference. Here, we show that inference-sharing can be the
unique individually rational and Pareto-optimal contract.

Overall, we conclude that each of the four train/inference contracts can be opti-
mal:

• No-sharing is IRPO when the cost of making a wrong prediction is equal to
the reward of making a correct prediction (Lemma 1, Theorem 1). Then, (1)
Under full-sharing, when the two firms share their inference-time signals, the
firms will simply follow the primary firm signal. This is because a negative
primary firm signal overshadows a positive secondary firm signal. (2) Given
the first insight, the primary firm is only set to lose by sharing its signal.

• Full-sharing is IRPO when the firms can use both signals to “amplify” or
mitigate their individual signal (Theorem 2), and when train-sharing/infer-
sharing have symmetric equilibria, whereas the symmetric full-sharing equi-
librium is more informed (Lemma 4, Lemma 2).

• Train-sharing is IRPO when the two firms benefit from reaching different
equilibria given a different correlation between their signals. In particular,
the firms may prefer to each follow its signal when the correlation is low but
have the secondary firm ‘yield’ to the primary firm when the correlation is
high and exit the market.

• Infer-sharing is never uniquely IRPO under the correlation model (Lemma 2)
but can appear under other natural models (Theorem 4). It is also used to
amplify the individual signal, even without knowing what the other firm’s
signal is based off.

Beyond the existence results detailed above, which help provide intuition into
the different types of prediction-sharing contracts, the theorems of Sect. 3 also
provide a partial characterization of our correlation model in several important
cases such as symmetric utilities or symmetric prediction-accuracy. In Sect. 5,
we demonstrate how our abstract Bayesian model may be put into practice and
implemented, using a real loan dataset.
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1.2 Related Work

Strategic Collaborative ML. Federated Learning [17] is a popular framework
where agents run training locally on data they have access to, and share it to
create an optimized global model. A known issue is the possible problem of
free-riding [8], where agents may benefit from other agents’ inputs but keep
the improvements from their own data to themselves. More generally, agents
participating in collaborative learning tasks against competitors may seek to
actively mislead others, while still benefiting from their data. [10] shows bounds
on when collaborative learning is safe, depending on the number of fake identities
an attacker may control, and the parameters of the learning task. [5] suggest
distributing (different) noisy versions of the global model, and using budget-
balanced payment schemes, as methods to ensure honest collaborative behavior.
[2] study competition in regression, where instead of optimizing for the best
model fit, agents try to be the best fit for as large a market share as possible.
They find a sample and time efficient algorithm to calculate a best response
in the game. [7] study how firms may choose the distribution of errors resulting
from their learning algorithm in a competitive environment. They find that firms
would prioritize minimizing bias rather than variance, even at the cost of having
a higher total error rate.

Information Sharing and Selling. The economic literature on information
sharing [3] studies how signals can be structured out of existing information,
and be sold at an appropriate price. [1] finds that unlike when selling traditional
items, achieving good welfare may require multiple rounds of communication,
and large back and forth monetary transfers. [19] find that when outsourcing a
learning task, it is best to use a “threshold contract” where the firm is paid only
if it achieves a certain level of accuracy. [15] study a model where a firm pre-
trains a model, to be revenue-shared with a firm that fine-tunes it. When firms’
preferences are uni-modal, revenue sharing is Pareto-optimal within the interval
between each of the firms’ preferred revenue share, but no longer necessarily so
with multiple fine-tuners, and characterize free-riding in their model.

The above works focus on different aspects of the machine learning pipeline,
but mostly have a downstream perspective, where the information flows from the
agent holding it towards the firm benefiting and paying for it. Our work belongs
to the economic literature on data sharing, among different firms that hold parts
of the information. [13] studies data aggregation between competitors. In this
model, segmentation information about consumers is split between firms, and
firms decide whether or not to share their part of the data with others during
the inference phase. The work assumes that the segmentation scheme itself is
known (which we would consider as something that is learned during the training
phase). [12] studies competition in serving consumers within a Hotelling model.
It finds that fully sharing the data on existing consumers increases competition
and harms the firms, but that partial sharing schemes exist that not only benefit
both firms but the consumers as well. Both works focus on contracts that involve
only information sharing, without monetary transfers, as we do as well.
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[20] study a model where competing firms share data samples. They find
that sharing is more prevalent when the competition model is milder (Cournot
vs. Bertrand competition), or when the learning task is harder (requires more
samples to achieve good accuracy). There are many differences from our work:
We employ a Bayesian model for our reasoning, we focus on simple binary pre-
dictions, and we assume the firms share their predictions and not the underlying
data.

Lastly, we note that some works have observed the important role of infor-
mation as a coordination device [4]. In this line of reasoning, the importance of
the information that different firms see may not be in and of itself, but the fact
that other firms see the same information and may use it to coordinate. We find
a similar phenomenon in the train-sharing case, where the firms benefit from
knowing that one of them may only lose in expectation when participating in
the market. Then, the firm yields, which benefits both the firm itself, and its
competitor which effectively becomes a monopoly.

2 Model

Informational Environment. There are two firms engaged in a competitive pre-
diction task. Each firm obtains data in two phases: training and inference. In
the training phase, examples with binary labels are drawn at random, and each
firm learns a respective prediction model (i.e., classifier). The training phase
may consist of one example, multiple examples, or “infinitely many” examples.
In the inference phase firms use their learned model in order to predict the label
of a new example. Firm 1’s prediction is either A or B and firm 2’s prediction
is either a or b, where the former indicates that the firm’s prediction model
believes the label is 1 and the latter indicates the label is 0. We model this inter-
action in an abstract Bayesian framework using the rich signal spaces of [14] and
[11]. We next describe the formal model, and highlight the main elements and
interpretations.

A world model w consists of a prior distribution πw over {0, 1}, as well as two
signal spaces, one for each firm. For every true label t ∈ {0, 1}, each signal space
partitions [0, 1] into two sets, representing the probabilities associated with firms’
prediction models, given true label t.2 For the first firm, the first set is denoted
At

w ⊂ [0, 1], and the second is denoted Bt
w = [0, 1] \At

w. For the second firm, the
two sets are denoted at

w and bt
w. Given w, a random example is modeled as a label

t drawn from {0, 1} according to πw, as well as ζ drawn from [0, 1] uniformly at
random.3 Firm 1’s signal (i.e., its model’s suggested prediction under w) on this
example is then 1 if ζ ∈ At

w under t, and 0 otherwise; firm 2’s signal is 1 if ζ ∈ at
w

under t, and 0 otherwise. In words, ζ chooses a “location” on the interval [0,1].
This location decides some signal for Firm 1 (according to the way it partitions
the interval [0, 1]), and similarly for Firm 2 (possibly with a different partition).
Sampling ζ uniformly at random from [0, 1] is in a sense similar to sampling a
2 Formally, each signal space is a Lebesgue measurable bi-partition of [0, 1] × {0, 1}.
3 The uniformity assumption here is without loss of generality.
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random feature vector that is used to train the firms’ prediction models/requires
a prediction at inference time.

In general, firms may not know the true w. Instead, let W be a possibly
infinite set of possible world models, and suppose there is a commonly known
prior π over them. An example of this framework is illustrated in Fig. 1.

Given this informational environment, the interaction proceeds as follows. In
stage 0, Nature chooses an element w of W according to π. Then:

1. In the training stage, each firm i obtains a training signal wi about the realized
world model w. Each wi is a function of firm i’s respective signal space under
w. Given signal w1 (respectively, w2) and the prior over W , each firm i uses
Bayesian updating to posterior beliefs πi over world models W .

2. In the inference stage, ζ is drawn from [0, 1] uniformly at random, and a
label t is drawn from {0, 1} according to πw. Firm 1 obtains the inference-
time signal X ∈ {A,B} that satisfies ζ ∈ Xt

w′ , where w′ ∼ π1; firm 2 obtains
the inference-time signal x ∈ {a, b} that satisfies ζ ∈ xt

w′ , where w′ ∼ π2.4

3. In the action stage, each firm i takes an action ai ∈ {0, 1}. Utilities depend
on both firms’ actions, and true label t.

Next, we consider different contracts for prediction sharing. Under no-
sharing, the interaction proceeds as above. Under train-sharing, there is an addi-
tional stage between 1 and 2:

1b. Firms share their respective training signals w1 and w2.

Under infer-sharing, an additional stage between 2 and 3:

2b. Firms share respective inference-time signals X and x.

Finally, under full-sharing both 1b and 2b take place.

Summary and Interpretation. We now summarize the model elements and inter-
pretation:

• The world model w is an information-theoretically optimal pair of classifiers.
• The training signal wi implies a posterior πi over world models, which we

interpret as the actual classifier firm i is able to train. We interpret the signal
wi as firm i’s predictions on its labeled historical data. In practical terms, the
training signal can be interpreted as the model that best fits the training data,
out of all possible models. The firms can then share these signals (i.e., the
functions or code representing their best models given their data), without
sharing the data itself.

• The inference-time signal is the prediction (X ∈ {A,B} for firm 1, x ∈ {a, b}
for firm 2) made by the classifier on an unlabeled inference-time example.

• Under train-sharing, firms share w1 and w2, their predictions on labeled data.
4 Notice that the inference-time signal is drawn according to the firm’s posterior, rather

than according to some specific true possible world. This is since we are interested in
calculating the firms’ equilibrium behaviors, which follow their Bayesian perspective.
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• Under infer-sharing, firms share X and x, their respective predictions on the
unlabeled inference-time example.

This formulation can capture a wide range of scenarios. The prior over W
implies a prior over the relative share πw of each label, a prior over the accuracy
of each firm’s model, and a prior over the correlation between the predictions of
firms’ models. The framework is illustrated in Fig. 1. See also Fig. 1 and Fig. 2
in [11].

Fig. 1. There are two world models, represented by the top two and bottom two pairs
of intervals, respectively. For both world models, πw = Pr[t = 1] = κ. In the first world,
A1

w = [0, 1] and A0
w = [0, λ]. Thus, if t = 1 firm 1 always obtains signal A, and if t = 0

firm 1 obtains signal A with probability λ—i.e., whenever ζ ∈ [0, λ]—and signal B with
probability 1 − λ. Furthermore, a1

w = [0, 1] and a0
w = [λ, λ + μ]. Thus, if t = 1 firm 2

always obtains signal a, and if t = 0 obtains signal a with probability μ—i.e., whenever
ζ ∈ [λ, λ+μ]—and signal b with probability 1−μ. Finally, the bottom two pairs of line
segments represent the firms’ signal spaces in the second world model, which differs
from the first only in firm 1’s signal under t = 1, namely, A1

w = ∅ and B1
w = [0, 1].

The interval structure of each of the firms results in a joint interval structure (and
an induced joint probability over firm 1 signal A/B, firm 2 signal a/b, and the true
realization 0/1), shown on the rhs of the figure. In the infinite data model, where each
of the firms learns its own interval structure with certainty, firm 1 is able to deduce
the correct world model just by knowing its own interval structure. On the other hand,
firm 2 does not learn (in a Bayesian sense) anything from its own interval structure.
This example captures our “Two Hypotheses” model of Sect. 4.

Strategies. A strategy si of firm i in the action stage is a mapping from the firm’s
signals to a distribution over actions ai ∈ {0, 1}. The firm’s signals depend on
the contract: under no-sharing, the respective signals are σns

1 = (w1,X) for firm
1 and σns

2 = (w2, x) for firm 2. Under train-sharing, they are σts
1 = (w1, w2,X)

and σts
2 = (w1, w2, x). Under infer-sharing, they are σis

1 = (w1,X, x) and σis
2 =

(w2,X, x). And under full sharing, both firms obtain signals σfs
i = (w1, w2,X, x).

Utility Model. As noted above, utility ui(p, t, p′) of firm i depends on 3 variables:
The firm’s action p, the true label t, and the other firm’s action p′. For a given
example, action p is correct if it matches the example’s label t. Given a training
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signal wi, a contract ct ∈ {ns, ts, is, fs}, and a pair of strategies (s1, s2), the
expected utility of firm i is

uct
i (wi, s1, s2) = E

[
ui

(
s1

(
σct
1

)
, t, s2

(
σct
2

) )]
, (1)

where the expectation is over the draw of w from W according to π|wi, the draw
of t according to πw, the draw of wj under w, the draws of inference-time signals
X and x under w, and the distributions of firms’ randomization over actions.

We make some simplifying assumptions about utilities. First, we assume that
u1 = u2. Second, we assume ui(p, t, p) = 1

2ui(p, t,¬p), i.e., that if the two firms
take the same action, the utility (whether positive or negative) is divided between
them, in the sense that:

2∑
i=1

ui(p, t, p) =
2∑

i=1

1
2
ui(p, t,¬p) = u1(p, t,¬p).

To emphasize the notation, ui(p, t, p) is the utility when the other firm’s
prediction p′ is equal to p, and ui(p, t,¬p) is the utility when the other firm’s
prediction p′ is different than p. Thus, the ex-post utility is determined by four
numbers: R0 = u1(0, 0, 1), R1 = u1(1, 1, 0), C0 = u1(0, 1, 1), C1 = u1(1, 0, 0),
where for example R0 is the reward from correctly taking action 0 while the
other firm takes action 1. We assume that R0, R1 ≥ 0 and C0, C1 ≤ 0.

In the paper, we largely focus on two specific utility models that capture
important settings. In Sect. 3, we focus on a utility model we call significant-
action utilities. In this model, there is a significant action—w.l.o.g., the action
1. For example, this action may be choosing to issue a loan. When taking the
other, safe action, both reward and cost satisfy R0 = C0 = 0. If a firm takes a
correct significant action exclusively, meaning that the other firm takes the safe
action, it gets the full reward R1. On the other hand, if a firm takes an incorrect
significant action exclusively, it pays a cost C1. When C1 = 1, we call this the
symmetric significant-action utility model.

In Sect. 4, we focus on a utility model we call matching recommendations, as
in, e.g., [13]. In this model, there are no costs to a mistake—formally, C0 = C1 =
0—and there is a symmetric reward for any correct action—formally, R0 = R1 =
1. E.g., consider a firm that chooses between two possible recommendations to
a user, and, if it correctly recommends what the user is looking for, the user will
make a purchase.

Equilibrium, Individual Rationality, and Pareto Optimality. Given training
signals w1 and w2 and a contract ct ∈ {ns, ts, is, fs}, a pair of strategies
s = (si, s¬i) form a Nash equilibrium at (w1, w2) if for each i and each strategy
s′

i,
uct

i (wi, si, s¬i) ≥ uct
i (wi, s

′
i, s¬i). (2)

An equivalent and perhaps more useful formulation of the equilibrium condi-
tion takes the perspective of the agent together with her beliefs, see the discussion
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in Chap. 9 of [16]. We define the utility from taking action pi ∈ {0, 1} given the
collection of signals σct

i and the other firm’s strategy s¬i as

ũct
i (σct

i , pi, s¬i) = E
[
ui

(
pi, t, s¬i

(
σct

¬i

) )
| σct

i

]
, (3)

where the expectation is over the conditional draw of σct
¬i and t given signals σct

i .
We then say that s is an equilibrium for firm i if for every belief σct

i and every
possible action p′

i ∈ {0, 1},

ũct
i (σct

i , si(σct
i ), s¬i) ≥ ũct

i (σct
i , p′

i, s¬i). (4)

Next, a contract ct Pareto dominates contract ct′ at (w1, w2) if there exists
an equilibrium s under ct such that, for every equilibrium s′ under ct′,

uct
1 (w1, s) ≥ uct′

1 (w1, s
′) and uct

2 (w2, s) ≥ uct′
2 (w2, s

′). (5)

If at least one of the inequalities is strict then the Pareto dominance is strict.
Contract ct Pareto dominates contract ct′ if it Pareto dominates ct′ at every
(w1, w2), and in this case we write ct � ct′. If ct � ct′ and ct′ � ct, we write
ct = ct′, and say that the two contracts are equivalent. Contract ct strictly Pareto
dominates ct′ if ct � ct′ but ct′ �� ct, and in this case we write ct 	 ct′.

Contract ct is individually rational (IR) at (w1, w2) either if it is the no-
sharing contract (which we consider the default contract), or if ct Pareto domi-
nates the no-sharing contract at (w1, w2). Contract ct is always IR if it is IR at
every (w1, w2), namely, ct � ns. Contract ct is Pareto optimal if it is not Pareto
dominated by any other contract, Pareto-optimal IR (IRPO) if it is both Pareto
optimal and always IR, and uniquely IRPO if it is the only contract that is both
Pareto optimal and always IR. Although our model is general, and can handle
both mixed and pure Bayesian equilibria, our results in Sect. 3 onwards are for
pure Bayesian equilibria.

3 Contracts for Prediction-Sharing with Unknown
Correlation

In this section we focus on the first of two specific settings within our framework.
We assume firms have significant-action utilities and “infinite data”. The latter
assumption means that each firm’s prediction model is in some sense an optimal
classifier given the data features it is able to see. We believe that this is the most
natural assumption to closely approximate massive data sets.5 The main caveat
is that neither firm knows the correlation between the firms’ classifiers, even after
learning its own classifier. We further assume that the prediction accuracy of
each firm’s classifier—formally, Prπw

[1|X = A] and Prπw
[1|x = a]—are common

5 See also our analysis of a finite data case in Sect. 4.1.
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knowledge.6 Finally, for simplicity we assume that Pr[0] = Pr[1] = 1
2 , and that

the false-positive and false-negative rates are the same for each of the firms:

α
def= Pr[A|1] = Pr[B|0] and β

def= Pr[a|1] = Pr[b|0]. (6)

Still, the full joint distribution of the firms’ pair of signals together with the true
realizations under w is unknown. As we see later in Sect. 3.2, this is equivalent
to both firms not knowing how the signals of the two firms are correlated under
the no-sharing contract, regardless of (w1, w2). Firms also do not know the true
label of the outcome they are trying to predict in the inference phase. We assume
w.l.o.g. that α ≥ β ≥ 1

2 .
At one extreme, it is possible that the firms’ signals are independent. At the

other extreme, it is possible that they are fully correlated. In the full version of
this paper, we show how this model can be formulated using our general model
from Sect. 2.

3.1 Warm-Up: Known Correlation

We start our investigation with a simple model in which the correlation between
the firms is known.

When the precision accuracy of both firms is common knowledge, as we
assume throughout this section, then the correlation between the firms’ predic-
tions fully determines the joint distribution of the pair of signals under label
t. We show that formally in Claim 3.1. By correlation we mean the Pearson
correlation of the signals, namely

θt =
Pr[X = A ∧ x = a|t] − αβ√

α(1 − α)β(1 − β)
,

where t is the true label realization. Notice that the two Bernoulli variables are
the two firms’ signals given the true realization. For simplicity, we assume that
θ1 = θ0, and denote the correlation simply by θ.

Claim. In the correlation model, knowing correlation θ determines the joint
distribution of Firm1’s signal A/B, Firm2’s signal a/b, and true realization 0/1.

Proof. To see that the correlation determines the joint distribution in our setting,
recall that for the Bernoulli variables in our settings, the Pearson correlation
under label 1 satisfies θ = Pr[X=A∧x=a|1]−αβ√

α(1−α)β(1−β)
. Thus, given θ, α, and β we have

Pr[X = A ∧ x = a|1] =
√

αβ
(√

αβ + θ ·
√

(1 − α)(1 − β)
)

. (7)

This then determines Pr[X = A ∧ x = b|1] = α − Pr[X = A ∧ x = a|1], P r[X =
B∧x = a|1] = β−Pr[X = A∧x = a|1], and Pr[X = B∧x = b|1] = 1−Pr[X =

6 We use Pr[1] as shorthand for Pr[t = 1], and omit πw, X, x when clear from context.
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A ∧ x = a|1] − Pr[X = A ∧ x = b|1] − Pr[X = B ∧ x = a|1]. That is, it fully
determines the joint distribution. For example, when α = β and θ = 0 (i.e., the
signals are conditionally independent), we have Pr[X = A ∧ x = a|1] = α2, and
when α = β and θ = 1, we have Pr[X = A ∧ x = a|1] = α. Finally, a symmetric
argument holds under label 0.

When the correlation is known, there is no added value in sharing wi, since
the world model w is already known to both firms. Therefore, no-sharing is
equivalent to train-sharing, and infer-sharing is equivalent to full-sharing. The
only question is, which of these contracts, if any, is IRPO?

Lemma 1. With known correlation and symmetric significant-action utilities,
only no-sharing and the equivalent train-sharing are IRPO. The unique equilib-
rium under these contracts has two regimes: A high β regime where both firms
play by their inference-time signals, and a low β regime where Firm 2 “gives in”
and always takes action 0, while Firm 1 matches its action to its inference-time
signal.

This matches what we learned to expect in practice: Firms develop their own
classification models, and, assuming they are accurate enough, predict according
to them. In Sect. 3.2 we show that once the correlation is not known with cer-
tainty, this conclusion may change, and full-sharing or train-sharing contracts
may be uniquely IRPO. We also note that the threshold that separates the
high and low β regime is itself dependent on α. The higher α is, the higher the
threshold for the high beta regime, where Firm 2 follows its prediction signal.
I.e., fixing Firm 2’s prediction accuracy β, the firm is more likely to give in the
higher Firm 1’s prediction accuracy α is.

Lemma 1 deals with symmetric significant-utilities. In the full version of this
paper, we study the asymmetric case. We show that with a higher cost for a
mistake in the significant action C1, but not so high as to prohibit ever taking a
significant action altogether, the firms would prefer full-sharing, which enables
them to take the significant action only when both receive positive signals.

3.2 Unknown Correlation

So far we have considered known correlations. However, a more natural model
is that the correlation is unknown, and only some distribution over it is known.
As we will see, this model can give rise to train-sharing as uniquely IRPO.

We begin with some preliminary lemmas. First, we show that within the spec-
ification of this subsection, full-sharing always Pareto dominates infer-sharing.

Lemma 2. For any distribution πθ over correlations and any R1 and C1, fs �
is.

Proof. In the correlation model, the private signal wi a firm gets during the
training phase does not impact its posterior regarding the correlation θ, which
follows the distribution Θ. Thus under infer-sharing, where each firm i only sees
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wi, we can ignore it, and we have σis
1 = σis

2 = Xx for some pair of inference-time
signal X,x.

Thus, we can conclude that the infer-sharing equilibrium is symmetric
between the firms. That is since as we argue above, the posterior for both firms
after the training phase stays the same as the common prior. In the inference
phase, both firms share their signals, and so both firms end up with the exact
same information. Both firms’ equilibrium strategy is to predict 1 if and only if

Eθ∼Θ[Pr[1|X = x1, x = x2, θ] − C1 · Pr[0|X = x1, x = x2, θ]] ≥ 0.

Under full-sharing, a similar argument shows that for every pair of signals
Xx and correlation θ (which both firms learn during the training phase), the
symmetric equilibrium strategy is to predict 1 if and only if Pr[1|X = x1, x =
x2, θ] − C1 · Pr[0|X = x1, x = x2, θ].

We can thus write, for the symmetric equilibrium strategies s
def
= s1 = s2 of

the infer-sharing contract,

uis
i = E[ui(s(X,x), t, s(X,x)]
= Eθ∼Θ[E[ui(s(X,x), t, s(X,x)|θ]]
≤ Eθ∼Θ[E[max

s
ui(s(X,x), t, s(X,x)|θ]] = ufs

i .

Next, we see that train-sharing and no-sharing contracts are equivalent under
sufficient symmetry.

Lemma 3. If R1 = C1 then ts = ns.

Proof. Suppose first that, under train-sharing, the firms follow the same equi-
librium strategies s1, s2 for any realization θ ∼ Θ. Then, it must be that, under
no-sharing, s1, s2 is also an equilibrium: This is immediate since the IC con-
ditions of Eq. 4 under no-sharing follow immediately if the more granular IC
conditions of the same equation under train-sharing are satisfied.

Now, we know by Lemma 1 that for any fixed θ the equilibrium strategies
under train-sharing (the same as the strategies for no-sharing given we know that
the correlation is θ) depend only on the values of α, β, and so are independent
of θ. Thus, the same equilibrium strategies are played for any θ.

Lemma 4. If α = β, then for any distribution πθ over correlations and any R1

and C1, fs � ts.

Finally, we can use the lemmas above to identify IRPO contracts. The two
theorems below show that, with some symmetry, only full-sharing or no-sharing
are such contracts.

Theorem 1. If R1 = C1 then no-sharing is uniquely IRPO.

Theorem 2. If α = β then full-sharing is either uniquely IRPO, or fs = ns
are the only IRPO.
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However, outside the symmetries in Theorems 1 and 2, train-sharing can
emerge as uniquely optimal.

Theorem 3. Train-sharing is uniquely IRPO for an open subset of parameters
πθ, α, β, R1, C1.

The intuition underlying the construction in the proof of Theorem 3 is the
following. Under no-sharing, the firms play the same equilibrium regardless of
their train-phase signals w1 and w2. Under train-sharing, the equilibrium may
depend on w1 and w2, and so in some cases may improve both firms’ utilities
relative to the no-sharing equilibrium. This happens particularly when the firms
learn that their signals are highly correlated, which results in Firm 2 not taking
a significant action (e.g., not issue a loan). This saves Firm 2 from attaining
negative utility, and allows Firm 1 to extract the full utility.

4 A “Two Hypotheses” Model

In Sect. 3 we showed that all contracts except for infer-sharing can be uniquely
optimal. In this section we complete the picture by describing a setting where
infer-sharing is uniquely optimal. We focus on the second setting described in the
introduction, which is summarized in Fig. 1 of Sect. 2. We assume that firms have
“infinite data” and matching-recommendations utilities: C0 = C1 = 0 and R0 =
R1 = 1. This setting captures a variety of natural circumstances, such as multi-
factorial genetic disease and chemical testing. Consider a genetic disease that
only manifests itself with some environmental cause. Firm 1 performs genetic
testing and knows (i) what genes cause the disease (ii) for a specific person,
whether these genes are present. Firm 2 has users’ behavioral data (e.g., credit
card histories) and can identify the environmental cause. However, it does not
understand the underlying genes that enable the disease.

Formally, let t = 1 denote the presence of the disease, inference-time signals
A and B denote the presence of two different gene mutations in the population,
and inference-time signals a and b denote the presence and absence of the envi-
ronment cause, respectively. There are two hypotheses: (I) the disease is caused
by mutation A and the environmental cause, and (II) the disease is caused by
mutation B and the environmental cause. Thus, Hypothesis I (resp., Hypothesis
II) is that firms see inference-time signals Aa (resp., Ba) if and only if t = 1.
The following are common knowledge:

• Hypothesis I is correct w.p. πI , Hypothesis II w.p. 1 − πI ;
• without the environmental cause, the disease remains dormant (Pr[0|b] = 1);
• the incidence rate of the disease in the general population is Pr[1] = κ; and
• the incidence rates of the two different gene mutations in the general popu-

lation are Pr[A] = κ + (1 − κ) · λ and Pr[B] = 1 − Pr[A].

Our main result is that, within this setting, there are instances where infer-
sharing is uniquely optimal.
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Theorem 4. Infer-sharing is uniquely IRPO for an open subset of parameters
πI , κ, λ, and μ.

The intuition underlying the construction in the proof of Theorem 4 is the
following. Generally, in the two hypotheses model, Firm 1 has the ability to
deduce the correct world model during training, even with only its own signal.
In the cases we identify, train/full-sharing makes it lose this advantage, and
thus cannot be beneficial for it. We are left with no/infer-sharing as possible
individually rational contracts. Since generally in the two hypotheses model, the
signal of Firm 1 by itself is not enough to decide the user classification with
certainty, infer-sharing helps in that Firm 1 can both determine the correct
hypothesis and has the pair of signals that determines the true realization, and
thus it always predicts correctly. In the cases we identify, the behavior of Firm 2
remains the same under both contracts, because of the fact that it cannot deduce
the correct world model during training. Hence, infer-sharing allows Firm 1 a
“free information meal”, similar to the example, given for a model that only
captures inference stage sharing, without consideration of the training stage, in
[13].

4.1 Beyond the Infinite-Data Model

So far, we focused on the infinite-data model, where the training signal allows the
firm to deduce the marginal distribution over its signal and the true realization.
We conjecture that with enough data, the results are similar to the idealized
infinite case that we analyze. However, with few samples, the results may change
significantly. To demonstrate how the analysis may lead to different results when
there is only little historical data, we consider the setting of Sect. 4, but when
only one labeled example of past data is available to the firms. Thus, after the
hypothesis (world) is drawn (Hypothesis I w.p. πI , and otherwise Hypothesis
II), a sample is drawn from the joint distribution over the pair of signals and
true realizations, and each firm sees its own signal and the true realization. I.e.,
if the true hypothesis is Hypothesis I, then Firm 1 sees (A, 0) w.p. α, (A, 1) w.p.
β, and (B, 1) w.p. 1−α−β. The firms then update a Bayesian posterior over the
world models. Under train-sharing and full-sharing, when historical predictions
are shared, both firms see the entire sample, i.e., the pair of signals and the true
realization.

In the full version of this paper, we prove that, in the two hypotheses model
with the parameters used for Theorem 4 but with a single labeled example, the
statement of Theorem 4 breaks down, as do some of the properties of equilibria
derived in the theorem’s proof. In particular:

Theorem 5. Under the parameters of Theorem 4 but with one sample, no-
sharing and train-sharing are not necessarily equivalent, no-sharing is IRPO
(rather than infer-sharing), and Firm 1 has lower equilibrium expected utility
than Firm 2.
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5 Implementation for a Real Data-Set

To see how our ideas may be put to practice, we use the peer-to-peer loan
data of LendingClub, available publicly at Kaggle [18], to conduct a synthetic
simulation. We take a random subset of 25% of the features and assign it to Firm
17. We take another subset of 10% of the features (possibly overlapping) and
assign it to Firm 2. Vertically, we split the data into train, test and validation
sets. We let each of the firms train a neural net over the training data (that
includes only its features). Each neural net was trained for 20 epochs on a 8-GB
RAM M1 MacBook Pro, which takes about half an hour. The training signal
consists of the neural net’s predictions on whether loans are good or bad. The
firms use the test data to learn the signal performance, which we assume then
becomes common knowledge. Depending on the contract, the firms choose their
equilibrium strategies based on the performance in the test data: under train-
sharing and full-sharing they also see the other firm’s predictions on the test
data (rather than only knowing the aggregate performance measurements). The
firms then use their models to get a signal for every example in the validation
data. Under infer-sharing and full-sharing they see the other firm’s signals on the
validation set, and may use it to alter their final actions. We evaluate their actions
on the validation data, under significant action utilities with R1 = 1 and cost C1.

We find that the results generally follow the lines of our discussion in Sect. 3:
Varying by cost (going from C1 = 0 to C1 = 2.5 in 0.05 steps), as summarized in
Fig. 2, we find regimes where either full-sharing, no-sharing, or train-sharing are
uniquely IRPO. While full-sharing is almost always a Pareto optimal contract,
there are significant regimes where it is not IR for firm 1, which results in the
no-sharing and train-sharing regimes. In almost all cost values of the simulation,
infer-sharing is Pareto dominated by full-sharing, as predicted by Lemma 2.

The behavior of no-sharing and train-sharing is of particular interest. With
low values of C1, both contracts have the two firms issue a loan regardless of
the signal. Then, with higher values of C1, the firms move to an equilibrium
where each acts according to its signal, and later to an equilibrium where firm 1
predicts its signal while firm 2 does not issue any loans. At each such equilibrium
shift, there is a discontinuity for firm 1’s utility. For example, moving from each
firm predicting its own signal to Firm 2 not issuing loans, allows it to get the
full utility of its action instead of half.

6 Discussion

The analysis of incentives is a crucial aspect of the general effort to encour-
age data sharing, as recognized by the European Commission: “In spite of the
economic potential, data sharing between companies has not taken off at suffi-
cient scale. This is due to a lack of economic incentives (including the fear of
losing a competitive edge)” [6]. This paper introduces a novel element of data
7 In the full version, we include robustness tests where we vary the choice of features,

and explain how the practical implementation corresponds to our formal model.
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Fig. 2. No Sharing, Train Sharing and Full Sharing contracts performance for both
firms and different costs. We do not include the infer sharing contract utility as they
are very similar to (and dominated by) full sharing. We mark regimes where each
contract is the optimal-welfare IR contract.

sharing—the distinction between sharing during training and inference—and
demonstrates its importance to understanding firms’ data-sharing incentives.
Some natural questions arise as a result of our work:

• We have assumed a common prior over priors for the firms. What if the
firms have different beliefs? How robust is the emergence of uniquely optimal
contracts to small differences in the epistemic models of the firms?

• Our work is set within the framework of mechanism design without money,
i.e., we suppose that firms share data based on mutual gain, rather than based
on monetary compensation. In some cases it is natural to consider that one
of the firms may compensate the other as part of the data sharing process.
This could be interesting as future work and may build on the framework and
insights we develop.
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Abstract. There are many settings, including ranking and recommen-
dation of content, where it is important to provide diverse sets of results,
with motivations ranging from fairness to novelty and other aspects of
optimizing user experience. One form of diversity of recent interest is
calibration, the notion that personalized recommendations should reflect
the full distribution of a user’s interests, rather than a single predominant
category—for instance, a user who mainly reads entertainment news but
also wants to keep up with news on the environment and the economy
would prefer to see a mixture of these genres, not solely entertainment
news. Existing work has formulated calibration as a subset selection prob-
lem; this line of work observes that the formulation requires the unreal-
istic assumption that all recommended items receive equal consideration
from the user, but leaves as an open question the more realistic setting
in which user attention decays as they move down the list of results.

In this paper, we consider calibration with decaying user attention
under two different models. In both models, there is a set of underly-
ing genres that items can belong to. In the first setting, where items
are coarsely binned into a single genre each, we surpass the (1 − 1/e)
barrier imposed by submodular maximization and provide a novel bin-
packing analysis of a 2/3-approximate greedy algorithm. In the second
setting, where items are represented by fine-grained mixtures of genre
percentages, we provide a (1− 1/e)-approximation algorithm by extend-
ing techniques for constrained submodular optimization. Our work thus
addresses the problem of capturing ordering effects due to decaying atten-
tion, allowing for the extension of near-optimal calibration from recom-
mendation sets to recommendation lists.

Keywords: Calibration · Recommendations · Submodularity ·
Ranking

1 Introduction

Recommendation systems, now a ubiquitous feature of online platforms, have
also been a long-standing source of fundamental theoretical problems in comput-
ing. Based on a model derived from a user’s past behavior, such systems suggest
relevant pieces of content that they predict the user is likely to be interested
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in. This is typically achieved by optimizing for an objective function based on
a model of the user’s interests (such as relevance or utility), and such questions
lead to a number of interesting optimization questions. Often, these basic formu-
lations try to capture relevance in aggregate without considering the diversity
of the results produced; they also generally treat lists of recommended results
as an unordered sets, while in reality they are ordered sequences (reflecting the
key influence of position and rank on the amount of attention a piece of con-
tent receives). Considering these two directions in conjunction leads to new and
interesting theoretical questions, which form the focus of this paper.

In particular, a recurring concern with algorithmic recommendations is that
optimizing for relevance risks producing results that are too homogeneous; it
can easily happen that all the most relevant pieces of content are similar to
one another, and that they collectively correspond to only one facet of a user’s
interests at the expense of other facets that go unrepresented [12]. To address
such concerns, a long-standing research paradigm seeks recommendation systems
whose results are not only relevant but also diverse, reflecting the range of a user’s
interests. Explicitly pursuing diversity in recommendations has been seen as a
way to help mitigate the homogenizing effects that might otherwise occur [2,5].

Calibrated Recommendations. Within this area, an active line of research has
pursued calibration as a means of optimizing for diversity [18]. In this formal-
ism, we want to present a list of k recommended items to a single user (e.g.,
movies on an entertainment site, or articles on a news site), and there is a set
of underlying genres that the items belong to. The user has a target distribution
over genres that reflect the extent to which they want to consume each genre in
the long run. A natural goal is that the average distribution induced by the list of
recommendations should be “close,” or calibrated, to the user’s target distribu-
tion. (For example, a user who likes both documentaries and movies about sports
might well be dissatisfied with recommendations that were always purely about
sports and contained no documentaries; this set of recommendations would be
badly calibrated to the user’s target distribution of genres.)

In a user study that systematically varied the quality of results from a recom-
mender system, the researchers reported significant differences in users’ evalua-
tions of the system based on a single session lasting only 15 min [10]. Considering
calibration an important aspect of quality (asserted by multiple papers including
[9,11]), it is thus critical to achieve calibration within each single session rather
than to simply hope for recommendations to eventually “average out” in the
long run, lest the user become so dissatisfied after a sufficiently miscalibrated
session that they decide to abandon the system altogether.

Prior work by [18] showed that for natural measures of distributional sim-
ilarity, the selection of a set of k items to match the user’s target distribution
can be formulated as the maximization of a submodular set function. Because
of this, the natural greedy algorithm produces a set of k items whose distribu-
tional similarity to the user’s target distribution is within a (1 − 1/e) factor of
optimal. In this way, the work provided an approximately optimal calibrated set
of recommendations.
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Decaying Attention. This same work observed a key limitation at the heart of
approximation algorithms for this and similar objectives: it necessarily treats the
k recommendations as a set, for which the order does not matter. In contrast, one
of the most well-studied empirical regularities in the social sciences is decaying
attention as a user reads through a list of results. Results at the top of a list
get much more attention than results further down—this phenomenon has been
documented not only through traditional content engagement metrics, but also
directly through eye-tracking and other behavioral studies [8,15,21]. Given this,
the average genre distribution induced by a list of k recommendation results is
really a weighted average over the genres of these items, with the earlier items
in the list weighted more highly than the later ones.

Once we introduce the crucial property of decaying user attention, the for-
malism of set functions—and hence of submodularity, which applies to set
functions—is no longer available to us. Moreover, it is no longer clear how to
obtain algorithms for provably near-optimal calibration. There exist formalisms
that extend the framework of submodular functions, in restricted settings, to
handle inputs that are ordered sequences [3,4,6,13,19,23], but none of these
formalisms can handle the setting of calibrated recommendations with decaying
attention that we have here. It has thus remained an open question whether non-
trivial approximation guarantees can be obtained for this fundamental problem.

The Present Work: Calibrated Recommendations with Decaying Attention. In
this paper, we address this question by developing algorithms that produce lists
of recommendations with provably near-optimal calibration for users with decay-
ing attention. We provide algorithms for two models of genres: the discrete model
in which each item comes from a single genre, and the distributional model in
which each item is described by a distribution over genres. (For example, in this
latter version, a documentary about soccer in Italy is a multi-genre mixture of
a movie about sports, a movie about Italy, and a documentary.)

As noted above, a crucial ingredient in these models is to measure the similar-
ity between the user’s desired target distribution over genres and the distribution
of genres present in the results we show them. In Sect. 3 we make concrete what
it means for these distributions to be similar through the notion of an overlap
measure, which we define to unify in a simple way standard measures of distri-
butional similarity. Our results apply to a large collection of overlap measures
including a large family of f -divergence measures, including overlap measures
derived from the well-known Hellinger distance. These were also at the heart of
earlier approaches that worked without decaying attention, where these measures
gave rise to non-negative submodular set functions [1,14,17].1

1 It is useful to note that the KL-divergence—arguably the other most widely-used
divergence along with the Hellinger distance—is not naturally suited to our problem,
since it can take both positive and negative values, and hence does not lead to well-
posed questions about multiplicative approximation guarantees. This issue is not
specific to models with decaying user attention; the KL-divergence is similarly not
well-suited to approximation questions in the original unordered formalism, where
the objective function could be modeled as a set function.
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Overview of Results. In our two models of genres, we offer technical results of
two distinct flavors in Sects. 4 and 5. First, the discrete genre model takes a
completely new approach to the analysis of the greedy algorithm: to the best
of our knowledge, our bin-packing argument is entirely novel; we also highlight
that it allows us to surpass the barrier imposed by traditional submodularity
arguments and achieve a stronger approximation guarantee.

For both versions of the problem, direct attempts at generalizing the meth-
ods of submodular maximization from unordered items to ordered items face a
natural approximation barrier at (1 − 1/e), simply because this is the strongest
approximation guarantee we can obtain if we know only that the underlying
function is submodular, and a special case of decaying attention is the case in
which all weights are the same, which recovers the traditional submodular case.
For the discrete version of the model, however, we are able to break through this
(1 − 1/e) barrier via a different technique based on a novel type of bin-packing
analysis; through this approach, we are able to obtain a 2/3-approximation to
the optimal calibration for overlap measures based on the Hellinger distance.
We find this intriguing, since the problem is NP-hard and amenable to sub-
modular maximization techniques; but unlike other applications of submodular
optimization (including hitting sets and influence maximization) where (1−1/e)
represents the tight bound subject to hardness of approximation, here it is pos-
sible to go further by using a greedy algorithm combined with a careful analysis
in place of submodular optimization.

To do this, we begin by observing that the objective function over the ordered
sequence of items selected satisfies a natural inequality that can be viewed as an
analogue of submodularity, but for functions defined on sequences rather than
on sets. We refer to this inequality as defining a property that we call ordered
submodularity, and we show that ordered submodularity by itself guarantees that
the natural greedy algorithm for sequence selection provides a 1/2-approximation
to the optimal sequence. This bound is not as strong as 1 − 1/e; but unlike
the techniques leading to the 1 − 1/e bound, ordered submodularity provides a
direction along which we are able to obtain an improvement. In particular, for
the discrete problem we can think of each genre as a kind of “bin” that contains
items belonging to this genre, and the problem of approximating a desired target
distribution with respect to the Hellinger measure then becomes a novel kind of
load-balancing problem across these bins. Using a delicate local-search analysis,
we are able to maintain a set of inductive invariants over the execution of a
greedy bin-packing algorithm for this problem and show that it satisfies a strict
strengthening of the general ordered submodular inequality; and from this, we
are able to show that it maintains a 2/3-approximation bound.

Subsequently, in Sect. 5 for the distributional genre model we build on an
existing line of work on constrained submodular maximization by introducing
a new transformation technique to allow for position-based weights, which were
not previously handled. A separate line of work has posed, but left open, the
question of the effect of such position-based weights on achieving near-optimal
diversity in recommender systems. Our work unites these two bodies of research
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by developing new methods from the former line of work to answer questions
from the latter, and thereby provide a deeper fundamental understanding of the
effects of weights and ordering on approximate submodular maximization.

For the case of distributional genres, we begin by noting that if we were
to make the unrealistic assumption of repeated items (i.e. availability of many
items with the exact same genre distribution q), then we could apply a form of
submodular optimization with matroid constraints of [7] to obtain a (1 − 1/e)-
approximation to the optimal calibration with decaying attention. This approach
is not available to us, however, when we make the more reasonable assumption
that items each have their own specific genre distribution. Instead, we construct a
more complex laminar matroid structure, and we are able to show that with these
more complex constraints, a continuous greedy algorithm and pipage rounding
produces a sequence of items within (1 − 1/e) of optimal.

2 Related Work

The problem of calibrated recommendations was defined by [18], in which cal-
ibration is proposed as a new form of diversity with the goal of creating rec-
ommendations that represent a user’s interests. In this model, items represent
distributions over genres, and weighting each item’s distribution according to its
rank induces a genre distribution for the entire recommendation list. Calibra-
tion is then measured using a maximum marginal relevance objective function,
a modification of the KL divergence from this induced distribution to the user’s
desired distribution of interests. In the case where all items are weighted equally,
the maximum marginal relevance function is shown to be monotone and sub-
modular, and thus (1 − 1/e)-approximable by the standard greedy algorithm.
However, when items have unequal weights (such as with decaying user atten-
tion), the function becomes a sequence function rather than a set function, and
the tools of submodular optimization can no longer be applied. Further, the use
of KL divergence with varying weights results in a mixed-sign objective function
(refer to online Appendix C for an example), so formal approximation guarantees
are not even technically well-defined in this setting. Hence, [18]’s approximation
results are limited to only the equally-weighted (essentially unordered) case.

Since then, there has been recent interest in improving calibration in recom-
mendation systems via methods such as greedy selection using statistical diver-
gences directly or other proposed metrics [14,17] and LP-based heuristics [16],
but this line of work largely focuses on empirical evaluation of calibration heuris-
tics rather than approximation algorithms for provably well-calibrated lists. To
the best of our knowledge, our work provides the first nontrivial approximation
guarantees for calibration with unequal weights due to decaying attention.

Within the recommendation system literature, there is a long history of
modeling calibration and other diversity metrics as submodular set functions,
and leaving open the versions where ordering matters because user engagement
decays over the course of a list (e.g., [2,5,18]). Although numerous approaches
to extending the notion of submodularity to have sequences have been proposed

https://arxiv.org/abs/2302.03239
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(e.g., [3,4,6,13,19,20,22,23]), none is designed to handle these types of ordering
effects. For a detailed survey of general theories of submodularity in sequences
and a discussion of how they do not model our problem of calibration with
decaying user attention, we refer the reader to Appendix A.

3 Problem Statement and Overlap Measures

[18] considers the problem of creating calibrated recommendations using the
language of movies as the items with which users interact, and genres as the
classes of items. Each user has a preference distribution over genres that can
be inferred from their previous activity, and the goal is to recommend a list
of movies whose genres reflect these preferences (possibly also incorporating a
“quality” score for each movie, representing its general utility or relevance). In
our work, we adopt [18]’s formulation of distributions over genres and refer to
items as movies (although the problem of calibrated recommendations is indeed
more general, including also news articles and other items, as discussed in the
introduction). We describe the formal definition of our problem next.

3.1 Item Genres and Genre of Recommendation Lists

Consider a list of recommendations π for a user u. Let p(g) be the distribution
over genres g preferred by the user (possibly inferred from previous history).
Given our focus on a single user u, we keep the identity of the user implicit in
the notation. For simplicity of notation, we will label the items as the elements
of [K], and say that item i has genre distribution qi.

Following the formulation of [18], we define the distribution over genres q(π)

of a recommendation list π = π1π2 . . . πk as q(π)(g):=
k∑

j=1

wj · qπj
(g), where wj

is the weight of the movie in position j, and we assume that the weights sum to
1:

∑k
j=1 wj = 1.2 Note that the position-based weights make the position of each

recommendation important, so this is no longer a subset selection problem.
To model attention decay, we assume that the weights are weakly decreasing

in rank (i.e., wa ≥ wb if a < b). We also assume that the desired length of
the recommendation list is a fixed constant k. This assumption is without loss
of generality, even with the more typical cardinality constraint that the list
may have length at most k—we simply consider each possible length � ∈ [1, k],
renormalize so that the first � weights sum to 1, and perform the optimization.
We then take the maximally calibrated list over all k length-optimal lists.

The goal of the calibrated recommendations problem is to choose π such that
q(π) is “close” to p. To quantify closeness between distributions, we introduce
the formalism of overlap measures.
2 Various weights are possible; [18] suggests “Possible choices include the weighting

schemes used in ranking metrics, like in Mean Reciprocal Rank (MRR) or normalized
Discounted Cumulative Gain (nDCG).” Alternatively, given empirical measurements
of attention decay such as in [15], one might use numerically estimated weights.

https://arxiv.org/abs/2302.03239


Calibrated Recommendations for Users with Decaying Attention 449

3.2 Overlap Measures

For the discussion that follows, we restrict to finite discrete probability spaces Ω
for simplicity, but the concepts generalize to continuous probability measures.

A common tool for quantitatively comparing distributions is statistical diver-
gences, which measure the “distance” from one distribution to another. A diver-
gence D has the property that D(p, q) ≥ 0 for any two distributions p, q, with
equality attained if and only if p = q. This means that divergences cannot directly
be used to measure calibration, which we think of as a non-negative metric that
is uniquely maximized when p = q. Instead, we define a new but closely related
tool that we call overlap, which exactly satisfies the desired properties.

Our definition is also more general in two important ways. First, we do not
limit ourselves to the KL divergence, so that other divergences and distances
with useful properties may be used (such as the Hellinger distance, H(p, q) =
1√
2
||√p − √

q||2, which forms a bounded metric and has a convenient geometric
interpretation using Euclidean distance). Second, in our definition q may be any
subdistribution, a vector of probabilities summing to at most 1. This is crucial
because it enables the use of algorithmic tools such as the greedy algorithm
– which incrementally constructs q from the 0 vector by adding a new movie
(weighted by its rank), and thus in each iteration must compute the overlap
between the true distribution p and the partially constructed subdistribution q.

Definition 1 (Overlap measure). An overlap measure G is a function
on pairs of distributions and subdistributions (p, q) with the properties that (i)
G(p, q) ≥ 0 for all distributions p and subdistributions q, (ii) for any fixed p,
G(p, q) is uniquely maximized at q = p.

Definition 2 (Distance-based overlap measure). Let d(p, q) be a bounded
distance function on the space of distributions p and subdistributions q with the
property that d(p, q) ≥ 0, with d(p, q) = 0 if and only if p = q. Denote by
d∗ the maximum value attained by d over all pairs (p, q). Then, the d-overlap
measure Gd is defined as Gd(p, q):=d∗ − d(p, q).

Now, it is clear that Gd indeed satisfies both properties of an overlap measure
(Definition 1): property (i) follows from the definition of d∗, and property (ii)
follows from the unique minimization of d at q = p.

For an overlap measure G and a recommendation list π = π1π2 . . . πk, we
define G(π):=G(p, q(π)) = G(p,

∑k
i=1 wiqπi

).

3.3 Constructing Families of Overlap Measures

An important class of distances between distributions are f -divergences. Given
a convex function f with f(1) = 0, the f -divergence from distribution q

to distribution p is Df (p, q):=
∑

x∈Ω f
(

p(x)
q(x)

)
q(x). One such f -divergence is

the KL divergence, which [18] uses to define a maximum marginal relevance
objective function similar to an overlap measure. However, this proposed func-
tion has issues with mixed sign (see Appendix C for an example), so it does

https://arxiv.org/abs/2302.03239


450 J. Kleinberg et al.

not admit well-specified formal approximation guarantees. Instead, we con-
sider a broad class of overlap measures based on f -divergences for all convex
functions f . As a concrete example, consider the squared Hellinger distance
(obtained by choosing f(t) = (

√
t − 1)2 or f(t) = 2(1 − √

t)), which is of the
form H2(p, q) = 1

2

∑
x∈Ω(

√
p(x) − √

q(x))2 = 1 − ∑
x∈Ω

√
p(x) · q(x). This

divergence is bounded above by d∗ = 1; the resulting H2-overlap measure is
GH2(p, q) =

∑
x∈Ω

√
p(x) · q(x).

Inspired by the squared Hellinger-based overlap measure, we also construct
another general family of overlap measures based on non-decreasing concave
functions. Given any nonnegative non-decreasing concave function h, we define
the overlap measure Gh(p, q) =

∑
x∈Ω

h(q(x))
h′(p(x)) . For instance, taking h(x) = xβ

for β ∈ (0, 1) gives 1
h′(x) = 1

β x1−β , which produces the (scaled) overlap measure

Gxβ

(p, q) =
∑

x∈Ω p(x)1−βq(x)β . Observe that the natural special case of β = 1
2

gives h(x) = 1
h′(x) =

√
x, providing an alternate construction that recovers the

squared Hellinger-based overlap measure.

3.4 Monotone Diminishing Return (MDR) Overlap Measures

Many classical distances, including those discussed above, are originally defined
on pairs of distributions (p, q) but admit explicit functional forms that can be
evaluated using the values of p(x) and q(x) for all x ∈ Ω. This allows us to
compute d(p, q), and consequently Gd(p, q), when q is not a distribution (i.e., the
values do not sum to 1), which will be useful in defining algorithms for finding
well-calibrated lists. Using this extension, we can take advantage of powerful
techniques from the classical submodular optimization literature when a certain
extension of the overlap measure Gd is monotone and submodular, properties
satisfied by most distance-based overlap measures.

Consider an extension of an overlap measure G(p, q) to a function on the
ground set V = {(i, j)}, where i ∈ [K] is an item and j ∈ [k] is a position. For a
set R ⊆ V , define R≤j be the set of items assigned to position j or earlier; that
is, R≤j := {i ∈ [K] | ∃� ≤ j s.t. (i, �) ∈ R} .

Assuming the overlap measure G is well-defined as long as q is non-negative
(but not necessarily a probability distribution), we define the set function

FG(R):=G

⎛

⎝p,

k∑

j=1

wj

⎛

⎝
∑

i∈R≤j\R≤j−1

qi

⎞

⎠

⎞

⎠ .

With this definition, we can define monotone diminishing return (MDR) and
strongly monotone diminishing return (SMDR) overlap measures:

Definition 3 ((S)MDR overlap measure). An overlap measure G is mono-
tone diminishing return (MDR) if its corresponding set function FG is
monotone and submodular. If, in addition, G is non-decreasing with respect to
all q(x), we say G is strongly monotone diminishing return (SMDR).
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For any bounded monotone f -divergence, the corresponding overlap measure
satisfies the MDR property, where by monotone we mean that if subdistribu-
tion q2 coordinate-wise dominates subdistribution q1, then Df (p, q1) ≥ Df (p, q2)
for all p. Further, all overlap measures Gh defined above by concave functions
h satisfy the SMDR property. A detailed technical discussion is deferred to
Appendix B.1, but at a high level, since Df is negated in the construction of
GDf

, the convexity of f (since Df is negated) and the concavity of h result in
concave overlap measures (corresponding to diminishing returns).

Theorem 1. Given any bounded monotone f-divergence Df with maximum
value d∗ = max(p,q) Df (p, q), the corresponding Df -overlap measure GDf

(p, q) =
d∗ − Df (p, q) is MDR.

Theorem 2. Given any nonnegative non-decreasing concave function h, the
overlap measure Gh(p, q) =

∑
x∈Ω

h(q(x))
h′(p(x)) is SMDR.

Observe that Df -overlap measures are not necessarily SMDR, but many Df -
overlap measures based on common f -divergences are not only bounded and
monotone, but also increasing in q(x). This includes the squared Hellinger dis-
tance, so the resulting GH2(p, q) is indeed both MDR and SMDR.

4 Calibration in the Discrete Genre Model

In this section we consider the version of the calibration model with discrete
genres, in which each item is classified into a single genre. In this model, we
allow the list of items to contain repeated genres, since it is natural to assume
that the universe contains many items of each genre, and that a recommendation
list may display multiple items of the same genre.

We start by thinking about a solution to the problem in this model as a
sequence of choices of genres, and we study how the value of the objective func-
tion changes as we append items to the end of the sequence being constructed.
In particular, we show that as we append items, the value of the objective func-
tion changes in a way that is governed by a basic inequality, that intuitively can
be viewed as an analogue of monotonicity and submodularity but for sequences
rather than sets. We pursue this idea by defining any function on sequences to be
ordered-submodular if it satisfies this basic inequality; in particular, the Hellinger
measures of calibration for our problem (as well as more general families based
on the overlap measures defined earlier) are ordered-submodular in this sense.

As a warm-up to the main result of this section, we start by showing that
for any ordered-submodular function, the natural greedy algorithm that itera-
tively adds items to maximally increase the objective function achieves a factor
1/2-approximation to the optimal sequence. Note that this approximation guar-
antee is weaker than the (1 − 1/e) guarantee obtained by classical (constrained)
submodular optimization, but we present it because it creates a foundation for
analyzing the greedy algorithm which we can then strengthen to break through
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the (1−1/e) barrier and achieve a 2/3-approximation for the problem of calibra-
tion with discrete genres. (In contrast, the techniques achieving 1−1/e appear to
be harder to use as a starting point for improvements, since they run up against
tight hardness bounds for submodular maximization.)

To start, we make precise exactly how the greedy algorithm works for approx-
imate maximization of a function f over sequences. The greedy algorithm ini-
tializes A0 = ∅ (the empty sequence), and for � = 1, 2, . . . , k, it selects A� to be
the sequence that maximizes our function f(A) over all sequences obtained by
appending an element to the end of A�−1. In other words, it iteratively appends
elements to the sequence A one by one, each time choosing the element that
leads to the greatest marginal increase in the value of f .

For two sequences A and B we use A||B to denote their concatenation. For
a single element s, we use A||s to denote s added at the end of the list A.

4.1 Ordered-Submodular Functions and the Greedy Algorithm

Let f be a function defined on a sequences of elements from some ground set;
we say that f is ordered-submodular if for all sequences of elements s1s2 . . . sk,
the following property holds for all i ∈ [k] and all other elements s̄i:

f(s1 . . . si) − f(s1 . . . si−1) ≥ f(s1 . . . si . . . sk) − f(s1 . . . si−1s̄isi+1 . . . sk). (1)

Notice that if f is an ordered-submodular function that takes sequences as
input but does not depend on their order (that is, it produces the same value
for all permutations of a given sequence), then it follows immediately from the
definition that f is a monotone submodular set function. In this way, monotone
submodular set functions are a special case of our class of functions.

A standard algorithmic inductive argument shows that the greedy algorithm
described earlier attains a 1/2-approximation to the optimal sequence. Next,
observe that the MDR property defined in Sect. 3.3 directly implies ordered sub-
modularity (via submodularity and monotonicity of F̂G), and hence the greedy
algorithm is a 1/2-approximation algorithm for these calibration problems. Full
proofs of both claims above as well as the theorem are given in Appendix B.3.

Theorem 3. The greedy algorithm for nonnegative ordered-submodular function
maximization over sets of cardinality k outputs a solution whose value is at least
1
2 times that of the optimum solution.

Theorem 4. Any MDR overlap measure G is ordered-submodular. Thus, the
greedy algorithm provides a 1/2-approximation for calibration heuristics using
MDR overlap measures.

4.2 Improved Approximation for Calibration with Discrete Genres

Next, we focus on calibration using the squared Hellinger-based overlap measure,
which has several useful properties: (1) it is SMDR, and thus the approximation
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guarantee is directly comparable to the (1− 1/e) guarantee in the distributional
model that we discuss next in Sect. 5; (2) its mathematical formula is amenable to
genre-specific manipulations; (3) perhaps most importantly, it is well-motivated
by frequent use in the calibration literature (e.g., [1,14,17]). (We note that our
techniques apply generally to many overlap measures, such as the second fam-
ily based on concave functions described in Sect. 3.3, but the quantitative 2/3
bound is specific to the squared Hellinger-based overlap measure.3) We prove this
improved approximation result using the concrete form of the Hellinger distance
to establish a stronger version of ordered submodularity.

Given that each item belongs to a single genre, and that we have many copies
of items for each genre, the question we ask in each step of the greedy algorithm
is now: at step i, which genre should we choose to assign weight wi to? We can
think of this problem as a form of “bin-packing” problem, packing the weight
wi into a bin corresponding to a genre g. Since every item represents a single
discrete genre, we can interpret a recommendation list as an assignment of slots
to genres. Then, using si = g to denote that a sequence S assigns slot i to genre
g, we can write the squared Hellinger-based overlap measure as

f(S) =
∑

genres g

√
p(g)

√ ∑

i∈[k]:si=g

wi. (2)

The main technical way we rely on the Hellinger distance is the follow-
ing Lemma, which strengthens inequality (3) from Appendix B.3 but does not
assume that the sequence T i or T̄ i+1 is coming from the optimal sequence, or
that they are identical except for their first element.

Lemma 1. With calibration defined via the Hellinger distance, for all sequences
Ai−1 and T i, and the greedy choice of extending Ai−1 with the next ele-
ment ai, there exists a sequence T̄ i+1 such that f(Ai||T̄ i+1) ≥ f(Ai−1||T i) −
1
2 (f(Ai) − f(Ai−1)) .

Before we prove the lemma, we show that it yields a 2/3-approximation:

Theorem 5. For calibration with discrete genres, the greedy algorithm provides
a 2/3-approximation for the squared Hellinger-based overlap measure.

Proof. Define S(1) to be the optimal sequence S, and using Lemma 1 with T i =
S(i), define inductively S(i+1) = T̄ i+1. We show via induction that for all i,
f(Ai||S(i+1)) ≥ OPT (k) − 1

2f(Ai).

3 In particular, our bin-packing analysis of the greedy algorithm relies on concavity
along the direction of improvement, so it applies to other overlap measures such as

those in the Gxβ

family, but the numerical constant of 1
2

in Lemma 1 (and thus the
final approximation guarantee of 2

3
in Theorem 5) would change. Here, we focus on

the particular case of β = 1
2
, as the induced Hellinger-based overlap measure is one

that is commonplace in practice.
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For the base case of i = 0, f(A0||S(1)) = f(S) = OPT (k) ≥ OPT (k) −
1
2f(A0). So suppose the claim holds for some i, and observe that by Lemma 1
and the fact that f(Ai+1) ≥ f(Ai||si+1) by definition of the greedy algorithm,

f(Ai+1||S(i+2)) ≥ f(Ai||S(i+1)) − 1
2
(f(Ai+1) − f(Ai))

≥ OPT (k) − 1
2
f(Ai) − 1

2
(f(Ai+1) − f(Ai))

= OPT (k) − 1
2
f(Ai+1),

completing the induction. Finally, setting i = k establishes ALG(k) ≥ 2
3OPT (k).

Remark. This approximation guarantee is fairly robust to settings in which we
do not have perfectly accurate information about the preferences and genres,
but a small degree of error or noise to within a multiplicative factor of (1 + ε).
We still maintain a 2/3

(1+ε)2 -approximation; for more details, see Appendix E.

Next, we outline the proof of Lemma 1; the full analysis is in Appendix B.4.

Proof (Proof outline of Lemma 1). Consider the sequence Ai−1||T i and the
greedy choice ai, and let ti be the first element of T i. Recall that each of these
items is a genre, and the term multiplying

√
p(g) in the Hellinger distance (2) is

the sum of the weights of all positions where a given genre g is used. We define
notation for the total weight of positions that have a genre g in Ai−1 and in T i+1

respectively, skipping the genre in the ith position. Since this lemma focuses on
a single position i, we keep i implicit in some of the notation.

Let α(g):=
∑

{j∈[i−1],aj=g} wj denote the total weight of the slots assigned to
genre g by Ai−1. Let τ(g):=

∑
{j∈[i+1,k],tj=g} wj denote the total weight assigned

to genre g by T i+1. Say that the greedy algorithm assigns slot i to genre ai = g′,
but in T i the first genre (corresponding to slot i) is ti = g∗.

Next, notice that for the squared Hellinger-based overlap measure (2), there
are only two genres in which f(Ai||T i+1) and f(Ai−1||T i) differ: the genre ai = g′

chosen by the greedy algorithm, and the genre ti = g∗ of the first item of the
sequence T i. For all other genres, the sum of assigned weights in the definition
of the Hellinger distance is unchanged.

First, writing T i+1 to denote simply dropping the first item assignment from
T i, and denoting the blank in position i by , we get

f(Ai−1||ai||T i+1) − f(Ai−1|| ||T i+1) =
√

p(g′)
(√

α(g′) + wi + τ(g′) −
√

α(g′) + τ(g′)
)

,

f(Ai−1||ti) − f(Ai−1) =
√

p(g∗)
(√

α(g∗) + wi −
√

α(g∗)
)

,

f(Ai−1||ti||T i+1) − f(Ai−1|| ||T i+1) =
√

p(g∗)
(√

α(g∗) + wi + τ(g∗) −
√

α(g∗) + τ(g∗)
)

.
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Using these expressions and the monotonicity/convexity of the square root:

f(Ai−1||T i) − f(Ai||T i+1) =
√

p(g∗)
(√

α(g∗) + wi + τ(g∗) −
√

α(g∗) + τ(g∗)
)

−
√

p(g′)
(√

α(g′) + wi + τ(g′) −
√

α(g′) + τ(g′)
)

≤
√

p(g∗)
(√

α(g∗) + wi + τ(g∗) −
√

α(g∗) + τ(g∗)
)

≤
√

p(g∗)
(√

α(g∗) + wi −
√

α(g∗)
)

= f(Ai−1||ti) − f(Ai−1)

≤ f(Ai) − f(Ai−1)

If f(Ai||T i+1) ≥ f(Ai−1||T i) (e.g., if g′ = g∗), then it suffices to take
T̄ i+1 = T i+1 and the inequality holds trivially. Hence, we assume that g′ 	= g∗

and f(Ai||T i+1) ≤ f(Ai−1||T i). Now, we may need to modify T i to get T̄ i+1,
depending on the size of τ(g′) relative to wi.

Case 1: τ(g′) ≥ 1
2wi. Intuitively, since the greedy algorithm added wi to g′

instead of g∗, we should not assign so much additional weight to g′. To create
T̄ i+1, we start from T i+1 (the part of T i without the first item), but make an
improvement by reassigning some subsequent items from g′ to g∗.

Because τ(g′) is the sum of weights each of which is at most wi (as the weights
of positions are in decreasing order), we can move some weight z satisfying
1
2wi ≤ z ≤ wi from g′ to g∗. Now, consider the function

c(x) =
√

p(g′)
√

α(g′) + τ(g′) + wi − x +
√

p(g∗)
√

α(g∗) + τ(g∗) + x,

representing the contribution from genres g′ and g∗ towards f , after moving an
amount x from g′ to g∗ (the change in f will only be due to these two genres,
since all others are unchanged). Observe that x = 0 corresponds to f(Ai||T i+1)
and x = wi corresponds to f(Ai−1||T i), so c(0) ≤ c(wi). Further, c is concave
in x. As depicted in the figure below, a correction that is at least 1

2wi increases
f by at least half the amount that a full correction of wi would have achieved
(Fig. 1).

Fig. 1. Change in f(Ai||T̄ i+1) as we move x weight from g′ to g∗.
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Then, the remaining amount is at most half the uncorrected difference; i.e.
f(Ai−1||T i)−f(Ai||T̄ i+1) ≤ 1

2 (f(Ai−1||T i)−f(Ai||T i+1)). Combining this with
the form of inequality (3) re-established at the beginning of the proof yields
f(Ai||T i) − f(Ai||T̄ i+1) ≤ 1

2 (f(Ai) − f(Ai−1)), which we rearrange to give the
desired inequality: f(Ai|T̄ i+1) ≥ f(Ai−1|T i) − 1

2 (f(Ai) − f(Ai−1)) .
Case 2: τ(g′) < 1

2wi. Observe that any greedy misstep is due to the fact
that the greedy algorithm must choose based only on α(g′), with no knowledge
of τ(g′). If there is a large τ(g′) that the greedy algorithm does not know about,
then the choice to fill g′ may have been overly eager, and ultimately ends up
being less helpful than expected after the remaining items are assigned.

But here, the fact that τ(g′) is small means that this is not the case – the
greedy algorithm was not missing a large piece of information, so the choice
based only on α(g′) was actually quite good. In particular, it cannot turn out
to be much worse than g∗, meaning that the difference between f(Ai−1||T i) and
f(Ai||T i+1) is fairly small. In fact, the greedy algorithm’s lack of knowledge
is most harmful when τ(g′) is large and τ(g∗) is small. So the worst possible
outcome for this case occurs when τ(g′) = 1

2wi and τ(g∗) = 0, for which we have

f(Ai−1||T i) − f(Ai||T i+1)

=
√

p(g′)
(√

α(g′) + wi/2 −
√

α(g′) + 3wi/2
)
+

√
p(g∗)

(√
α(g∗) + wi −

√
α(g∗)

)

=
√

p(g′)
(√

α(g′) + wi/2 −
√

α(g′) + 3wi/2
)
+ f(Ai−1||ti) − f(Ai−1)

≤
√

p(g′)
(√

α(g′) + wi/2 −
√

α(g′) + 3wi/2
)
+ f(Ai) − f(Ai−1).

Then, this gives

f(Ai−1||T i) − f(Ai||T i+1)
f(Ai) − f(Ai−1)

≤ 1 −
√

p(g′)
(√

α(g′) + 3wi/2 − √
α(g′) + wi/2

)

f(Ai) − f(Ai−1)

= 1 −
√

α(g′) + 3wi/2 − √
α(g′) + wi/2√

α(g′) + wi − √
α(g′)

.

This final expression is minimized when α(g′) = 0, for which

f(Ai−1||T i) − f(Ai||T i+1)
f(Ai) − f(Ai−1)

≤ 1 −
√

2 −
√

3 ≤ 1
2
,

which rearranges to f(Ai||T i+1) ≥ f(Ai−1||T i) − 1
2 (f(Ai) − f(Ai−1)) . Thus,

simply taking T̄ i+1 = T i+1 suffices to give the desired result.

5 Calibration in the Distributional Genre Model

In this section we consider the general calibrated recommendations problem with
a model of distributional genres, in which each item has a specific distribution
over genres (as in Sect. 3.1), or a fine-grained breakdown of all the genres repre-
sented by that item. Note that if we permitted our list to include repeats, then
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a (1 − 1/e)-approximation would be possible using a reduction to submodular
maximization over a partition matroid (Appendix B.2). But realistically, genre
mixtures are too specific to have multiple items with identical distributions, and
recommendation lists should not show the same item repeatedly. Our main result
addresses this, providing a (1 − 1/e)-approximation for calibrated recommenda-
tion lists without repeated elements using SMDR overlap measures.4

To begin, we view a list as an assignment of (at most) one item to each
position, and consider the ground set of all item-position pairs {(i, j) | i ∈
[K], j = �} (“item i in position j”). Define the laminar family of sets D�:={(i, j) |
i ∈ [K], j ≤ �}, and the laminar matroid M = (V, I), where R ⊂ V is an
independent set in I if and only if |R ∩ D�| ≤ � for all � ∈ [k] (i.e., R assigns at
most � items to the first � positions, corresponding to a “valid” list). Now, there is
a correspondence between recommendation lists and laminar matroid bases: any
list assigns exactly � items to the first � slots for all � ∈ [k] (and is thus a basis);
any basis can also be converted into a list solely by promoting items upwards (and
by strong monotonicity, this preserves the value of the calibration objective).
Then, it suffices to optimize over matroid bases using the continuous greedy
algorithm and pipage rounding technique of [7], then convert the approximately-
optimal basis to an approximately-optimal list.

Proposition 1. Given a basis R ∈ I, we can construct a length-k list π such
that G(π) ≥ FG(R).

Proof. For every item i, define �R(i) to be the first position that i occurs in
R; i.e., �R(i):= min {j ∈ [k]|(i, j) ∈ R}, or �R(i) = k + 1 if no such j exists.
Also denote wk+1 = 0. Sort the items in increasing order of �R(·) (breaking ties
arbitrarily), and call this sequence π. We claim that G(π) ≥ FG(R).

Consider an arbitrary item j. By definition of the laminar matroid, |R ∩
D�R(i)| =

∑k
y=1

∑�R(i)
x=1 1[(x,y)∈R] ≤ �R(i). The summation is an upper bound

on the number of items x with (x, y) ∈ R for some y ≤ �R(i). But these are
exactly the items with �R(x) ≤ �R(i) (including i itself), and therefore the items
that can appear before i in π. So the position at which i appears in π, denoted
π−1(i), is less than or equal to �R(i). This implies wπ−1(i) ≥ w�R(i) for all i.
Now, observe that R≤j\R≤j−1 is exactly the set of items which appear for the
first time in position j; thus �R(i) = j for all i ∈ R≤j\R≤j−1. Additionally,
R≤1 ⊆ R≤2 ⊆ · · · ⊆ R≤k ⊆ [K]. Then, for any genre g, we have

4 One might hope that it would suffice to take a solution with repeats and convert it
to a solution without repeats simply by showing items in the order of the first time
they appear. Unfortunately, this approach may destroy the submodular structure of
the original function, so that the continuous greedy algorithm no longer provides a
near-optimal approximation guarantee. Further details are in Appendix B.2.
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k∑

j=1

wj

⎛

⎝
∑

i∈R≤j\R≤j−1

qi(g)

⎞

⎠ =
k∑

j=1

∑

i∈R≤j\R≤j−1

w�R(i)qi(g) =
∑

i∈R≤k

w�R(i)qi(g)

≤
∑

i∈[K]

wπ−1(i)qi(g) =
k∑

j=1

wjqπ(j)(g).

Then, since G is non-decreasing w.r.t. all q(g), we have G(R) ≤ FG(π).

Proposition 2. maxR∈I FG(R) ≥ max G(π).

Proof. Let π∗:=arg maxπG(π), and define R∗:=
{
((π∗)−1(j), j) | j ∈ [k]

}
as the

set of item-position pairs in π∗. By construction, FG(R∗) = G(π∗), and R∗ ∈ I.
By monotonicity the the maximum over independent sets is attained by a basis,
and maxR∈I FG(R) ≥ FG(R∗) = G(π∗) = max G(π).

Theorem 6. There exists a (1 − 1/e)-approximation algorithm for the calibra-
tion problem with distributional genres using any SMDR overlap measure G.

Proof. Since G is an SMDR overlap measure, FG is a monotone submodular
function. Then, the continuous greedy algorithm and pipage rounding technique
of [7] finds an independent set R̄ ∈ I such that FG(R̄) ≥ (1−1/e)maxR∈I FG(R).
We can assume R̄ is a basis. By Proposition 2, FG(R̄) ≥ (1 − 1/e)max G(π).
Using Proposition 1, convert R̄ into a sequence π̄ such that G(π̄) ≥ FG(R̄). Now,
G(π̄) ≥ (1 − 1/e)max G(π), so we take π̄ to be our output.

6 Conclusion

In this paper, we have studied the problem of calibrating a recommendation list
to match a user’s interests, where user attention decays over the course of the
list. We have introduced the notion of overlap measures to quantify calibration
under two different models of genre distributions. In the first model, where every
item belongs to a single discrete genre, by defining an ordered submodularity
property and utilizing a careful bin-packing argument, we have shown that the
greedy algorithm is a 2/3-approximation. In the second model of distributional
genres, where each item has a fine-grained mixture of genre percentages, we
have extended tools from constrained submodular optimization to supply a (1−
1/e)-approximation algorithm. Prior work had highlighted the importance of the
order of items due to attention decay but had left open the question of provable
guarantees for calibration on these types of sequences; this prior work obtained
guarantees only under the assumption that the ordering of items does not matter.
Now, our work has provided the first performance guarantees for near-optimal
calibration of recommendation lists, working within the models of user attention
that form the underpinnings of applications in search and recommendation.

Finally, we highlight a number of directions for further work. First, it is inter-
esting to consider the greedy algorithm for calibration with discrete genres and
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ask whether the approximation bound of 2/3 is tight, or if it can be sharpened
using an alternative analysis technique. Additionally, we ask whether (1 − 1/e)
and 2/3 are the best possible approximation guarantees possible for the distribu-
tional and discrete genre models, respectively, or if there exists a polynomial time
approximation algorithm that achieves a stronger constant factor under either
model. As noted earlier, both models with decaying attention are amenable to
the general framework of submodular optimization, but these tools are limited to
an approximation guarantee of (1 − 1/e). In the discrete genre model, by using
different techniques we surpass this barrier and obtain a stronger guarantee;
might the same be possible in the distributional genre model?

To further investigate the performance of our algorithms, it may be useful to
parametrize worst-case problem instances, since we found through computational
simulations that the greedy solution tends to be very close to optimal across
many randomly generated instances (Appendix F). Another potential direction
is constructing additional families of overlap measures, or deriving a broader
characterization of functional forms that satisfy the (S)MDR properties so that
they may be used with our algorithms. As personalized recommendations become
increasingly commonplace and explicitly optimized, the answers to these ques-
tions will be essential in developing tools to better understand the interplay
between relevance, calibration, and other notions of diversity in these systems.
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Abstract. A preference matrix M has an entry for each pair of candi-
dates in an election whose value pij represents the proportion of voters
that prefer candidate i over candidate j. The matrix is rationalizable if
it is consistent with a set of voters whose preferences are total orders.
A celebrated open problem asks for a concise characterization of ratio-
nalizable preference matrices. In this paper, we generalize this matrix
rationalizability question and study when a preference matrix is consis-
tent with a set of voters whose preferences are partial orders of width α.
The width (the maximum cardinality of an antichain) of the partial order
is a natural measure of the rationality of a voter; indeed, a partial order
of width 1 is a total order. Our primary focus concerns the rationality
number, the minimum width required to rationalize a preference matrix.
We present two main results. The first concerns the class of half-integral
preference matrices, where we show the key parameter required in eval-
uating the rationality number is the chromatic number of the undirected
unanimity graph associated with the preference matrix M . The second
concerns the class of integral preference matrices, where we show the key
parameter now is the dichromatic number of the directed voting graph
associated with M .

1 Introduction

At the heart of macroeconomics is the concept of choice [2]. For example, what
should a consumer (respectively, producer) demand (respectively, supply) given
market prices? More generally, given a set of options to choose from an agent
selects an option(s). The agent is considered rational if it always selects the best
choice among the given options. Specifically, a rational agent has a total order
over the entire collection of options and, presented with a subset of the options,
always chooses the option highest in the ordering.

1.1 Rationalizable Choice Data

But how can we evaluate whether or not agents are rational? The simple answer
is to test the data. Is a collection of observational choice data consistent with
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decision-making by a group of rational agents? A classical way to model this
is via an election. Assume there are n candidates over which we have pairwise
choice data; that is pij is the proportion of voters that prefer candidate i over
candidate j. This induces a non-negative preference matrix M = (pij)i,j∈[n],
where pii = 0 for each candidate i and pij +pji = 1 for every pair of candidates i
and j. Is this preference matrix compatible with an electorate of rational voters,
where each voter ranks the candidates via a total order?

The Matrix Rationalizability Problem: Given a preference matrix M ,
does there exist a set of rational voters such that, for any pair of candidates, a
random voter prefers i over j with probability exactly pij?1

The fundamental value of this problem is highlighted by its importance
in a wide range of disciplines. The problem and its variants have been stud-
ied in depth in mathematical psychology (primarily with respect to human
decision making) [9,22], economics (w.r.t. econometrics and behavioural eco-
nomics) [6,18,19], operations research (w.r.t. consumer choice and advertis-
ing) [4,19], combinatorial optimization (w.r.t. geometry and integrality in math-
ematical programming) [11,15], and theoretical computer science [1].

A good characterization of rationalizable preference matrices has eluded the
research community for over 60 years. Consequently, the objectives of this paper
are more modest, but more general. Rather than study preference matrices that
are compatible with a collection of total orders, we study preference matrices
that are compatible with a collection of partial orders. There are two major
advantages to this approach. First, from a practical perspective, the problem
of non-existence is avoided. Every preference matrix is compatible with a set
of voters with partial order preferences (see Observation 1). Second, and more
substantially, the use of partial orders induces a natural measure of approximate
rationality. Specifically, a total order corresponds to a poset of width 1, where the
width is the maximum cardinality of an antichain in the poset. More generally,
the smaller the width of a partial order the closer it is to a total order. Intuitively,
the smaller the width the more “decisive” and rational the voter. In contrast,
the poset of a voter with higher width has a higher number of linear extensions;
the voter is thus more ambiguous and less decisive. We say that a voter whose
preferences are given by a partial order of width at most α is α-rational. Thus,
a 1-rational voter is rational. Further, we say that a preference matrix M is
α-rationalizable if it can be explained by a set of voters who are α-rational.

1.2 The Model

A (strict) partial order � over a set [n] = {1, 2, . . . , n} of candidates satisfies, for
any i, j, k ∈ [n], the following three properties:

Irreflexivity: not i � i.
Asymmetry: If i � j, then not j � i.
Transitivity: If i � j and j � k, then i � k.

1 For irrational matrices one may ask if the matrix is compatible with a probability
distribution over total orders.
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We say that a pair of candidates i and j are comparable if either i � j or
j � i; else they are incomparable. A partial order is a total order if every pair of
candidates is comparable.

We assume each voter v has a personal set of preferences given by a partial
order �v over the candidates, where the voter strongly prefers candidate i over
j if i �v j (we omit the subscript and write i � j if the context is clear). We say
the voter weakly prefers i over j if either i � j (strongly prefers) or if i and j
are incomparable (voter is indifferent). Recall that a partial order � induces a
poset P over the candidates. A chain is a subset of candidates in P that induces
a total order. An antichain in P is a subset of pairwise incomparable candidates.
We say that the voter is α-rational if the maximum cardinality of an antichain
in its partial order is at most α.

A preference matrix is a non-negative matrix M = (pij), where pii = 0 and
pij +pji = 1 for all i, j ∈ [n]. A preference matrices M is α-rationalizable if there
exists a set V of α-rational voters such that, for any pair of candidates i and j,

(i) at least a pij fraction of the voters weakly prefer i over j,
(ii) at least a pji fraction of the voters weakly prefer j over i.

One way to see that this definition accords with M being compatible with the
set of voters is via sampling. Suppose we take a large sample of the voters and
ask them if they prefer i or j. If the voter prefers i over j (namely, i � j) or vice
versa then we insist the voter must declare truthfully. If the voter is indifferent
between i and j then we allow the voter to choose either of them. Then, in the
limit, it is feasible that exactly a pij fraction of the voters (from the sample)
state a preference for i over j if and only if (i) and (ii) hold.

Observe that since pij + pji = 1, a set of α-rational voters is not compatible
with M if more than a pij = 1 − pji fraction of the voters strongly prefer i over
j, or if more than a pji = 1 − pij fraction of the voters strongly prefer j over i.
Consequently, we can encode (i) and (ii) as the following rationality constraints
for all i �= j ∈ [n]:

#{v ∈ V : v strongly prefers i over j}
|V| ≤ pij ≤ #{v ∈ V : v weakly prefers i over j}

|V| (∗)

If V satisfies (∗) for a preference matrix M then we say V is consistent or
compatible with M . Note that we impose no restriction on the cardinality of V,
we simply desire a voting set of any cardinality that α-rationalizes M .

We remark that if every voter only has strong preferences then (i) and (ii)
are equivalent to exactly a pij fraction of the voters (strongly) preferring i over j
(in accordance with The Matrix Rationalizability Problem). Such voters
have total order preferences and thus are 1-rational and, in this case, M would be
1-rationalizable. Naturally, in our general setting, we then desire the minimum
α such that M is α-rationalizable; we call this minimum the rationality number
of M and denote it by α(M). This induces the following decision problem:

The Rationality Number Problem: Given a preference matrix M and a
positive integer k, is the rationality number α(M) at most k?
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1.3 Examples

Example I: Consider the integral preference matrix M shown in Fig. 1. Observe
that there is a simple way to represent an integral preference matrix by a voting
graph, DM = (V,A), whose vertices are the candidates and there is an arc from i
to j if and only if pij = 1. Thus, as illustrated, the voting graph for M is simply
the directed 3-cycle. More generally an integral preference matrix corresponds
to a tournament, an orientation of the complete graph on n vertices.

Fig. 1. An integral preference matrix (and its voting graph DM ) that is 2-rationalizable
using a single voter.

The matrix M is not rationalizable (1-rationalizable), as any voter with a
total order preference list would strongly prefer j over i, for some arc (i, j) ∈ G,
which is incompatible with the fact that pij = 1. However, M is 2-rationalizable.
Indeed it is compatible with a single voter with partial order of width 2 as shown
by the red voter in Fig. 1. Specifically, the voter prefers candidate 1 over 2 but
is indifferent between candidates 1 and 3 and between candidates 2 and 3.

Let us verify that this voter does 2-rationalize M . We need to prove that the
rationality constraints are satisfied for every pair of voters. Observe 1 ≤ p12 =
1 ≤ 1. Here the lower bound holds because the fraction of voters that strongly
prefer 1 over 2 is one (as there is a single voter!). Furthermore 0 ≤ p13 = 0 ≤ 1
because the voter is indifferent between 1 and 3. Thus the fraction of voters that
strongly prefer 1 over 3 is zero and the fraction that weakly prefer 1 over 3 is
one. Similarly 0 ≤ p23 = 1 ≤ 1. We remark that if conditions (∗) hold for pij

then they hold for pji. Thus the rationality constraints (∗) are satisfied for every
pair of candidates and M is 2-rationalizable.

Example II: Consider the half-integral preference matrix M shown in Fig. 2.
Again, we represent a half-integral preference matrix by a voting graph, DM =
(V,A), where there is an arc from i to j if and only if pij = 1. Thus if pij = 1

2
there is no arc (in either direction) between i and j. In Fig. 2, the voting graph
for M is illustrated with a dashed line for the absence of arcs. We similarly define
an undirected unanimity graph GM = (V,E), which has an edge between i and j
whenever pij = 1 or pji = 1. Thus it contains an edge for each pair of candidates
for which the voters cannot strongly disagree. Note that it corresponds to the
undirected version of the voting graph DM .

The matrix M is not rationalizable (1-rationalizable). Again, this is because
the voting graph contains a directed cycle C on the six candidates. Thus, any
voter with a total order preference list would strongly prefer j over i, for at least
one arc (i, j) ∈ C, which is incompatible with the fact that pij = 1.
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Fig. 2. A half-integral preference matrix (and its voting graph DM ) that is 2-
rationalizable using two voters.

However, M is 2-rationalizable. But, unlike in Example I, this requires at least
two voters. To see that one voter is insufficient, consider the three candidates
{1, 3, 5}. For any 2-rational voter v, at least two of these must be comparable in
its partial order; otherwise they form an antichain of cardinality 3. Without loss
of generality, let 1 �v 3. So if v is the only voter then the proportion of voters
that prefer 1 over 3 is one. This contradicts condition (∗) because p13 = 1

2 .
On the other hand, M is compatible with two voters that are each 2-rational

as illustrated by the red and blue voters in Fig. 2. For example, both the red
and blue voters are indifferent between candidates 1 and 2. Thus the fraction of
voters that strongly prefer 1 over 2 is zero and the fraction that weakly prefer
1 over 2 is one. Thus condition (∗) holds for this pair as 0 ≤ p12 = 1 ≤ 1.
The reader may verify that the conditions (∗) also hold for every other pair of
candidates. Hence M is 2-rationalizable, as claimed.

Example III: Finally consider the generic preference matrix M with three can-
didates shown in Fig. 3. M is 3-rationalizable using a single voter whose partial
order is an antichain on all the candidates. Observe that since the voter has no
strict preference, the fraction of voters that strongly prefer i over j is zero, for
any pair of candidates. Similarly, the fraction of voters that weakly prefer i over
j is one. Thus the rationality constraints (∗) are simply 0 ≤ pij ≤ 1 which are
trivially satisfied. Thus M is 3-rationalizable.

Fig. 3. A generic preference matrix that is 3-rationalizable using a single voter.

Of course, this example, trivially generalizes to any number n of candidates.
A single voter whose partial order is an antichain of size n will n-rationalize any
preference matrix with n candidates.

Observation 1. A preference matrix with n candidates is n-rationalizable.

Observation 1 confirms the existence of a set of voters that α-rationalize a
preference matrix M . Of course, our interest is whether or not the matrix is
α-rationalizable for some α much smaller than n.
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1.4 Our Results

In Sect. 2 we present structural results concerning α-rationalizable preference
matrices. Then in Sect. 3, we focus on the important class M 1

2 of half-integral
preference matrices. Our first main result is that, for this class, the rationality
number α(M) is bounded by the chromatic number of the (undirected) unanim-
ity graph GM . Specifically, we prove:

Theorem 1.1. Let M 1
2 be the class of half-integral preference matrices. Then

1
5
χ(GM ) ≤∃ α(M) ≤∀ χ(GM )

In order to concisely formulate our results, we use the notation ≤∃ and ≤∀.
Here ≤∃ means that for every k ∈ N there exists a preference matrix M in that
class (here, M 1

2 ) with chromatic number k such that the inequality holds, and
≤∀ means that the inequality holds for every preference matrix M in that class.

Next, in Sect. 4, we strengthen our results for the class M0/1 of integral
preference matrices. For this class, we prove that the rationality number α(M)
is equal to the dichromatic number of the (directed) voting graph DM . We use
this to give even more precise bounds on the rationality number for the class of
integral matrices. Specifically our second main result is:

Theorem 1.2. Let M0/1 be the class of integral preference matrices. Then

n

2 log n + 1
≤∃ α(M) ≤∀

3n

log n

Note that for an integral preference matrix M its unanimity graph GM is
the complete graph and thus has chromatic number exactly χ(GM ) = n.

We conclude, in Sect. 5, by showing that the rationality number problem is
NP-complete, even for the class of integral matrices.

1.5 Literature Review

The matrix rationalizability problem asks when a binary probability system (that
is, a preference matrix) corresponds to a distribution over total orders. This prob-
lem dates back to the 1950s and the works of Guilbaud [16] and Marschak [18].
Early works proved that the triangle inequality2 is a necessary and sufficient
condition for a preference matrix to be rationalizable in the case of five or fewer
candidates [8,11]. But this fails for six or more candidates [8,11], leading to a
search for other necessary conditions [15,19]. Obtaining a concise characteriza-
tion for matrix rationalizability remains an outstanding open problem.

Systems of choice probabilities have been widely studied in mathematical
psychology. Specifically, in stochastic choice behaviour, decision-makers must
select an item i when presented with a subset S of the items. Binary proba-
bility systems are the special case where the subsets considered have size two.
2 The triangle inequality states that pij ≤ pik+pkj , for any three candidates i, j and k.
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Falmagne [9] showed a complete system of choice probabilities to be induced by
rankings whenever it satisfies the Block-Marschak conditions [3] and normaliza-
tion equalities, the proof of which was simplified by Fiorini [10].

Closely related to the matrix rationalizability problem is the linear ordering
problem, which asks for the total order that best approximates a given binary
probability system. For standard measures this problem is NP-hard [14], but
understanding the geometry of the polytope of rationalizable choice matrices
aids in the development of heuristic and approximation algorithms [12], [?]. Also
closely related to the matrix rationalizability problem is the classic combinatorial
majority digraph problem. Here a directed graph models the pairwise majority
relation of a voter profile; that is, the arc ij is included in the digraph whenever
the majority of voters prefer candidate i over candidate j. McGarvey [20] showed
that every asymmetric digraph corresponds to the majority relation of some voter
profile. Various relaxations of rationalizability have been studied. One popular
relaxation is regularity [6,22] which asks if a system of binary probabilities can
be extended to a system of choice probabilities under which the probability of
selecting an item from a set does not increase when that set expands.

2 Preliminaries

We begin with a monotonicity property.

Lemma 2.1. Let M be a preference matrix consistent with m voters with pref-
erences {�1, . . . ,�u, . . . ,�m}. Then M is consistent with {�1, . . . ,�′

u, · · · �m},
where �′

u is identical to �u except that voter u prefers x over y in �u but is
indifferent between x and y in �′

u.

Proof. So, for any pair of candidates i and j, {�1, . . . ,�u, . . . ,�m} satisfies the
conditions (∗). Namely

#{v : v strongly prefers i over j}
m

≤ pij ≤ #{v : v weakly prefers i over j}
m

These conditions trivially still hold with respect to {�1, . . . ,�′
u, · · · �m} for any

pair except {x, y} and {y, x}. Let us verify that (∗) still holds for these two cases
as well. As u prefers x over y in �u but is indifferent between x and y in �′

u,
the number of voters that strongly prefer x over y has fallen by one (namely, u)
while the number of voters that weakly prefer x over y is the same. Thus the
lower bound has fallen whilst the upper bound is identical. Hence (∗) holds for
{x, y}. Similarly, (∗) holds for {y, x}, as the lower bound is the same whilst the
upper bound has increased. Hence M is consistent with {�1, . . . ,�′

u, · · · �m}. ��
Take a finite poset P = (S,�) on a set S of elements with partial order �. A

chain decomposition of P is a partition of the elements of the poset into disjoint
chains. The cardinalility of a chain decomposition is the number of chains in the
decomposition. A famous result of Dilworth [7] states that the width of P is the
minimum cardinality of a chain decomposition.
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Theorem 2.2. [7] Let P = (S,�) be a finite poset. The maximum cardinality
of an antichain of P equals the minimum cardinality of a chain decomposition.

��
Theorem 2.2 allows us to restrict our attention to voter preferences composed

of disjoint chains.

Theorem 2.3. Let M be α-rationalizable by {�1, . . . ,�u, . . . ,�m}. Then M is
α-rationalizable by {�1, . . . ,�′

u, · · · �m}, where �′
u consists of at most α disjoint

chains.

Proof. Let �′
u correspond to a minimum cardinality chain decomposition of

P = ([n],�u). Thus, by Theorem 2.2, �′
u consists of at most α disjoint chains.

Thus the width of �u and �′
u are the same, and voter u is still α-rational.

Next we know M is consistent with {�1, . . . ,�u, · · · �m}. We can now use
the monotonicity property. Repeatedly applying Lemma 2.1, we conclude that
M is consistent with {�1, . . . ,�′

u, · · · �m}, as desired. ��
Of course, repeated application of Theorem 2.3 implies we can assume that

every voter has a partial order that is a collection of disjoint chains.

Corollary 2.4. If M is α-rationalizable then it is consistent with a set of α-
rational voters whose partial orders are a collection of (at most) α chains. ��

For an application, re-consider Example II. Recall the preference matrix M
is 2-rationalizable using two voters. By Corollary 2.4, it must be consistent with
two 2-rational voters whose partial orders each consist of two disjoint chains. To
do this we find a minimum chain decomposition of partial orders for the red and
blue voters in Example II. This gives us the two voters illustrated in Fig. 4.

Fig. 4. A 2-rationalizable matrix consistent with two voters whose partial orders are
disjoint chains.

3 Half-Integral Preference Matrices

We now restrict attention to the class M 1
2 of half-integral matrices. This class is

important in the field as it is the simplest class of preference matrices for which no
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characterization of rationality is known.3 Recall, associated with a half-integral
preference matrix is a directed voting graph DM and an undirected unanimity
graph GM . In this section, we will see that understanding the chromatic number
of the unanimity graph is critical in understanding the α-rationalizability of the
class of half-integral preference matrices.

3.1 Rationality and the Unanimity Graph

We begin with a simple reduction that allows us to restrict the computation of
the rationality number of M to its computation in a collection of submatrices
based upon the structure of the unanimity graph GM .

Theorem 3.1. Given a half-integral preference matrix M with connected com-
ponents G1, G2, . . . , Gt in the unanimity graph GM . For each, 1 ≤ � ≤ t, let M�

be the sub-matrix of M induced by G�. Then α(M) = max� α(M�).

Proof. Given a set of α-rational voters that satisfy the conditions (∗) for every
pair of candidates in M . Then, for each 1 ≤ � ≤ t, the same set of voters trivially
satisfy (∗) for each pair of candidates in V�, the set of candidates restricted to
the sub-matrix M�. Thus α(M) ≥ α(M�) and, hence, α(M) ≥ max

�
α(M�).

So it remains to prove the harder direction, that α(M) ≤ max
�

α(M�).

Assume, for each 1 ≤ � ≤ t, that M� is consistent with a collection of m�

voters who are each α-rational. We claim that M is consistent with a collection
of 2 · ∏t

�=1 m� voters who are each α-rational.
To prove this, we create two new voters, LS and RS , for every set S =

{v1, v2, . . . , vt} of voters, where v� is one of the n� voters used to α-rationalize
M�. Note that voter v� has a partial order on the candidates in V�. Both voters
LS and RS will copy the partial order v� has on the set V�, for all 1 ≤ � ≤ t.
That is if candidates i and j are both in V� then LS and RS comparatively rank
i and j exactly how v� does.

But what if candidate i ∈ V� and candidate j ∈ Vγ , where � �= γ? Imagine an
ordering of the sets of candidates {V1, V2, . . . , Vt} from left to right. Then voter
LS will prefer sets from left to right, and voter RS will prefer sets from right to
left. That is, if γ < �, then LS prefers i over j and RS prefers j over i.

So in total we have created 2 · ∏t
�=1 m� new voters. Moreover each of these

new voters is α-rational. This is because both LS and RS have a strict preference
for any pair of candidates for i ∈ V� and candidate j ∈ Vγ , where � �= γ. Hence,
any antichain of cardinality greater than one can only contain candidates within
the same set V�. Thus, the maximum size of an antichain in the partial order of
LS (or RS) is equal to the maximum size of an antichain in any of the partial
orders for the set of voters S = {v1, . . . , vt}, which by definition is at most α. So
LS and RS are both α-rational, for any set S.

3 There is a simple characterization for the class M0/1 of integral matrices. An integral
preference matrix M is rationalizable (1-rationalizable) if and only if its voting graph
DM is acyclic.
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Finally it remains to prove that the constraints (∗) hold for every pair of
candidates using the 2 · ∏t

�=1 m� new voters. First, take a pair of candidates
i ∈ V� and candidate j ∈ Vγ , where � �= γ. Then since G� and Gγ separate
components in the unanimity graph GM it follows that pij = 1

2 . Moreover for
any set S = {v1, v2, . . . , vt} LS and RS rank i and j in the opposite way. Thus
exactly half the voters strongly prefer i over j and half strongly prefer j over i. It
follows that (∗) holds for this pair of candidates. Second, take a pair of candidates
i, j ∈ V�. Recall there are m� α-rational voters consistent with the submatrix
M�. Therefore f1 ≤ pij ≤ f2, where f1 is the fraction of these m� voters that
strongly prefer i over j, and f2 is the fraction of these voters that weakly prefer
i over j. But each voter in M� is selected to be v� in S = {v1, v2, . . . , vt} with
exactly the same probability, namely 1

m�
. It immediately follows that among the

2 · ∏t
�=1 m� new voters exactly an f1 fraction of them strongly prefer i over j,

and exactly an f2 fraction of them weakly prefer i over j. Thus (∗) holds, and
M is indeed α-rationalizable. So α(M) ≥ max

�
α(M�). ��

Fig. 5. A half-integral preference matrix with its voting graph and unamimity graph.

Example IV. Consider the half-integral preference matrix M shown in Fig. 5,
along with its voting graph DM and unanimity graph GM . Observe that the
unanimity graph has exactly two components on the candidate sets V1 = {1, 2, 3}
and V2 = {4, 5}. We can prove that M is 2-rationalizable by applying the method
of Theorem 3.1. The submatrix M1 induced by V1 simply corresponds to the 3-
cycle we saw in Example I. Thus M1 is 2-rationalizable with m1 = 1 voter with
preference 1 over 2 and an indfference between candidate 3 and the other two
candidates. The submatrix M2 induced by V2 corresponds to an arc (4, 5). This

Fig. 6. The matrix M is 2-rationalizable using two voters.
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is trivially 1-rationalizable (and, hence, 2-rationalizable) with m2 = 1 voter with
preference 4 over 5. So we only need 2 · m1 · m2 = 2 new voters to 2-rationalize
M . Let these voters be L and R. Following the proof of Theorem 3.1, let L and R
copy the preferences within each of V1 = {1, 2, 3} and V2 = {4, 5}. Now L prefers
any vertex in V1 over any vertex in V2, but R has the opposite preference. Thus
we obtain the two voters shown in Fig. 6.

3.2 An Upper Bound on the Rationality Number of Half-Integral
Matrices

We can also use the unanimity graph to bound the rationality number of half-
integral matrices. First we give an upper bound. The rationality number α(M)
is upper bound by the chromatic number χ(GM ) of its unanimity graph.

Lemma 3.2. If M is a half-integral preference matrix then α(M) ≤ χ(GM ).

Proof. Given M let χ(GM ) = k be the chromatic number of its unanimity graph
GM . Take any k-coloring of the candidates, namely the vertices in GM . Let C�

be the set of candidates receiving color �, for 1 ≤ � ≤ k. We will show that M
is k-rationalizable using just two voters. The construction is simple. Both voters
will have k chains in their partial order and are thus k-rational. There is a chain
for each color class C�. Voter 1 places the candidates in C� in an arbitrary total
order to generate its �th chain, for 1 ≤ � ≤ k. Voter 2 does the same thing,
except it chooses exactly the opposite total order for the candidates in C� to
generate its �th chain.

Let us verify that this construction satisfies the rationality constraints (∗).
Take two candidates i and j. There are two cases to consider. First, assume that
both candidates belong to the same color class, i, j ∈ C�. As each color class is
an independent set we have that (i, j) /∈ GM and so pij = 1

2 . As the chains are
reversals of each other, half the voters strongly prefer i over j and half the voters
weakly prefer i over j. So 1

2 ≤ pij = 1
2 ≤ 1

2 and (∗) holds for these candidates.
Second, assume the candidates belong to different color classes, i ∈ C� and

j ∈ Cγ , where � �= γ. This means i and j are in different chains in the partial
orders of both voter 1 and voter 2. Thus, the fraction of voters that strongly
prefer i over j is zero and the fraction of voters that weakly prefer i over j is
one. Thus, regardless of the value of pij , we have 0 ≤ pij = 1

2 ≤ 1 and (∗) holds
for this pair of candidates. Thus M is k-rationalizable and so α(M) ≤ χ(GM ).

��

Example V. Consider the half-integral preference matrix M shown in Fig. 7.
This has a two-colorable unanimity graph, χ(GM ) = 2. It has color classes green
and pink with Vgreen = {2, 3, 5} and Vpink = {1, 4}. Let voter 1 order the two
corresponding chains by preferring lower numbered candidates, and let voter
prefer higher numbered candidates. This produces the partial orders illustrated
in Fig. 7. These two voters prove that M is 2-rationalizable.
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Fig. 7. A 2-chromatic unanimity graph inducing two 2-rational voters consistent with
its half-integral preference matrix M .

3.3 A Lower Bound on the Rationality Number of Half-Integral
Matrices

Let us now show that the upper bound in Lemma 3.2 is tight (to within a
constant factor) for the class of half-integral preference matrices.

Take any integral preference matrix M . Its voting graph is a tournament. If
this tournament is acyclic then the matrix is rationalizable, that is, it is α(M) =
1. But its unanimity graph is a clique so has chromatic number χ(GM ) = n.

Because an integral matrix is trivially half-integral, this example shows that it
is not the case that α(M) = Ω(χ(GM )) for every half-integral matrix. However,
the upper bound is indeed tight in the following sense:

Lemma 3.3. Given k ∈ N, there exists a half-integral matrix M with χ(GM ) =
k and α(M) ≥ 1

5 · k.

Proof. Take any k ∈ N. We build a unanimity graph GM on n vertices composed
of k disjoint independent sets {C1, C2, . . . , Ck}, where |C�| = n

k , for all 1 ≤ � ≤ k.
(Note we will determine below how large n needs to be.) In GM every pair of
candidates belonging to different independent sets is connected by an edge. Thus
we have that χ(GM ) = k. We now need to construct a voting graph DM and a
half-integral preference matrix M corresponding to this unanimity graph GM .
To do this we apply the probabilistic method. We uniformly at random orient
each edge in GM independently to produce DM (and thus M).

We prove the following key property. With non-zero probability, every subset
S ⊆ V (DM ) of size 5n

k contains a directed triangle. Let S be an arbitrary subset
of the vertices of size 5n

k and let S� = S∩C�, for all 1 ≤ � ≤ k. Set m� = |S�|, the
number of vertices of S contained in C�. We desire a lower bound on the number
of edge-disjoint triangles contained within S. To do this we apply the following
“merge” operation. Given S� and Sγ , where � �= γ, we set create an independent
set S� ∪ Sγ by removing the arcs between vertices in S� and Sγ . Clearly, by
removing arcs we cannot increase the number of triangles. So any lower bound
we obtain after applying this operation applies to the original instance.

Our goal is to obtain (at least) two independent sets of size at least n
k . So if

m1 < n
k , we merge other sets into S1 until m1 ≥ n

k . Observe that at this point we
must have m1 < 2 · n

k . We then repeat this process on another set, say S2, until
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n
k ≤ m2 < 2 · n

k . There are now at least 5n
k − m1 − m2 ≥ n

k vertices remaining.
So m3 + · · · + mk ≥ n

k .
We can now show that there are at least

(
n
k

)2 edge-disjoint triangles in
S. First observe that every vertex in S1 is adjacent to every vertex in S2. By
deleting vertices we may assume m1 = m2 = n

k . Then, by repeatedly applying
Hall’s theorem, we can find n

k edge-disjoint perfect matchings between S1 and
S2. Note that each of these perfect matchings has cardinality n

k .
Next, by deleting vertices, we may assume S̄ = S3 ∪ · · · Sk contains exactly

n
k vertices, that is,

∑

i≥3

mi = n
k . Now pair each perfect matching with a different

vertex v from S̄. Since v is adjacent in GM to each vertex in S1 ∪S2 this creates
n
k disjoint triangles. Because there are n

k perfect matchings paired to n
k distinct

vertices in S̄, this gives a total of (n
k )2 triangles in total, as claimed.

But each of these triangles is a directed 3-cycle with probability 1
4 . Further-

more, as each of these triangles are edge-disjoint, these are independent events.
So the probability that S contains no directed cycle, which is less than the
probability that none of our triangles are directed, is upper bounded as follows.

P{S has no directed cycle} ≤ P{none of the triangles are directed} =
(

3
4

)(n
k )2

Thus, by the union bound, we can show that the probability of the existence
of such a subset S without directed cycle is bounded away from 1. Specifically

P{∃S with no directed cycle} ≤
∑

S

P{S has no directed cycle} ≤ N ×
(
3

4

)(n
k )

2

where N is the number of subsets of V (GM ) of size 5 · n
k . Thus

N =
(

n
5n
k

)

=
n(n − 1) · · · (n − 5n

k + 1)
(
5n
k

)
!

≤ n
5n
k

(
5n
ke

) 5n
k

=
(

ke

5

) 5n
k

where in the denominator we used the fact that t! ≥ (
t
e

)t for any integer t, by
Stirling’s formula. Hence:

N ×
(

3
4

)(n
k )2

≤
(

ke

5

) 5n
k

·
(

3
4

)(n
k )2

which is strictly less than 1 for n large enough. To see this, raising this expression
to the power k

n we have
(

ke
5

)5 · (
3
4

)n
k which goes to zero as n → ∞. Thus, we

conclude that

P{every subset S has a cycle} = 1 − P{there exists subset S with no cycle} > 0.

Therefore, by the probabilistic method, there exists an orientation of GM for
which every subset S ⊆ V (GM ) of size 5 · n

k contains a directed triangle. This
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implies that the longest chain any voter can have in its partial order is of length
at most 5n

k . Consequently each voter must have at least k
5 chains in their partial

order. This proves that this orientation DM of GM requires that each voter be
at best k

5 -rational. Hence, for this voting graph DM , we have α(M) ≥ k
5 . ��

Together Lemma 3.2 and Lemma 3.3 prove our first main result, Theorem 1.1.
Observe the lower and upper bounds are tight up to a constant factor of 5. It
is an intriguing combinatorial problem to completely close the gap between the
lower and upper bounds.

4 Integral Preference Matrices

Stronger results can be obtained when the preference matrix M is integral, that
is, pij ∈ {0, 1} for all i, j.

4.1 One Voter Suffices

In general, if M is α-rational more than one voter might be required to α-
rationalize the matrix. However, if M is integral, then one voter suffices.

Theorem 4.1. Let M be an integral preference matrix. If M is α-rational then
it is consistent with a single α-rational voter.

Proof. Take an integral preference matrix M . Consider any pair of candidates, i
and j. Without loss of generality, pij = 1, i.e. the fraction of voters that weakly
prefer i over j must be one, by the rationality constraints (∗). That is, every voter
must either prefer i over j or must be indifferent between i and j. In particular,
if i �v j in the partial order of voter v then it must be the case that pij = 1,
as pij = 0 would violate (∗). Thus any strict preference in the partial order �v

must agree with pij , whereas any indifference imposes no constraint.
Now assume M is consistent with a collection of m α-rational voters. By the

above argument, each of these m voters must satisfy (∗) on its own! So each
such voter suffices to α-rationalize M . Therefore, if M is α-rational then it is
consistent with a single α-rational voter. ��

4.2 The Dichromatic Number

Using Theorem 4.1, we can characterize the rationality number of an integral
preference matrix M in terms of a coloring of its voting graph DM . Now DM

is a directed graph, so what do we mean by a coloring of a directed graph? A
chromatic coloring of an undirected graph G is a partition of the vertices into
independent sets. A dichromatic coloring of a directed graph D is a partition of
the vertices into acyclic sets. A dichromatic coloring can be viewed as a general-
isation of a chromatic coloring of an undirected graph. To see this, if we bidirect
every edge in an undirected graph G then an acyclic set in the resultant directed
graph D is an independent set in the original undirected graph. Analogous to
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the chromatic number of an undirected graph, Neumann-Lara [21] defined the
dichromatic number −→χ (D) of a digraph D to be the minimum number of colors
required in any dichromatic coloring of D. It is particularly important in the
study of the voting graph DM of an integral preference matrix, as shown below:

Theorem 4.2. Let M be an integral preference matrix. Then its rationality
number is equal to the dichromatic number of its voting graph: α(M) = −→χ (DM ).

Proof. Let M be an integral preference matrix. Then its voting graph DM is a
tournament. First assume that −→χ (DM ) = k. Then we can partition the vertices
of DM into k acyclic subgraphs {C1, C2, . . . , Ck}. Take any C�, for 1 ≤ � ≤ k.
Then C� is itself an tournament. Because it it is acyclic it has an acyclic ordering.
Furthermore, this ordering is unique as C� is a tournament. We use acyclic
ordering as total order to induce a chain on C�. In this way we have a partial
order that consists of k disjoint chains on {C1, C2, . . . , Ck}. This partial order
corresponds to a single α-rational voter. Moreover if i � j in this partial order
then pij = 1. Thus by the argument of Theorem 4.1 this single voter is consistent
with M in satisfying the constraints (∗). Thus α(M) ≤ k.

Second assume that α(M) = k. Then, by Theorem 4.1, there is a single α-
rational voter v that is consistent with M . Let � be the partial order of voter
v. Then, by Corollary 2.4, we can assume the partial order � consists of exactly
k disjoint chains, {C1, C2, . . . , Ck}. We claim that each chain induces an acyclic
subgraph in the voting graph DM . Suppose not, then there exist candidates i
and j such that i � j and pij = 0. But this contradicts (∗) since the fraction of
voters that strongly prefer i over j is one. So voter v is not consistent with M ,
a contradiction. So {C1, C2, . . . , Ck} are a partition of the vertices in DM into
acyclic subgraphs. Thus −→χ (DM ) ≤ k.

Putting this together we have α(M) = −→χ (DM ) as desired. ��

Example VI. Consider the integral preference matrix M in Fig. 8. Its voting
graph has dichromatic number 3 and is consistent with a single 3-rational voter.

Fig. 8. An integral preference matrix M , its 3-dichromatic voting graph DM , and a
corresponding 3-rational voter.
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4.3 An Upper Bound on the Rationality Number of Integral
Matrices

For the class M0/1 of integral preference matrices we can strengthen the bounds
in Theorem 1.1.

Lemma 4.3. If M is an integral preference matrix then α(M) ≤ 3n
log n .

Proof. By Theorem 4.2, to analyze the rationality number of an integral pref-
erence matrix M we must consider dichromatic colorings of the voting graph
DM . In particular, any algorithm to dichromatic color the voting graph will
give an upper bound on the rationality number of M . We now present a greedy
algorithm which gives tight bounds on the rationality number over the class of
integral preference matrices.

The algorithm selects a color class C1 as follows. It picks the vertex v1 with
the highest out-degree in DM and adds it to C1. It then selects the vertex v2
with the highest out-degree in the subgraph V (DM )∩Γ+(v1), induced by the set
of out-neighbours of v1, and adds v2 to C1. It then selects the vertex v3 with the
highest out-degree in the subgraph V (DM )∩Γ+(v1)∩Γ+(v2), induced by the set
of out-neighbours of both v1 and v2, and adds v3 to C1. This process terminates
with C1 = {v1, v2, . . . , vt} when

⋂t
i=1 Γ+(vi) ∩ V (DM ) = ∅. The vertices in C1

are given the color 1. The algorithm is then repeated on DM\C1 to select the
second color class C2, etc. The algorithm terminates when every vertex has been
colored.

Let this greedy algorithm output the color classes {C1, C2, . . . , Ck}. We claim
this is a valid dichromatic coloring of Dm. This is true because each C�, for
1 ≤ � ≤ k, is acyclic. In particular, by construction, if the C� = {v1, v2, . . . , vr},
then vj is an out-neighbour of vi, for any i < j. Thus C� contains no directed
cycle. Furthermore, we claim that k ≤ 3n

log n . That is, the greedy algorithm gives
a k-dichromatic coloring of DM using at most 3n

log n , where n is the number of
vertices (candidates). Since, χ(GM ) = n, by Theorem 4.2, this will prove that
α(M) ≤ 3n

log n = 3χ(GM )
log n . So let us verify this claim.

To do this, observe that if there are at least n
2i vertices remaining when the

algorithm begins to construct a new color class C�, then the cardinality of C�

will be at least log n
2i = log n − i. Indeed, as the graph is a tournament, at any

time there is a vertex whose out-degree is at least (the floor of) half the number
of vertices under consideration. In particular, consider the first time we have at
most n

2i−1 vertices remaining. Then the number of color classes we find until the

number of remaining vertices is at most n
2i is upper bounded by

n

2i

log n−i .
If there are less than n

log n vertices remaining then the number of color classes
the greedy algorithm finds from that point on is trivially upper bounded by n

log n .
Thus the total number of color classes the greedy algorithm finds in coloring
every vertex is at most

n

log n
+

log log n∑

i=1

n
2i

log n − i
=

n

log n
+ n ·

log log n∑

i=1

1
2i · (log n − i)

≤ 3n

log n

This gives our upper bound on the rationality number α(M). ��
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4.4 A Lower Bound on the Rationality Number of Integral Matrices

Let us now show that the upper bound in Lemma 4.3 is tight (to within a
constant factor) for the class of integral preference matrices.

Lemma 4.4. There exists an integral matrix M with α(M) ≥ n
2 log n+1 .

Proof. We claim there is a tournament with dichromatic number at least
n

2 log n+1 . To prove this we again apply the probabilistic method. Take a ran-
dom tournament on n vertices. Next select any subset S of k vertices. There
are k! acyclic orderings of a tournament on k vertices and 2(k

2) ways to orient
the arcs in the tournament. Thus, the probability that S is a acyclic is exactly

k!

2(
k
2)

. Furthermore there are
(
n
k

)
ways to choose S. So, by the union bound, the

probability that at least one of them induces an acyclic tournament is at most

(
n

k

)

· k!

2(k
2)

<
nk

2(k
2)

=
nk

2
1
2 (k−1)k

=
(

n

2
1
2 (k−1)

)k

But this is less than 1 if 2
1
2 (k−1) ≥ n. That is, if k ≥ 2 log n + 1. This implies

there exists a tournament DM on n vertices that contains no acyclic subgraphs
of cardinality greater than 2 log n + 1. For this tournament, every dichromatic
color class has cardinality at most 2 log n+1. Thus, its dichromatic number is at
least n

2 log n+1 . Now DM is the voting graph of an integral preference matrix M .
So, by Theorem 4.2, the rationality number of M is α(M) = −→χ (DM ) ≥ n

2 log n+1 .
��

Together Lemma 3.2 and Lemma 3.3 prove our second main result, Theo-
rem 1.2. Again, closing the factor 6 gap between the lower and upper bounds is
an interesting open problem.

5 Computational Complexity

Theorem 5.1. The rationality number problem is NP-complete for k ≥ 2, even
for the case of integral preferences matrices.

Proof. First note that the problem is in NP, as a set of voter preferences gives a
certificate to the rationality number, which can be verified in polynomial time.

Given an integral preference matrix M , by Theorem 4.2, determining whether
α(M) ≤ k is equivalent to deciding whether the tournament DM has dichromatic
number k. Consider first the case of k = 2. Now a tournament T has dichromatic
number 2 if and only if the vertices of T can be partitioned into two feedback
vertex sets, since the complement of a feedback vertex set induces, by definition,
an acyclic graph. Using a reduction from Not-All-Equal-3SAT, Chen, Hu
and Zang [5] proved that determining if a tournament can be partitioned into
two feedback vertex sets is NP-complete. Next consider k ≥ 3. Fox et al. [13]
gave a reduction from (k − 1)-dicolorability to k-dicolorability, hence proving
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NP-completeness for all k ≥ 2. The reduction is simple. Given a tournament
T , construct a new tournament T̂ consisting of two identical copies of T and
an extra vertex z, connected in the order T1 → T2 → z → T1. It can easily be
verified that −→χ (T ) = k − 1 if and only if −→χ (T̂ ) = k. The theorem follows. ��

This hardness result indicates that it may be fruitful to search for approxi-
mation algorithms for the rationality number of a preference matrix. We remark
that for the special case of integral preference matrices with α(M) = 2 a 5-
approximation can be derived from the work of Klingelhoefer and Newman [17].

Acknowledgements. We thank Sophie Spirkl for showing us a reduction from
Monotone-Not-All-Equal-3-SAT to the problem of deciding if a tournament has
dichromatic number 2 and Gerardo Berbeglia for discussions.
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Abstract. Given items of different sizes and a fixed bin capacity, the
bin-packing problem is to pack these items into a minimum number of
bins such that the sum of item sizes in a bin does not exceed the capac-
ity. We define a new variant called k-times bin-packing ( kBP), where the
goal is to pack the items such that each item appears exactly k times, in
k different bins. We generalize some existing approximation algorithms
for bin-packing to solve kBP, and analyze their performance ratio.

The study of kBP is motivated by the problem of fair electricity dis-
tribution. In many developing countries, the total electricity demand is
higher than the supply capacity. We prove that every electricity division
problem can be solved by k-times bin-packing for some finite k. We also
show that k-times bin-packing can be used to distribute the electricity
in a fair and efficient way. Particularly, we implement generalizations of
the First-Fit and First-Fit Decreasing bin-packing algorithms to solve
kBP, and apply the generalizations to real electricity demand data. We
show that our generalizations outperform existing heuristic solutions to
the same problem.

Due to space constraints, several parts of the paper were moved to
appendices. All appendices are available in the full version [1].

Keywords: Approximation algorithms · bin-packing · First-Fit ·
First-Fit Decreasing · Next-Fit · fair division · Karmarkar-Karp
algorithms · Fernandez de la Vega-Lueker algorithm · electricity
distribution · utilitarian metric · egalitarian metric · utility difference

1 Introduction

This work is motivated by the problem of fair electricity distribution. In develop-
ing countries, the demand for electricity often surpasses the available supply [17].
Such countries have to come up with a fair and efficient method of allocating of
the available electricity among the households.

Formally, we consider a power-station that produces a fixed supply S of
electricity. The station should provide electricity to n households. The demands
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of the households in a given period are given by a (multi)set D. Typically,∑
i D[i] > S (where D[i] is the electricity demand of a household i), so it is not

possible to connect all households simultaneously. Our goal is to ensure that each
household is connected the same amount of time, and that this amount is as large
as possible. We assume that an agent gains utility only if the requested demand is
fulfilled; otherwise it is zero. Practically it can be understood as follows: Suppose
at some time, a household i is running some activity that requires D[i] kilowatt
of electricity to operate; in the absence of that amount, the activity will not
function. Therefore, an allocation where demands are fractionally fulfilled is not
relevant.

A simple approach to this problem is to partition the households into some
q subsets, such that the sum of demands in each subset is at most S, and then
connect the agents in each subset for a fraction 1/q of the time. To maximize the
amount of time each agent is connected, we have to minimize q. This problem
is equivalent to the classic problem of bin-packing. In this problem, we are given
some n items, of sizes given by a multiset of positive numbers numbers D, and a
positive number S representing the capacity of a bin. The goal is to pack items
in D into the smallest possible number of bins, such that the sum of item sizes
in each bin is at most S. The problem is NP-complete [9], but has many efficient
approximation algorithms.

However, even an optimal solution to the bin-packing problem may provide a
sub-optimal solution to the electricity division problem. As an example, suppose
we have three households x, y, z with demands 2, 1, 1 respectively, and the elec-
tricity supply S = 3. Then, the optimal bin-packing results in 2 bins, for instance,
{x, y} and {z}. This means that each agent would be connected 1/2 of the time.
However, it is possible to connect each agents 2/3 of the time, by connecting
each of the pairs {x, y}, {x, z}, {y, z} for 1/3 of the time, as each agent appears
in 2 different subsets. More generally, suppose we construct q subsets of agents,
such that each agent appears in exactly k different subsets. Then we can connect
each subset for 1/q of the time, and each agent will be connected k/q of the time.

1.1 The k-Times Bin-Packing Problem

To study this problem more abstractly, we define the k-times bin-packing problem
(or kBP). The input to kBP is a set of n items of sizes given by a multiset D,
a positive number S representing the capacity of a bin, and an integer k ≥ 1.
The goal is to pack items in D into the smallest possible number of bins, such
that the sum of item sizes in each bin is at most S, and each item appears in
k different bins, where each item occurs at most once in a bin. In the above
example, k = 2. It is easy to see that, in the above example, 2-times bin-packing
yields the optimal solution to the electricity division problem.

Our first main contribution (Section 4) is to prove that, for every electricity
division problem, there exists some finite k for which the optimal solution to the
kBP problem yields the optimal solution to the electricity division problem.

We note that kBP may have other applications beyond electricity division.
For example, it could be to create a backup of the files on different file servers [14].
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We would like to store k different copies of each file, but obviously, we want at
most one copy of the same file on the same server. This can be solved by solving
kBP on the files as items, and the server disk space as the bin capacity.

Motivated by these applications, we would like to find ways to efficiently
solve kBP. However, it is well-known that kBP is NP-hard even for k = 1. We
therefore look for efficient approximation algorithms of kBP.

1.2 Using Existing Bin-Packing Algorithms for kBP

Several existing algorithms for bin-packing can be naturally extended to kBP.
However, it is not clear whether the extension will have a good approximation
ratio.

As an example, consider the simple algorithm called First-Fit (FF): process
the items in an arbitrary order; pack each item into the first bin it fits into;
if it does not fit into any existing bin, open a new bin for it. In the example
D = [10, 20, 11], S = 31, the FF would pack two bins: {10, 20} and {11}. This is
clearly optimal. The extension of FF to kBP would process the items as follows:
for each item xr in the list (in order), suppose that b bins have been used thus
far. Let j be the lowest index (1 ≤ j ≤ b) such that (a) bin j can accommodate
xr and (b) bin j does not contain any copy of xr, should such j exist; otherwise
open a new bin with index j = b + 1. Place xr in bin j.

There are two ways to process the input. One way is by processing
each item k times in sequence. In the above example, with k = 2, FF
will process the items in order [101, 102, 201, 202, 111, 112], where the super-
script specifies the instance to which an item belongs. This results in four
bins: {101, 201}, {102, 202}, {111}, {112}, which simply repeats k times the solu-
tion obtained from FF on D. However, the optimal solution here is 3 bins:
{101, 201}, {111, 102}, {202, 112}.

Another way is to process the whole sequence D, k times. In the above
example, FF will process the sequence D2 = DD = [101, 201, 111, 102, 202, 112]
. Applying the FFk algorithm to this input instance will result in three bins
{101, 201}, {111, 102}, {202, 112}, which is optimal. Thus, while the extension of
FF to kBP is simple, it is not trivial, and it is vital to study the approximation
ratio of such algorithms in this case.

As another example, consider the approximation schemes by de la Vega and
Lueker [24] and Karmarkar and Karp [16]. These algorithms use a linear program
that counts the number of bins of each different configuration in the packing
(see subsection 6.1 for the definitions) One way in which these algorithms can
be extended, without modifying the linear program, is to give Dk as the input.
But then, a configuration might have more than one copy of an item in D, which
violates the kBP constraint. Another approach is to modify the constraint in the
configuration linear program, to check that there are k copies of each item in
the solution, while keeping the same configurations as for the input D. Doing so
will respect the kBP constraint. Again, while the extension of the algorithm is
straightforward, it is not clear what the approximation ratio would be; this is
the main task of the present paper.
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The most trivial way to extend existing algorithms is to run an existing
bin-packing algorithm, and duplicate the output k times. However, this will not
let us enjoy the benefits of kBP for electricity division (in the above example,
this method will yield 4 bins, so each agent will be connected for 2/4 = 1/2 of
the time). Therefore, we present more elaborate extensions, that attain better
performance. The algorithms we extend can be classified into two classes:

1. Fast constant-factor approximation algorithms (Section 5). Examples are
First-Fit (FF ) and First-Fit-Decreasing (FFD). For bin-packing, these algo-
rithms find a packing with at most 1.7 · OPT (D) and 11

9 · OPT (D) + 6
9 bins

respectively [5–7] We adapt these algorithms by running them on an instance
made of k copies, DD . . . D (k copies of D), which we denote by Dk. We show
that, for k > 1, the extension of FF to kBP (which we call FFk) finds a packing
with at most

(
1.5 + 1

5k

) · OPT (Dk) + 3 · k bins. For any fixed k > 1, the asymp-
totic approximation ratio of FFk for large instances (when OPT (Dk) → ∞) is
(1.5 + 1

5k ), which is better than that of FF , and improves towards 1.5 when k
increases.

We also prove that the lower bound for FFDk (the extension of FFD to
kBP) is 7

6 · OPT (Dk) + 1, and conjecture by showing on simulated data that
FFDk solves kBP with at most 11

9 · OPT (Dk) + 6
9 bins which gives us an

asymptotic approximation ratio of at most 11/9.
We also show that the extension of NF (next-fit algorithm) to kBP (we call

this extension as NFk) has the asymptotic ratio of 2.

2. Polynomial-time approximation schemes (Section 6). Examples are the algo-
rithms by Fernandez de la Vega and Lueker [24] and Karmarkar and Karp [16].
We show that the algorithm by Fernandez de la Vega and Lueker can be extended
to solve kBP using at most (1+2 ·ε)OPT (Dk)+k bins for any fixed ε ∈ (0, 1/2).
For every ε > 0, Algorithm 1 of Karmarkar-Karp algorithms [16] solves kBP
using bins at most (1 + 2 · k · ε)OPT (Dk) + 1

2·ε2 + (2 · k + 1) bins, and runs in
time O(n(Dk) · log n(Dk) + T ( 1

ε2 , n(Dk)), where n(Dk) is the number of items
in Dk, and T is a polynomially-bounded function. Algorithm 2 of Karmarkar-
Karp algorithms [16] generalized to solve kBP using at most OPT (Dk) + O(k ·
log2 OPT (D)) bins, and runs in time O(T (n(D)

2 , n(Dk)) + n(Dk) · log n(Dk)).

Electricity Distribution (Section 7). The fair electricity division problem was
introduced by Oluwasuji and Malik and Zhang and Ramchurn [19,20] under the
name of “fair load-shedding”. They presented several heuristic as well as ILP-
based algorithms, and tested them on a dataset of 367 households from Nigeria.
We implement the FFk and FFDk algorithms for finding approximate solutions
to kBP, and use the solutions to determine a fair electricity allocation. We test
the performance of our allocations on the same dataset of Oluwasuji and Malik
and Zhang and Ramchurn [19]. We compare our results on the same metrics
used by Oluwasuji and Malik and Zhang and Ramchurn [19]. These metrics
are utilitarian and egalitarian social welfare and the maximum utility difference
between agents. We compare our results in terms of hours of connection to supply
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on average, utility delivered to an agent on average, and electricity supplied on
average, along with their standard deviation. We find that our results surmount
their results in all the above parameters. FFk and FFDk run in time that is
nearly linear in the number of agents. We conclude that using kBP can provide
a practical, fair and efficient solution to the electricity division problem.

In Sect. 8, we conclude with a summary and directions for future work.

2 Related Literature

Due to space constraints, some related work was removed; it can be found in the
full version [1].

First-Fit. We have already defined the working of FF in Subsect. 1.2. Denote
by FF the number of bins used by the First-Fit algorithm, and by OPT the
number of bins in an optimal solution for a multiset D. An upper bound of
FF ≤ 1.7OPT + 3 was first proved by Ullman in 1971 [23]. The additive term
was first improved to 2 by Garey and Graham and Ullman [8] in 1972. In 1976,
Garey and Graham and Johnson and Yao [10] improved the bound further to
FF ≤ �1.7OPT �, equivalent to FF ≤ 1.7OPT +0.9 due to the integrality of FF
and OPT . This additive term was further lowered to FF ≤ 1.7OPT + 0.7 by
Xia and Tan [27]. Finally, in 2013 Dosa and Sgall [5] settled this open problem
and proved that FF ≤ 	1.7OPT 
, which is tight.

First-Fit Decreasing. Algorithm First-Fit Decreasing (FFD) first sorts the items
in non-increasing order, and then implements FF on them. In 1973, in his doc-
toral thesis [15], D. S. Johnson proved that FFD ≤ 11

9 OPT +4. Unfortunately,
his proof spanned more than 100 pages. In 1985, Baker [2] simplified their proof
and improved the additive term to 3. In 1991 Minyi [28] further simplified the
proof and showed that the additive term is 1. Then, in 1997, Li and Yue [18]
narrowed the additive constant to 7/9 without formal proof. Finally, in 2007
Dosa [6] proved that the additive constant is 6/9. They also gave an example
which achieves this bound.

Next-fit. The algorithm next-fit works as follows: It keeps the current bin (ini-
tially empty) to pack the current item. If the current item does not pack into the
currently open bin then it closes the current bin and opens a new bin to pack
the current item. Johnson in his doctoral thesis [15] proved that the asymptotic
performance ratio of next-fit is 2.

Efficient Approximation Schemes. In 1981, Fernandez de la Vega and Lueker [24]
presented a polynomial time approximation scheme to solve bin-packing. Their
algorithm accepts as input an ε > 0 and produces a packing of the items in D of
size at most (1 + ε) OPT + 1. Their running time is polynomial in the size of D
and depends on 1/ε. They invented the adaptive rounding method to reduce the
problem size. In adaptive rounding, they initially organize the items into groups
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and then round them up to the maximum value in the group. This results in a
problem with a small number of different item sizes, which can be solved opti-
mally using the linear configuration program. Later, Karmarkar and Karp [16]
devised several PTAS for the bin-packing problem. One of the Karmarkar-Karp
algorithms solves bin-packing using at most OPT + O(log2 OPT ) bins. Other
Karmarkar–Karp algorithms have different additive approximation guarantees,
and they all run in polynomial time. This additive approximation was further
improved to O(log OPT · log log OPT ) by Rothvoss [21]. They used a “glue-
ing” technique wherein they glued small items to get a single big item. In 2017,
Hoberg and Rothvoss [13] further improved the additive approximation to a
logarithmic term O(log OPT ).

Jansen [14] has proposed a FPTAS for the generalization of the bin-packing
problem called as bin-packing with conflicts. The input instance for their algo-
rithm is the conflict graph. Its vertices are the items and any two items are
adjacent provided they cannot be packed into the same bin. In particular, kBP
can be considered as the bin-packing with conflicts, where the conflict graph Dk

is a disjoint union of copies of a complete graph Kk. Their bin-packing problem
with conflicts is restricted to q−inductive graphs. In a q−inductive graph the
vertices are ordered from 1, . . . , n. Each vertex in the graph has at most q adja-
cent lower numbered vertices. Since the degree of each vertex of Dk equals k−1,
Dk is a k − 1-inductive graph. In their method first they obtain an instance of
large items from the given input instance. Let this instance be Jk. They apply the
linear grouping method of Fernandez de la Vega and Lueker [24] to obtain a con-
stant number of different item sizes. Next they apply the Karmarkar and Karp
algorithm [16] to obtain an approximate packing of the large items. The bins in
this approximate packing may have conflicts, so they use the procedure called
COLOR which places each conflicted item into a new bin. In the worst case it may
happen that all the items in each bin have conflict and hence each one of them
is packed into a separate bin. Finally, after removing the conflicts, they packed
the small items into the existing bins, respecting conflicts among items. In doing
so, new bins are opened if necessary. In this paper we focus on a special kind of
conflicts, and for this special case, we present a better approximation ratio. Their
algorithm solves the kBP using at most (1 + 2 · ε)OPT (Dk) + 2·k−1

4·ε2 + 3 · k + 1
bins, whereas our extension to Algorithm 1 and 2 of Karmarkar-Karp algo-
rithms solves the kBP using at most (1 + 2 · ε)OPT (Dk) + 1

2·ε2 + 2 · k + 1 and
OPT (Dk) + O(k · log2 OPT (D)) bins respectively.

Gendreau and Laporte and Semet [11] propose six heuristics named H1 to
H6 for bin-packing with item-conflicts, represented by a general conflict graph.
The heuristic H1 is a variant of FFD which incorporates the conflicts, whereas
H6 is a combination of a maximum-clique procedure and FFD. They show that
H6 is better than H1 for conflict graphs with high density, whereas H1 performs
marginally better for low density conflict graphs (where density is defined as
the ratio of the number of edges to the number of possible edges). kBP can be
represented by duplicating each item k times, and constructing a conflict graph
in which there are edges between each two copies of the same item. The density of
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this graph is (k − 1)/(kn − 1), which becomes smaller for large n. This suggests
that H1 is a better fit for kBP. But in their adoption of kBP the vertices of
the conflict graphs are ordered as blocks corresponding to the items, in such a
way that the their sizes are non-decreasing. We have already seen that when we
change such item order we can obtain a better packing.

Recently, Doron-Arad and Kulik and Shachnai [4] has solved in polynomial
time a more general variant of bin-packing, with partition matroid constraints.
Their algorithm packs the items in OPT + O

(
OPT

(ln lnOPT )1/17

)
bins. Their algo-

rithm can be used to solve the kBP: for each item in D, define a category that
contains k items with the same size. Then, solve the bin-packing with the con-
straint that each bin can contain at most one item from each category (it is a
special case of a partition-matroid constraint). However, in the present paper
we focus on the special case of kBP. This allows us to attain a better running-
time (with FFk and FFDk), and a better approximation ratio (with the de la
Vega–Lueker and Karmarkar–Karp algorithms).

Cake Cutting and Electricity Division. The electricity division problem can also
be modeled as a classic resource allocation problem known as ‘cake cutting’.
The problem was first proposed by Steinhaus [22]. A number of cake-cutting
protocols have been discussed in [3,25]. In cake cutting, a cake is a metaphor
for the resource. Like previous approaches, a time interval can be treated as a
resource. A cake-cutting protocol then allocates this divisible resource among
agents who have different valuation functions (or preferences) according to some
fairness criteria. The solution to this problem differs from the classic cake-cutting
problem in the sense that at any point in time, t, the sum of the demands of all
the agents, should respect the supply constraint, and several agents may share
the same piece.

3 Definitions and Notation

3.1 Electricity Division Problem

The input to Electricity Division consists of:

– A number S > 0 denoting the total amount of available supply (e.g. in kW);
– A number n of households, and a list D = D[1], . . . ,D[n] of positive numbers,

where D[i] represents the demand of households i (in kW);
– An interval [0, T ] representing the time in which electricity should be supplied

to the households.

The desired output consists of:

– A partition I of the interval [0, T ] into sub-intervals, I1, . . . , Ip;
– For each interval l ∈ [p], a set Al ⊆ [n] denoting the set of agents that are

connected to electricity during interval l, such that
∑

i∈Al
D[i] ≤ S (the total

demand is at most the total supply).
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Throughout most of the paper, we assume that the utility of agent i equals the
total time agent i is connected: ui(I) =

∑
l:i∈Al

|Il| (we will consider other utility
functions at Sect. 7).

The optimization objective is maxI mini∈[n] ui(I), where the maximum is
over all partitions that satisfy the demand constraints.

3.2 k-Times Bin Packing

We denote the bin capacity by S > 0 and the multiset of n items by D.
Let n(D) and m(D) denote the number of items and the number of different

item sizes in D, respectively. We denote these sizes by c[1], . . . , c[m(D)]. More-
over, for each natural i ≤ m(D) let n[i] be the number of items of size c[i]. The
size of a bin is defined as the sum of all the item sizes in that bin. Given a
multiset B of items, we assume that its size V (B) equals the sum of the sizes of
all items of B.

We denote k copies of D by Dk := DD . . . D. We denote the number of bins
used to pack the items in Dk by the optimal and the considered algorithm by
OPT (Dk) and bins(Dk), respectively.

Note that each item in Dk is present at most once in each bin, so it is
present in exactly k distinct bins. Consider the example in Sect. 1. There are
three items x, y, z with demand 2, 1, 1 respectively. Let k = 2 and S = 3.
Then, {x, y}, {y, z}, {z, x} is a valid bin-packing. Note that each item is present
twice overall, but at most once in each bin. In contrast, the bin-packing
{x, y}, {y, z, z}, {x} is not valid, because there are two copies of z in the same
bin.

4 On Optimal k for k-times Bin-Packing

In this section we prove that, for every electricity division instance, there exists
an integer k such that kBP yields the optimal electricity division. Moreover, we
give an upper bound on k as a function of the number of agents.

Let X be a nonempty set. We denote by R
X the linear space of all functions

from X to the real numbers R. So elements of RX have the form (wα)α∈X , where
for each element α ∈ X, wα is the corresponding real number.

For each nonempty subset Y of X, let πY : RX → R
Y be the natural projec-

tion, which maps each element (wα)α∈X ∈ R
X to the element (wα)α∈Y ∈ R

Y .
We shall need the following lemmas (all proofs are in the full version [1]).

Lemma 1. Let W ′ ⊆ R
X be a nonempty finite linearly independent set. Then

there exists a subset Y of X with |Y | = |W ′| such that the set πY (W ′) is linearly
independent. �

Given a finite set Y let ‖ · ‖Y be the Euclidean norm on the linear space R
Y ,

that is for each w = (wα)α∈Y ∈ R
Y we have ‖w‖Y =

√∑
α∈Y w2

α.
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Lemma 2. Let W ⊂ Z
X be a nonempty finite linearly dependent set of nonzero

vectors. Let p = |W | − 1 and K = sup{‖πY (w)‖Y : w ∈ W,Y ⊂ X, |Y | = p}.
Then there exist integers (Δw)w∈W which are not all zeros such that |Δw| ≤ Kp

for each w ∈ W and
∑

w∈W Δw · w = 0. That is if some nontrivial linear
combination of W equals 0, then there exists such a linear combination in which
the coefficients are all integers bounded by Kp. �

Given an input set of items D, let OPT (Dk) denote the optimal number of
bins in k-times bin-packing of the items in D.

Theorem 1. Given the bin size S and D the input set of items, there exists a
k ≤ nn/2 such that k

OPT (Dk)
is the maximum possible connection-time per agent.

This time can be attained by solving kBP on D and allocating a fraction 1
OPT (Dk)

of the time to each bin in the optimal solution. �
We do not know if the upper bound nn/2 for k is tight. Proving tightness, or

finding a better bound, remains an intriguing open question.

5 Fast Approximation Algorithms

The results of the previous section are not immediately applicable to fair elec-
tricity division, as kBP is known to be an NP-hard problem. However, they do
hint that good approximation algorithms for kBP can provide good approxi-
mation for electricity division. Therefore, in this section, we study several fast
approximation algorithms for kBP.

5.1 FFk—First-Fit for kBP

The k-times version of the First-Fit bin-packing algorithm packs each item of
Dk in order into the first bin where it fits and does not violate the constraint
that each item should appear in a bin at most once. If the item to pack does not
fit into any currently open bin, FFk opens a new bin and packs the item into
it. For example: consider D = {10, 20, 11}, k = 2, S = 31. FFk will result the
bin-packing {10, 20}, {11, 10}, {20, 11}. It is known that the asymptotic approxi-
mation ratio of FF is 1.7 [5]. For any fixed k > 1, the asymptotic approximation
ratio of FFk for large instances (when OPT (Dk) → ∞) is better, and it improves
when k increases.

Theorem 2. For every input D and k ≥ 1, FFk(Dk) ≤ (
1.5 + 1

5k

)·OPT (Dk)+
3 · k. �

Approximation Ratio Lower Bound. In the full version [1] we have shown that
the approximation ratio lower bound for FFk for k = 2 is 1.375. We conjecture
that for k > 1 the absolute approximation ratio for FFk is 1.375.
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5.2 FFDk

The k-time version of the First-Fit Decreasing bin-packing algorithm first sorts
D in non-increasing order. Then it constructs Dk using k consecutive copies of
the sorted D, and then implements FFk on Dk. In contrast to FFk, we could
not prove an upper bound for FFDk that is better than the upper bound for
FFD; we only have a lower bound.

Lemma 3. FFDk(Dk) ≥ 7
6 · OPT (Dk) + 1. �

Based on experimental results presented in the full version [1], we conjecture
that the upper bound for FFDk is 11

9 · OPT (Dk) + 6
9 , as for the case k = 1.

5.3 NFk

Given the input Dk, the algorithm NFk works as follows: like NF , NFk always
keeps a single bin open to pack items. If the current item does not pack into
the currently open bin then NFk closes the current bin and opens a new bin to
pack the item.

We can assume that V (D) > S, otherwise there is a trivial solution with k
bins. While processing input Dk, NFk holds only one open bin, and it cannot
contain a copy of each item of D. In fact, the open bin always contains a part
of some instance of D, and possibly a part of the next instance of D, with no
overlap. Therefore, if the current item x is not packed into the current open bin,
the only reason is that x does not fit, as there is no previous copy of x in the
current bin (all previous copies, if any, are in already-closed bins).

Theorem 3. For every input Dk and k ≥ 1, the asymptotic ratio of NFk(Dk)
is 2. �

6 Polynomial-Time Approximation Schemes

6.1 Some General Concepts and Techniques

The basic idea behind generalizing Fernandez de la Vega-Lueker and all the
Karmarkar-Karp algorithms to solve kBP is similar. It consists of three steps:
1. Keeping aside the small items, 2. Packing the remaining large items, and 3.
Packing the small items in the bins that we get from step 2 (opening new bins
if necessary) to get a solution to the original problem.

In step 3, the main difference from previous work is that, in kBP, we cannot
pack two copies of the same small item into the same bin, so we may have to
open a new bin even though there is still remaining room in some bins. The
following lemma analyzes the approximation ratio of this step.

Lemma 4. Let Dk be an instance of the kBP problem, and 0 < ε ≤ 1/2. We
say that the item is large, if its size is bigger than ε · S and small otherwise.
Assume that the large items are packed into L bins. Consider an algorithm which
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starts adding the small items into the L bins respecting the constraint of kBP,
but whenever required, the algorithm opens a new bin. Then the number of bins
required for the algorithm to pack the items in Dk is at most max{L, (1 + 2 · ε) ·
OPT (Dk) + k}. �

The analysis of all methods discussed in this section have been moved to the
full version [1]. Step 2 is done using a linear program based on configurations.

Definition 1. A configuration (or a bin type) is a collection of item sizes which
sums to, at most, the bin capacity S.

For example [26]: suppose there are 7 items of size 3, 6 items of size 4,
and S = 12. Then, the possible configurations are [3, 3, 3, 3], [3, 3, 3], [3, 3], [3],
[4, 4, 4], [4, 4], [4], [3, 3, 4], [3, 4, 4], [3, 4].

Enumerate all possible configurations by the natural numbers from 1 to t.
Let A = ‖aij‖ be a m(D) × t matrix, such that for each natural i ≤ m(D) and
j ≤ t the entry aij is the number of items of size c[i] in the configuration j. Let n
be a m(D)-dimensional vector such that for each natural i ≤ m(D) its ith entry
is n[i] (the number of items of size c[i]). Let x be a t-dimensional vector such
that for each natural j ≤ t we have that x[j] is the number of bins filled with
configuration j, and 1 be a t-dimensional vector whose each entry is 1. Consider
the following linear program

min 1 · x
(C1) such that Ax = n

x ≥ 0

When x is restricted to integer entries (x ∈ Z
t), the solution of this linear

program defines a feasible bin-packing. We denote by F1 the fractional relaxation
of the above program, where x ∈ R

t.
Recall that in kBP, each item of D has to appear in k distinct bins. One can

observe that kBP uses the same configurations as in the bin-packing, to ensure
that each bin contains at most one copy of each item. Therefore, the configuration
linear program Ck for kBP is as follows, where A, n, and x are the same as in
C1 above (for k = 1 it is the same as in [24]):

min 1 · x (1)
(Ck) such that Ax = kn (2)

x ≥ 0 (3)

Lemma 5. Every integral solution of Ck can be realised as a feasible solution
of kBP. �

Let Fk be the fractional bin-packing problem corresponding to Ck. Step 2
involves grouping. Grouping reduces the number of different item sizes, and thus
reduces the number of constraints and configurations in the fractional linear
program Fk.
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To solve the configuration linear program efficiently, both Fernandez de la
Vega-Lueker algorithm and Algorithm 1 of Karmarkar Karp use a linear grouping
technique. In linear grouping, items are divided into groups (of fixed cardinality,
except possibly the last group), and each item size (in each group) increases to
the maximum item size in that group.

Our extension of the Fernandez de la Vega-Lueker and the Karmarkar-Karp
algorithms to kBP differs from their original counterparts in mainly two direc-
tions. First, in the configuration linear program (see the constraint 2 in Ck), and
hence the obtained solution to this configuration linear program is not necessar-
ily the k times copy of the original solution of BP. Second, in greedily adding
the small items, see lemma 4. In extension of Karmarkar-Karp algorithm 1 to
kBP we have also shown that getting an integer solution from x by rounding
method may require at most (k − 1)/2 additional bins. We discuss extensions
to the Fernandez de la Vega-Lueker and Karmarkar-Karp algorithms and their
analyses in Subsects. 6.2 and 6.3, respectively.

The inputs to the extension of the algorithms by Fernandez de la Vega-Lueker
and Algorithm 1 and Algorithm 2 of Karmarkar-Karp are an input set of items
D, a natural number k, and an approximation parameter ε ∈ (0, 1/2]. Algorithm
2 of Karmarkar-Karp, in addition, accepts an integer parameter g > 0.

6.2 Fernandez de la Vega-Lueker Algorithm to kBP

Fernandez de la Vega and Lueker [24] published a PTAS which, given an input
instance D and ε ∈ (0, 1/2], solves a bin-packing problem with, at most, (1+ ε) ·
OPT (D) + 1 bins. They devised a method called “adaptive rounding” for this
algorithm. In this method, the given items are put into groups and rounded to the
largest item size in that group. This resulting instance will have fewer different
item-sizes. This resulting instance can be solved efficiently using a configuration
linear program Ck.

Theorem 4. Generalizing the Fernandez de la Vega-Lueker algorithm to kBP
will require bins(Dk) ≤ (1 + 2 · ε) · OPT (Dk) + k bins. �

We give a detailed proof of Theorem 4, along with the runtime analysis of
the Fernandez de la Vega-Lueker algorithm to kBP in the full version [1].

6.3 Karmarkar-Karp Algorithms to kBP

Karmarkar and Karp [16] improved the work done by Fernandez de la Vega
and Lueker [24] mainly in two directions: (1) Solving the linear programming
relaxation of C1 using a variant of the GLS method [12] and (2) using a dif-
ferent grouping technique. These improvements led to the development of three
algorithms. Their algorithm 3 is a particular case of the algorithm 2; we will
discuss the generalization of algorithms 1 and 2 of Karmarkar-Karp algorithms
to solve kBP. Let LIN(Fk) denote the optimal solution to the fractional linear
program Fk for kBP. Helpful results which bounds from above the number of
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bins needed to pack the items in an optimal packing of some instance Dk, and
result which concerns obtaining an integer solution from a basic feasible solution
of the fractional linear program have been discussed in full version [1].

Before moving further, we would like to mention that if we use some instance
(or group) without subscript k, we are talking about the instance when k = 1.

All Karmarkar-Karp algorithms use a variant of the ellipsoid method to solve
the fractional linear program. So, we will talk about adapting this method to
kBP.

Solving the Fractional Linear program: Solving the fractional linear program
Fk involves a variable for each configuration. This results in a large number of
variables. The fractional linear program Fk has the following dual DF .

max k · n · y (4)

such that ATy ≤ 1 (5)
y ≥ 0 (6)

The above dual linear program can be solved to any given tolerance h by
using a variant of the ellipsoid method that uses an approximate separa-
tion oracle [16]. The running time of the algorithm is T (m(Dk), n(Dk)) =
O

(
m(D)8 · ln m(D) · ln2

(
m(D)·n(D)

ε·S·h
)

+ m(D)4·k·n(D)·lnm(D)
h ln m(D)·n(D)

ε·S·h
)
.

Karmarkar-Karp Algorithm 1 Extension To kBP: Algorithm 1 of the
Karmarkar-Karp algorithms uses the linear grouping technique as illustrated in
Subsect. 6.1.

Theorem 5. Let bins(Dk) denote the number of bins produced by Karmarkar-
Karp Algorithm 1 extension to kBP. Then, bins(Dk) ≤ (1+2 · k · ε)OPT (Dk)+
1

2·ε2 + (2 · k + 1). �

Karmarkar-Karp Algorithm 2 Extension To kBP. Algorithm 2 of the
Karmarkar-Karp algorithms uses the alternative geometric grouping technique.
Let J be some instance and g > 1 be some integer parameter, then, alternative
geometric grouping partitions the items in J into groups such that each group
contains the necessary number of items so that the size of each group but the
last (i.e. the sum of the item sizes in that group) is at least g · S.

Theorem 6. Let bins(Dk) denote the number of bins produced by Karmarkar-
Karp Algorithm 2 extension to kBP. Then, bins(Dk) ≤ OPT (Dk) + O(k ·
log2 OPT (D)). �

7 Experiment: FFk and FFDk for Fair Electricity
Distribution

In this section, we describe an experiment checking the performance of the kBP
adaptations of FFk and FFDk to our motivating application of fair electricity
distribution.
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7.1 Dataset

We use the same dataset of 367 Nigerian households described in [20].1 This
dataset contains the hourly electricity demand for each household for 13 weeks
(2184 hours). In addition, they estimate for each agent and hour, the comfort
of that agent, which is an estimation of the utility the agent gets from being
connected to electricity at that hour. For more details about the dataset, readers
are encouraged to refer to the papers [19,20]. The electricity demand of agents
can vary from hour to hour. We execute our algorithms for each hour separately,
which gives us essentially 2184 different instances.

As in [20], we use the demand figures in the dataset as mean values; we
determine the actual demand of each agent at random from a normal distribution
with a standard deviation of 0.05 (results with a higher standard deviation are
presented in the full version [1]).

As in [20], we compute the supply capacity S for each day by averaging
the hourly estimates of agents’ demand for that day. We run nine independent
simulations (with different randomization of agents’ demands). Thus, the supply
changes in accordance with the average daily demand, but cannot satisfy the
maximum hourly demand.

7.2 Experiment

For each hour, we execute the FFk and FFDk algorithms on the households’
demands for that hour. We then use the resulting packing to allocate electricity:
if the packing returns q bins, then each bin is connected for 1/q of an hour,
which means that each agent is connected for k/q of an hour.

The authors of [20] measure the efficiency and fairness of the resulting alloca-
tion, not only by the total time each agent is connected, but also by more com-
plex measures. In particular, they assume that each agent i has a utility function,
denoted ui, that determines the utility that the agent receives from being con-
nected to electricity at a given hour. They consider three different utility models:

1. The simplest model is that ui equals the amount of time the agent i is con-
nected to electricity (this is the model we mentioned in the introduction).

2. The value ui can also be equal to the total amount of electricity that the
agent i receives. For each hour, the amount of electricity given to i is the
amount of time i is connected, times i’s demand at that hour.

3. They also measure the “comfort” of the agent i in time t by averaging their
demand over the same hour in the past four weeks, and normalizing it by
dividing by the maximum value.

For each utility model, they consider three measures of efficiency and fairness:

– Utilitarian: the sum
∑

i ui(x) (or the average) of all agents’ utilities ui.
– Egalitarian: the minimum utility mini ui(x) of a single agent,
– The maximum difference maxi,j{|ui(x)−uj(x)|} of utilities between each pair

of agents.
1 We are grateful to Olabambo Oluwasuji for sharing the dataset with us.
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7.3 Results

For the comparison with the results from [20], we show our results for FFk and
FFDk for k = 9 along with the results in [20] in tables23 1,2, and 3 . We highlight
the best results in bold. As can be seen in Tables 1, 2 and 3, FFk and FFDk
outperform the previous results for all 9 combinations of utility models and social
welfare metrics, even though they were only designed for the egalitarian welfare
of the time-based utility function. More results have been discussed in the full
version [1].

Table 1. Comparing results of FFk and FFDk for k = 9 with the results in [20]
in terms of hours of connection to supply on the average, along with their standard
deviation (SD) within parenthesis. In the third column, we have shown the average
number of hours an agent is connected to the supply.

Algorithm Utilitarian: sum(SD) Utilitarian: average Egalitarian(SD) MUD

FFk 723982.0121(401.4496) 1972.7030 1972.7030 (1.0939) 0.0(0.0)

FFDk 723804.0727(654.8798) 1972.2182 1972.2182 (1.7844) 0.0(0.0)

CM 717031(3950) 1953.7629 1920(3.24) 123(2.09)

SM 709676(3878) 1933.7221 1922(3.41) 71(2.04)

GA 629534(4178) 1715.3515 1609(4.69) 695(3.28)

CSA1 647439(3063) 1764.1389 1764(2.27) 1(0.00)

RSA 643504(4094) 1753.4169 1753(4.33) 1(0.00)

CSA2 641002(3154) 1746.5995 1746(2.38) 1(0.00)

8 Conclusion and Future Directions

We have shown that the existing approximation algorithms, like the First-Fit
and the First-Fit Decreasing, can be extended to solve kBP. We have proved
that, for any k ≥ 1, the asymptotic approximation ratio for the FFk algorithm
is

(
1.5 + 1

5k

) ·OPT (Dk)+3 ·k. We have also proved that the asymptotic approx-
imation ratio for the NFk algorithm is 2. We have also demonstrated that the
generalization of efficient approximation algorithms like Fernandez de la Vega-
Lueker and Karmarkar Karp algorithms solves kBP in (1 + 2 · ε) · OPT (Dk) + k
and OPT (Dk) + O(k · log2 OPT (D)) bins respectively in polynomial time. We
have also shown the practical efficacy of FFk and FFDk in solving the fair
electricity distribution problem.

Given the usefulness of k-times bin-packing to electricity division, an inter-
esting open question is how to determine the optimal value of k—the k that
2 In Tables 1-3 CM, SM, GA, CSA1, RSA, CSA2 stands for: The Comfort Model,

The Supply Model, Grouper Algorithm, Consumption-Sorter Algorithm, Random-
Selector Algorithm, Cost-Sorter Algorithm respectively [19,20].

3 MUD stands for Maximum Utility Difference in all the Tables
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Table 2. Comparing results of FFk and FFDk for k = 9 with the results in [20] in
terms of electricity supplied on the average, along with their standard deviation (SD)
within parenthesis.

Algorithm Utilitarian(SD) Egalitarian(SD) MUD

FFk 1444617.5746(793.4190) 0.8957 (0.0005) 0.0179 (0.0008)

FFDk 1444242.4530(1333.086) 0.8954 (0.0009) 0.01771 (0.0010)

CM 1340015(8299) 0.78(0.01) 0.17(0.02)

SM 1347801(8304) 0.83(0.01) 0.11(0.02)

GA 1297020(11264) 0.35(0.04) 0.58(0.03)

CSA1 1296939(7564) 0.66(0.02) 0.28(0.02)

RSA 1344945(11284) 0.68(0.03) 0.25(0.03)

CSA2 1345537(7388) 0.63(0.03) 0.30(0.02)

Table 3. Comparing results of FFk and FFDk for k = 9 with the results in [20] in
terms of comfort delivered on the average, along with their standard deviation (SD)
within parenthesis.

Algorithm Utilitarian(SD) Egalitarian(SD) MUD

FFk 314035.2667 (171.7323) 0.8975 (0.0005) 0.0109 (0.0004)

FFDk 313967.0364 (268.3526) 0.8974 (0.0007) 0.0108 (0.0004)

CM 303217(3447) 0.81(0.01) 0.13(0.02)

SM 292135(3802) 0.83(0.01) 0.09(0.02)

GA 291021(5198) 0.38(0.04) 0.56(0.03)

CSA1 291909(3201) 0.67(0.02) 0.25(0.02)

RSA 268564(5106) 0.65(0.04) 0.28(0.03)

CSA2 270262(3112) 0.64(0.02) 0.28(0.02)

maximizes the fraction of time each agent is connected—the fraction k
OPT (Dk)

.
Note that this ratio is not necessarily increasing with k. For example, consider
the demand vector D = {11, 12, 13}:

– For k = 1, OPT (Dk) = 2, so any agent is connected 1
2 of the time.

– For k = 2, OPT (Dk) = 3, so any agent is connected 2
3 of the time.

– For k = 3, OPT (Dk) = 5, so any agent is connected only 3
5 < 2

3 of the time.

Some other questions left open are

1. To bridge the gap in the approximation ratio of FFk, between the conjectured
lower bound 1.375 and the upper bound

(
1.5 + 1

5k

) · OPT (Dk) + 3 · k, which
converges to 1.5.

2. To prove or disprove that the conjectured bound 11
9 OPT + 6

9 is tight for
FFDk.
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7. Dósa, G., Li, R., Han, X., Tuza, Z.: Tight absolute bound for first fit decreasing
bin-packing: FFD(L) ≤ 11/9OPT(L) + 6/9. Theoret. Comput. Sci. 510(11101065),
13–61 (2013). https://doi.org/10.1016/j.tcs.2013.09.007

8. Garey, M.R., Graham, R.L., Ullman, J.D.: Worst-case analysis of memory alloca-
tion algorithms. In: Proceedings of the Fourth Annual ACM Symposium on Theory
of Computing, pp. 143–150. STOC ’72, Association for Computing Machinery, New
York, NY, USA (1972). https://doi.org/10.1145/800152.804907

9. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA (1990)

10. Garey, M., Graham, R., Johnson, D., Yao, A.C.C.: Resource constrained scheduling
as generalized bin packing. J. Comb. Theory, Ser. A 21(3), 257–298 (1976). https://
www.sciencedirect.com/science/article/pii/0097316576900017

11. Gendreau, M., Laporte, G., Semet, F.: Heuristics and lower bounds for the
bin packing problem with conflicts. Comput. Oper. Res. 31(3), 347–358 (2004).
https://doi.org/10.1016/S0305-0548(02)00195-8

12. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1(2), 169–197 (1981). http://link.
springer.com/10.1007/BF02579273

13. Hoberg, R., Rothvoss, T.: A logarithmic additive integrality gap for bin packing.
In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 2616–2625. Society for Industrial and Applied Mathematics (2017).
http://epubs.siam.org/doi/10.1137/1.9781611974782.172

14. Jansen, K.: An approximation scheme for bin packing with conflicts. In: Arnborg,
S., Ivansson, L. (eds.) SWAT 1998. LNCS, vol. 1432, pp. 35–46. Springer, Heidel-
berg (1998). https://doi.org/10.1007/BFb0054353

15. Johnson, D.S.: Near-Optimal Bin Packing Algorithms. Thesis, p. 400 (1973)

http://arxiv.org/abs/2311.16742
https://linkinghub.elsevier.com/retrieve/pii/0196677485900185
https://linkinghub.elsevier.com/retrieve/pii/0196677485900185
https://doi.org/10.1017/CBO9780511598975
https://doi.org/10.1017/CBO9780511598975
http://arxiv.org/abs/2212.01025
http://arxiv.org/abs/2212.01025
http://arxiv.org/abs/2212.01025
http://arxiv.org/abs/2212.01025
https://doi.org/10.4230/LIPIcs.STACS.2013.538
https://doi.org/10.4230/LIPIcs.STACS.2013.538
https://doi.org/10.1016/j.tcs.2013.09.007
https://doi.org/10.1145/800152.804907
https://www.sciencedirect.com/science/article/pii/0097316576900017
https://www.sciencedirect.com/science/article/pii/0097316576900017
https://doi.org/10.1016/S0305-0548(02)00195-8
http://link.springer.com/10.1007/BF02579273
http://link.springer.com/10.1007/BF02579273
http://epubs.siam.org/doi/10.1137/1.9781611974782.172
https://doi.org/10.1007/BFb0054353


500 D. K. Baghel et al.

16. Karmarkar, N., Karp, R.M.: Efficient approximation scheme for the one-
dimensional bin-packing problem. In: Annual Symposium on Foundations of Com-
puter Science - Proceedings, pp. 312–320 (1982). https://doi.org/10.1109/sfcs.
1982.61

17. Kaygusuz, K.: Energy for sustainable development: a case of developing countries.
Renew. Sustain. Energy Rev. 16(2), 1116–1126 (2012). https://doi.org/10.1016/j.
rser.2011.11.013

18. Li, R., Yue, M.: The proof of FFD(L) < -OPT(L) + 7/9. Chin. Sci. Bull. 42(15),
1262–1265 (1997). https://doi.org/10.1007/BF02882754

19. Oluwasuji, O.I., Malik, O., Zhang, J., Ramchurn, S.D.: Algorithms for fair load
shedding in developing countries. In: Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, pp. 1590–1596. International Joint
Conferences on Artificial Intelligence Organization, Stockholm, Sweden (2018).
https://www.ijcai.org/proceedings/2018/220

20. Oluwasuji, O.I., Malik, O., Zhang, J., Ramchurn, S.D.: Solving the fair electric
load shedding problem in developing countries. Auton. Agents Multi-Agent Syst.
34(1), 12 (2020). http://link.springer.com/10.1007/s10458-019-09428-8

21. Rothvoss, T.: Approximating bin packing within O(log opt · log log opt) bins. In:
2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 20–
29. IEEE, Berkeley, CA, USA (Oct 2013). https://ieeexplore.ieee.org/document/
6686137/

22. Steinhaus, H.: Sur la division pragmatique. Econometrica 17, 315–319 (1949).
http://www.jstor.org/stable/1907319

23. Ullman, J.D.: The Performance of a Memory Allocation Algorithm. Technical
report (Princeton University. Department of Electrical Engineering. Computer Sci-
ences Laboratory), Princeton University (1971). https://books.google.co.il/books?
id=gnwNPwAACAAJ

24. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 +
ε in linear time. Combinatorica 1(4), 349–355 (1981). https://doi.org/10.1007/
BF02579456

25. Webb, Jack Robertson, W.: Cake-Cutting Algorithms: Be Fair if You Can. A K
Peters/CRC Press, New York (1998). https://doi.org/10.1201/9781439863855

26. Wikipedia contributors: Configuration linear program — Wikipedia, the free
encyclopedia (2023). https://en.wikipedia.org/w/index.php?title=Configuration
linear program&oldid=1139054649. Accessed 16 March 2023

27. Xia, B., Tan, Z.: Tighter bounds of the first fit algorithm for the bin-packing
problem. Discr. Appl. Math. 158(15), 1668–1675 (2010). https://doi.org/10.1016/
j.dam.2010.05.026

28. Yue, M.: A simple proof of the inequality FFD(l) ≤ 11/9OPT(L)+ 1,∀ L for the
FFD bin-packing algorithm. Acta Math. Appl. Sin. 7(4), 321–331 (1991)

https://doi.org/10.1109/sfcs.1982.61
https://doi.org/10.1109/sfcs.1982.61
https://doi.org/10.1016/j.rser.2011.11.013
https://doi.org/10.1016/j.rser.2011.11.013
https://doi.org/10.1007/BF02882754
https://www.ijcai.org/proceedings/2018/220
http://link.springer.com/10.1007/s10458-019-09428-8
https://ieeexplore.ieee.org/document/6686137/
https://ieeexplore.ieee.org/document/6686137/
http://www.jstor.org/stable/1907319
https://books.google.co.il/books?id=gnwNPwAACAAJ
https://books.google.co.il/books?id=gnwNPwAACAAJ
https://doi.org/10.1007/BF02579456
https://doi.org/10.1007/BF02579456
https://doi.org/10.1201/9781439863855
https://en.wikipedia.org/w/index.php?title=Configuration_linear_program&oldid=1139054649
https://en.wikipedia.org/w/index.php?title=Configuration_linear_program&oldid=1139054649
https://doi.org/10.1016/j.dam.2010.05.026
https://doi.org/10.1016/j.dam.2010.05.026


Condorcet Markets
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Abstract. The paper studies information markets concerning single
events from an epistemic social choice perspective. Within the classical
Condorcet error model for collective binary decisions, we establish equiv-
alence results between elections and markets, showing that the alterna-
tive that would be selected by weighted majority voting (under specific
weighting schemes) corresponds to the alternative with highest price in
the equilibrium of the market (under specific assumptions on the mar-
ket type). This points to the possibility, in principle, of implementing
specific weighted majority elections, which are known to have superior
truth-tracking performance, by means of information markets without
needing to elicit voters’ competences.

Keywords: Information markets · Jury theorems · Crowd-wisdom

1 Introduction

Information, or prediction, markets are markets of all-or-nothing contracts (so-
called Arrow securities) that pay one unit of currency if a designated event occurs
and nothing otherwise (see [1,5,14] for models of such markets). Under the view,
inspired by [12], that markets are good aggregators of the information dispersed
among traders, proponents of information markets have argued that equilibrium
prices are accurate estimates of the probability of the designated event. Recent
research—theoretical and empirical—has probed this interpretation of prices
in information markets, finding that equilibrium prices successfully track the
traders’ average belief, under several utility models [16,19].

In this paper we address a closely related, but different question: if a decision
maker takes a decision based on the information they extract from the equilib-
rium price of the market, how accurate would the decision be? Therefore, rather
than relating equilibrium prices to the aggregation of traders’ beliefs, we relate
them directly to the quality of the decision they would support. We frame the
above question within the standard binary choice framework of epistemic social
choice, stemming from the Condorcet jury theorem tradition [6,11,20] and the
maximum-likelihood estimation approach to voting [7,10,11,17].
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Fig. 1. Elections and infor-
mation markets commute.

Contribution. To answer the above question, we
study information markets when traders’ beliefs are
obtained by Bayesian update from a private inde-
pendent signal with accuracy known to the trader,
just like in the classic jury theorems setting. In other
words, we study ‘jurors’ as if they were ‘traders’
who, instead of relaying their vote to a central
mechanism, trade in an information market. In tak-
ing this perspective, we compare the decisions that
would be taken based on the equilibrium price of an
information market, with the decisions that would
be taken by specific weighted majority elections,
whose truth-tracking behavior is already well-understood [11]. Specifically, we
aim at identifying correspondences between classes of markets and of weighted
majority elections which are equivalent from a decision-making point of view.
That is, if agents vote according to the event they believe more likely and aggre-
gate these votes by weighted majority, then they identify the alternative whose
Arrow security would have highest price in the equilibrium of the market in which
the same agents trade based on their beliefs. Figure 1 depicts such relationship
via a commutative diagram. This type of results point to the possibility (in
principle) of implementing weighted majority voting with proven truth-tracking
performance without needing to know (or estimate [3]) jurors’ competences.

Paper Outline. Section 2 introduces the standard binary truth-tracking frame-
work and presents our model of information markets. Section 3 presents results
on equilibrium prices in two of the three types of markets we consider (Naive and
Kelly markets) and Sect. 4 proves ‘Fig. 1-type’ results for those markets. Section 5
then shows how such results could be lifted even to the case of majority voting
where jurors are weighted perfectly according to their competence. Section 6 dis-
cusses two examples illustrating our framework and analysis. Section 7 outlines
future research directions. Auxiliary results and omitted proofs are available in
a longer version of the paper at https://arxiv.org/abs/2306.05028.

2 Preliminaries

2.1 Collective Truth-Tracking

Collective Decisions. We are concerned with a finite set of agents N = {1, . . . , n}
who have to decide collectively on the correct state of the world x ∈ {A,B}. A
prior probability P (x = A) = π = 0.5 is given, that the correct state is A.
Each agent i observes a private independent signal yi ∈ {A,B} that has quality
qi ∈ (0.5, 1]. Each qi represents the competence or accuracy of i, which is assumed
to satisfy qi = P (y = A | x = A) = P (y = B | x = B). We call each vector
q = (q1, . . . , qn) of individual accuracies an accuracy or competence profile of
the group. Having observed her private signal, each agent then forms a posterior
belief bi = P (x = A | y = A) about state x = A by Bayes rule. By Bayes’ rule

https://arxiv.org/abs/2306.05028
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and the condition on the prior, we have that either bi = qi > 0.5 (the belief in
A equals qi) or bi = 1 − qi < 0.5 (the belief in A equals 1 − qi). This gives us,
for all i ∈ N :

bi = 1(bi > 0.5) · (2qi − 1) + (1 − qi), (1)

where 1 denotes the indicator function. Individual beliefs are then collected in
a belief profile b = (b1, . . . , bn) ∈ [0, 1]n. Given an accuracy profile q, the set of
possible belief profiles is denoted Bq = {b ∈ [0, 1]n | P (b | q) > 0}. Observe
that the size of this set equals 2n: the number of all signal realizations.

Based on a profile b of individual beliefs, the group then takes a decision
by mapping the profile to A or to B. In this process, agents may have different
weights, which are collected in a weight profile w = (w1, . . . , wn) ∈ [0, 1]n. We
refer to 1 = (1, . . . , 1) as the egalitarian weight profile in which all agents have
equal weight. Assuming a weight profile w, we call an aggregator any function

Aw : [0, 1]n → 2{1,0}\ {∅} , (2)

mapping belief profiles to alternatives, where {1} denotes A; {0} denotes B; and
{1, 0} denotes a tie.

Types of Aggregators. We will study two classes of mechanisms to implement
aggregators. In the first class, agents cast binary ballots based on their beliefs
and these ballots are submitted to a voting mechanism. The winning alternative
is the outcome of the aggregation process. In the second class, agents’ trade in
special types of securities, based on their beliefs. The equilibrium price of this
securities market is then used as a proxy for the group’s belief in the probability
of state A. In this case, it is the alternative favored by this collective belief to
be the outcome of the aggregation process.

Let us make the above notions more precise. First of all, a belief b ∈ [0, 1]
is translated into binary opinions, or votes, for A or B via the binarization
function̂: [0, 1] → 2{1,0}\∅ defined as follows:

̂b =

⎧

⎪

⎨

⎪

⎩

{1} if b > 0.5,

{0} if b < 0.5,

{0, 1} otherwise.
(3)

That is, agents are assumed to vote in accordance to their posterior belief (this
is sometimes referred to as sincere voting [2]). A binarized belief profile ̂b =
(̂b1, . . . ,̂bn) is therefore a binary vector and we will referred to such vectors also
as voting profiles and denote them by v = (v1, . . . , vn).1

Given a weight profile w, a (belief) merger is a function Fw : [0, 1]n →
[0, 1] taking as input a belief profile and outputting a group belief. A choice
function is a function fw : {1, 0}n → 2{0,1}\∅ taking as input a voting profile

1 As individual beliefs cannot equal 0.5, the reduction function always outputs a sin-
gleton {0} or {1} on individual beliefs. We will see, however, that this is not the
case for collective beliefs.
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and outputting a possibly tied choice between 1, i.e., A, and 0, i.e., B. We will
study aggregators of the type fw ◦̂ (voting) and ◦̂Fw (trading), where ◦ denotes
function composition. A voting mechanism is a choice function fw which, applied
to a binarized belief profile ̂b, yields a collective choice fw(̂b) (under the weight
profile w). A market mechanism is a belief aggregation function F that, once
applied to a belief profile b, yields a collective belief Fw(b) whose binarization
̂Fw(b) yields a collective choice (under the weight profile w).

We are concerned with the truth-tracking performance of aggregators. The
accuracy of an aggregator Aw under the accuracy profile q, is the conditional
probability that the outcome of the aggregator is x if the state of the world
is x. What we outlined describes an epistemic social choice setting involving a
maximum-likelihood estimation task in a dichotomous choice situation (see [10]).

2.2 Voting and Market Mechanisms

We turn now to the description of the mechanisms we are concerned with.

Voting Mechanisms. After observing their private signal, agents decide
whether to vote for A or B according to Eq. (3). A weighted majority rule
is then applied to these votes to determine the group’s choice:

Mw(v) =

⎧

⎪

⎨

⎪

⎩

{1} if
∑

i∈N wivi >
∑

i∈N wi

2 ,

{0} if
∑

i∈N wivi <
∑

i∈N wi

2 ,

{0, 1} otherwise.

(4)

We will be working in particular with three variants of Eq. (4) defined by three
different weight profiles: the egalitarian weight profile 1; the weight profile allo-
cating to each agent i a weight proportional to qi − 0.5; the weight profile allo-
cating to each agent i a weight proportional to log qi

1−qi
. The first weight profile

defines the simple majority rule. The second weight profile simulates decision-
making according to the mean belief of the group. The latter weight profile can
be inferred from Bayes theorem and induces the weighted majority rule which
we refer to as perfect majority, and which has been proven to optimize the truth-
tracking ability of the group.

Theorem 1 ([11]). For any competence profile q, the accuracy of Mw given q

is maximal if w is such that wi ∝ ln
(

qi
1−qi

)

for all i ∈ N .

Markets. The market model we use is borrowed from [5,14]. Two symmetric
Arrow securities are traded: securities of type A, which cost pA ∈ [0, 1] and
pay 1 unit of currency if x = A, and 0 otherwise; securities of type B, which
cost pB ∈ [0, 1] and pay 1 unit if x = B and 0 otherwise. After observing
their private signal, agents decide what fraction of their endowment to invest
in which securities. The endowment is fixed to 1 for all agents. When the true
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state of the world is revealed, the market resolves and payouts based on the
agents’ investments are distributed. We refer to tuples sA =

(

sA
1 , . . . , sA

n

)

(respec-
tively, sB =

(

sB
1 , . . . , sB

n

)

) as investment profiles in A-securities (respectively, B-
securities). We refer to a pair s = (sA, sB) as an investment profile. We assume
that agents invest in at most one of these securities, so if sA > 0 then sB = 0
and vice versa. In our setting, this assumption can be shown to be without loss
of generality.2 We call agents investing in A, A-traders and agents investing in
B, B-traders.

Market Mechanism. When the market opens, all purchasing orders for each
security are executed by the market operator. The market operator sells all
requested securities to agents when the market opens and pays the winning
securities out immediately when the market resolves, that is, when either A or
B turns out to be the case. We further assume that the operator makes no profits
and incurs no losses. So, for every A-security sold at price pA, a B-security is
sold at price pB = 1 − pA and vice versa. It follows that there are as many
A-securities as B-securities and the price of the risk-less asset consisting of one
of each security is pA + pB = 1. In this way the operator finances the payout of
any bet by the pay-in of the opposite bet.

Under the above assumptions, the market clears3 when the total amount of
individual wealth invested in A-securities, divided by the price of A-securities
(demand of A-securities) matches the amount of individual wealth invested in
B-securities, divided by the price of B-securities (demand of B-securities):4

1
pA

∑

i∈N

sA
i =

1
1 − pA

∑

i∈N

sB
i . (5)

It follows that, given an investment profile s, solving Eq. (5) for pA, yields the

clearing price
∑

i∈N sA
i∑

i∈N sA
i +

∑
i∈N sB

i
, denoted pA(s). Note that the price is undefined

if pA = 0 or pA = 1. We come back to this issue in Remark 2.
When the market resolves, each agent receives a different payout depending

on how much of each security she owns, how the market resolves, and how much
of her endowment is not invested. The payout, that is, the amount of wealth

2 This auxiliary result can be found in the long version of the paper at https://arxiv.
org/abs/2306.05028. We are indebted to Marcus Pivato for bringing this issue to our
attention.

3 A market is said to clear when supply and demand match. In our model, supply
and demand are implicit in the following way: demand for an A-security at price
pA implies supply for a B-security at price pB = 1 − pA and vice versa. The same
applies to supply and demand for B securities.

4 It may be worth observing that by the above design we are effectively treating the
operator as an extra trader in the market, who holds a risk-less asset consisting
of 1

pA

∑
i∈N sAi A-securities and 1

1−pA

∑
i∈N sBi B-securities. We are indebted to

Marcus Pivato for this observation.

https://arxiv.org/abs/2306.05028
https://arxiv.org/abs/2306.05028
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obtained by i with a given strategy sA
i investing in A under a price pA, is:

z(pA, sA
i ) =

{

sA
i

pA A is correct,
1 − sA

i otherwise,
(6)

where sA
i

pA equals the amount of A-securities that i has purchased. The payout
for an investment in B-securities is defined in the same manner.

Remark 1. For simplicity, in what follows we will refer to the price of A-securities
as p instead of pA and to the price of B-securities as 1 − p instead of pB .

Utility. We study price p by making assumptions on how much utility agents
extract from their payout at that price. We consider two types of utility functions:

Naive. Given a price p ∈ [0, 1], the naive utility function of an A-trader i is
u(p, sA

i ) = z(p, sA
i ) Similarly, for a B-trader, it is u(1 − p, sB

i ) = z(1 − p, sB
i ).

The expected utility for investment in A-securities is then:

UA
i (p, sA

i ) = E[u(p, sA
i )] = bi

(

sA
i

p
− sA

i + 1
)

+ (1 − bi)(1 − sA
i ). (7)

The expected utility for investment in B-securities is, correspondingly, bi(1−
sB

i ) + (1 − bi)
(

sB
i

1−p − sB
i + 1

)

. We will refer to markets under a naive utility
assumption as Naive markets.

Kelly. Given a price p ∈ [0, 1], the Kelly [13] utility function of an A-trader i
is u(p, sA

i ) = ln(z(p, sA
i )), and mutatis mutandis for B-traders. The expected

Kelly utility for an A-trader is therefore:

UA
i (p, sA

i ) = E[u(p, sA
i )] = bi ln

(

sA
i

p
− sA

i + 1
)

+ (1 − bi) ln(1 − sA
i ). (8)

Correspondingly, the expected utility of investment sB
i for a B-traders is

bi ln(1−sB
i )+(1−bi) ln

(

sB
i

1−p − sB
i + 1

)

. We will refer to markets under such
logarithmic utility assumption as Kelly markets. Investing with a logarithmic
utility function is known as Kelly betting and is known to maximize bettor’s
wealth over time [13]. Information market traders with Kelly utilities have
been studied, for instance, in [5].

Equilibria. For each of the above models of utility we will work with the notion
of equilibrium known as competitive equilibrium [16]. This equilibrium assumes
that agents optimize the choice of their investment strategy si under the bal-
ancing assumption of Eq. (5), while not considering the effect of their choice on
the price (they behave as ‘price takers’).

Definition 1. (Competitive equilibrium). Given a belief profile b, an
investment profile s is in competitive equlibrium for price p� if and only if:
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1. Equation (5) holds, that is, p� = p(s),
2. for all i ∈ N , if i is a t-trader in s, then st

i ∈ arg maxx∈[0,1]U
t
i (p

t, x), for
t ∈ {A,B}.

So, when the investment profile s is in equilibrium with respect to the A-securities
p�, no agent would like to purchase more securities of any type given their beliefs.
If s is in equilibrium for price p(s), then we say that s is an equilibrium. If
equilibria always exist, and are such for one same price, then the equilibrium
price can be interpreted as the market’s belief that the state of the world is A,
given the agents’ underlying beliefs b. We can therefore view a market as a belief
merger Fw : [0, 1]n → [0, 1], mapping beliefs to the equilibrium price.

Remark 2. (Null price). Under Eq. (5) a price p = 0 (respectively, p = 1) implies
that there are no A-traders (respectively, no B-traders). In such cases Eqs. (6),
(7) (Naive utility) and (8) (Kelly utility) would be formally undefined. Such sit-
uations, however, cannot occur in equilibrium because as p approaches 0 (respec-
tively, 1), the utility for sA

i > 0 (respectively, sB
i > 0) approaches ∞ under both

utility models. No investment profile can therefore be in equilibrium with respect
to prices p = 0 or p = 1.

3 Equilibrium Price in Naive and Kelly Markets

In order to see markets as belief aggregators we need to show that the above
market types always admit equilibria and, ideally, that equilibrium prices are
unique, thereby making the aggregator resolute. We do so in this section.

3.1 Equilibrium p in Naive Markets is the (1 − p)-Quantile Belief

Let us start by observing that, under naive utility, agents maximize their utility
by investing all their wealth, unless their belief equals the price, in which case
any level of investment would yield the same utility to them in expectation.

Lemma 1. In Naive markets, for any competence profile q, belief profile b ∈ Bq,
and price p ∈ [0, 1] we have that, for any i ∈ N :

arg max
x∈[0,1]

UA
i (p, x) =

⎧

⎪

⎨

⎪

⎩

{1} if p < bi,

{0} if p > bi,

[0, 1] otherwise,

arg max
x∈[0,1]

UB
i (p, x) =

⎧

⎪

⎨

⎪

⎩

{1} if (1 − p) < (1 − bi),
{0} if (1 − p) > (1 − bi),
[0, 1] otherwise.

Proof. We reason for A. The argument for B is symmetric. Observe first of all
that Eq. (7) can be rewritten as UA

i (p, sA
i ) = bi

p (sA
i (1−p)+p)+(1− bi)(1−sA

i ).
So, the expected utility for strategy sA

i = 1 is bi
p and for sA

i = 0 is 1. If bi
p > 1,
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UA
i (p, sA

i ) ∈ [1, bi
p ] and so sA

1 = 1 maximizes Eq. (7). By our assumptions, it fol-
lows that sB

i = 0. If bi
p < 1 instead UA

i (p, sA
i ) ∈ [ bi

p , 1] and sA
1 = 0 maximizes Eq.

(7). The agent then takes the opposite side of the bet and maximizes UB
i (p, sB

i )
by setting sB

i = 1. Finally, if bi
p = 1, all investment strategies yield expected

utility 1. �	
The above result tells us that if s is in competitive equilbrium with respect to
price p(s) in a Naive market, then for each agent i: sA

i = 1 if bi > p(s), sA
i = 0

if bi < p(s), and si ∈ [0, 1] if bi = p(s). The same holds, symmetrically, for sB
i .

Let NC (b) be the set of investment profiles in competitive equilibrium (under
naive utilities) given b. We show that such equilibria always exist and are unique.

Lemma 2. In Naive markets, for any competence profile q and belief profile
b ∈ Bq, |NC(b)| ≥ 1.

Proof. We prove the claim by construction via Algorithm 1, by showing that the
algorithm outputs an investment profile which is a competitive equilibrium.

The algorithm consists of two routines: lines 1–7, and lines 8–21. We first
show that, via these two routines, the algorithm always yields an output: if the
first routine does not return an output, the second one does. The two routines
compare entries in two vectors: the n-long vector of beliefs (b1, . . . , bn), assumed
to be ordered by decreasing values (thus, stronger beliefs first); the n + 1-long
vector (0, 1

n , 2
n , . . . , n

n ), ordered therefore by increasing values. The two vectors
define two functions from {0, . . . , n} to [0, 1] (we postulate b0 = 1). Because the
first function is non-increasing, and the second one is increasing and its image
contains both 0 and 1, there exists i ∈ {0, . . . n} such that the two segments
[bi+1, bi] and [ i

n , i+1
n ] intersect. There are two cases: i

n lies in [bi+1, bi], in which
case the condition of the first routine applies; or bi+1 lies in [ i

n , i+1
n ], in which

case the condition of the second loop applies.
It remains to be shown that the outputs of the two routines are equilibria.

The output of the first routine is an investment profile s = (sA, sB) where i
agents fully invest in A and the remaining agents fully invest in B, yielding a
price p(s) = i

n ∈ [bi, bi+1]. By Lemma 1 such a profile is an equilibrium. The
output of the second routine is an investment profile s where i − 1 agents fully
invest in A, n − i agents fully invest in B and agent i, whose belief equals the
price, invests partially in either A or B in order to meet the clearing Eq. (5). By
Lemma 1 we conclude that the profile is in equilibrium for bi. �	
Observe that the price constructed by Algorithm 1 lies in the [bi, bi+1] interval.

Lemma 3. In Naive markets, for any competence profile q and belief profile
b ∈ Bq, |NC(b)| ≤ 1.

Proof. Assume towards a contradiction there exist s �= t ∈ NC(b). It follows
that p(s) �= p(t). Assume w.l.o.g. that p(s) < p(t). By Eq. 5 and the defini-
tion of competitive equilibrium, it follows that

∑

i∈N sA
i ≤ ∑

i∈N tAi (larger
A-investment in t). By Lemma 1, there are more agents i such that bi > p(t)
rather than bi > p(s), and therefore p(t) < p(s). A contradiction follows. �	
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Algorithm 1: Competitive equilibria in Naive markets
input : A belief profile b = (b1, . . . , bn) ordered from highest to lowest beliefs
output: An investment profile s = (sA, sB)

1 sA ← (0, . . . , 0) ; /* We start by assuming no agent invests in A */

2 for 1 ≤ i < n do
3 if bi ≥ i

n
≥ bi+1 then

4 sA ← (1, . . . , 1
︸ ︷︷ ︸
i times

, 0, . . . , 0) and sB ← (0, . . . , 0
︸ ︷︷ ︸
i times

, 1, . . . , 1) ;

5 return (sA, sB) and exit ; /* profile with price i
n

*/

6 end

7 end
8 for 1 ≤ i < n do
9 if i−1

n
< bi <

i
n
then

10 x ← solve 1
bi

((i − 1) + x) = 1
1−bi

(n − i) ; /* partial A investment */

11 if x ≥ 0 then
12 sAi ← x ;

13 sA ← (1, . . . , 1
︸ ︷︷ ︸
i−1 times

, sAi , 0, . . . , 0) and sB ← (0, . . . , 0
︸ ︷︷ ︸
i−1 times

, 0, 1, . . . , 1) ;

14 return (sA, sB) and exit

15 else
16 x ← solve 1

bi
(i− 1) = 1

1−bi
((n− i) + x) ; /* partial B investment

*/

17 sBi ← x ;

18 sB ← (0, . . . , 0
︸ ︷︷ ︸
i−1 times

, sBi , 1, . . . , 1) and sA ← (1, . . . , 1
︸ ︷︷ ︸
i−1 times

, 0, 0, . . . , 0) ;

19 return (sA, sB) and exit ; /* profile with price bi */

20 end

21 end

22 end

We can thus conclude that in Naive markets there exists exactly one com-
petitive equilibrium and, therefore, only one equilibrium price.

Theorem 2. In Naive markets, for any competence profile q and belief profile
b ∈ Bq, NC(b) is a singleton.

Proof. The result follows directly from Lemmas 2 and 3. �	
We will refer to the equilibrium profile as sNC(b) and to its price as pNC(b). An
interesting consequence of the above results is that the equilibrium price splits
b into segments roughly proportional to the price.

Corollary 1. In Naive markets, for any competence profile q and belief profile
b ∈ Bq, there are n·p(s) agents i such that bi ≥ pNC(b) and there are n·(1−p(s))
agents i such that bi ≤ pNC(b).
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The equilibrium price pNC(b) corresponds to the (1 − pNC(b))-quantile of b.5

3.2 The Average Belief is the Equilibrium Price in Kelly Markets

The two following lemmas are known results from the betting [13] and the infor-
mation markets literature [5], which we restate here for completeness.

Lemma 4 ([13]). In Kelly markets, for any bi ∈ [0, 1] and p ∈ [0, 1]:

arg max
x∈[0,1]

UA
i (p, x) =

{

bi−p
1−p if p < bi,

0 otherwise,

arg max
x∈[0,1]

UB
i (p, x) =

{

p−bi
p if (1 − p) < (1 − bi),

0 otherwise.

So, a strategy profile s is in Kelly competitive equilibrium with respect to
price p(s) whenever Eq. (5) is satisfied together with the ‘Kelly conditions’ of
Lemma 4. Unlike in the case of Naive markets it is easy to see that such equi-
librium is unique. So, for a given belief profile b, let us denote by sKC (b) such
competitive equilibrium and by pKC (b) the price at such equilibrium.

Lemma 5 ([5]). For any q and b ∈ Bq, pKC (b) = 1
|N |

∑

i∈N bi.

4 Truth-Tracking via Equilibrium Prices

In this section we show how competitive equilibria in Naive and Kelly markets
correspond to election by simple majority and, respectively, by a majority in
which agents carry weight proportional to their competence minus 0.5.

4.1 Simple Majority and Naive Markets

Fig. 2. Simple
majority and Naive
markets commute.

The following result shows that simple majority is imple-
mented in competitive equilibrium by a Naive market:
for any belief profile b induced by independent individ-
ual competences in (0.5, 1], the diagram on the right com-
mutes. That is, the outcome of simple majority always con-
sists of the security that the (1−p)-quantile belief (where p
is the equilibrium price) would invest in equilibrium when
the market is naive. So we can treat NC as an aggrega-
tor [0, 1]n → [0, 1] mapping beliefs to equilibrium prices
(Fig. 2).

5 A similar observation, but for a continuum of players (N = [0, 1]) and for subjective
beliefs, is made in [15].



Condorcet Markets 511

Theorem 3. In Naive markets, for any competence profile q and b ∈ Bq:

M1(̂b) = ̂pNC(b).

Proof. The claim follows from the observation that, by Corollary 1, pNC(b) > 0.5
if and only if there exists a majority of traders whose beliefs are higher than the
price. From which we conclude that b̂ contains a majority of votes for A. �	
Remark 3. Note that, by Theorem 3, known extensions of the Condorcet Jury
Theorem with heterogeneous competences [11] directly apply to Naive markets in
competitive equilibrium. In particular with N → ∞ the probability that pNC (b)
is correct approaches 1 for any b induced by a competence profile.

4.2 Weighted Majority and Kelly Markets

A similar result to Theorem 3 can be obtained for the weighted majority rule
with individual weights proportional to qi − 0.5, for each individual i. Such a
rule is implemented in competitive equilibrium by Kelly markets. Intuitively,
such markets then implement a majority election where individuals’ weights are
proportional to how better the individual is compared to an unbiased coin.

Theorem 4. In Kelly markets, for any competence profile q, and b ∈ Bq:

Mw(̂b) = ̂pKC (b),

where w is such that for all i ∈ N , wi ∝ 2qi − 1.

Proof. By the assumed weight profile, the normalized total weight of votes for A

is
∑

i∈N 1(bi>0.5)(2qi−1)
∑

i∈N (2qi−1) . For A (respectively, B) to be chosen, this value should

exceed (resp., fall short of) 1
2 . This is the case if and only if

∑
i∈N (2qi−1)

n ·
(∑

i∈N 1(bi>0.5)(2qi−1)
∑

i∈N (2qi−1) − 1
2

)

+ 1
2 exceeds 1

2 . Let us denote this value ρ(b). The
following series of equivalences shows that ρ(b) equals the average belief in b.

ρ(b) =
∑

i∈N (2qi − 1)
n

·
(∑

i∈N 1(bi > 0.5)(2qi − 1)
∑

i∈N (2qi − 1)
− 1

2

)

+
1
2

=
∑

i∈N (2qi − 1)
n

·
(

2
∑

i∈N 1(bi > 0.5)(2qi − 1) − ∑

i∈N (2qi − 1)
2
∑

i∈N (2qi − 1)

)

+
1
2

=
∑

i∈N 1(bi > 0.5)(2qi − 1) − ∑

i∈N (qi − 1
2 ) + n

2

n

=
∑

i∈N 1(bi > 0.5)(2qi − 1) − ∑

i∈N qi + n
2 + n

2

n

=
∑

i∈N 1(bi > 0.5)(2qi − 1) +
∑

i∈N (1 − qi)
n

=
∑

i∈N 1(bi > 0.5)(2qi − 1) + (1 − qi)
n

(recall Equation (1))

=
∑

i∈N bi

n
.
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From this, the definition of Mv(̂b) (Eq. (4)), and Lemma 5 we obtain Mv(̂b) =
̂

∑
i∈N bi
n = ̂pKC (b), as desired. �	

Fig. 3. Weighted majority with
weights qi − 0.5 and Kelly mar-
kets commute.

Intuitively, the theorem tells us that by
implementing a weighted average of the beliefs
of the traders, the competitive equilibrium price
in markets with Kelly utilities behaves like a
weighted majority where agents’ weights are a
linear function of their individual competence
(specifically, 2qi − 1). So, for any belief profile
b induced by a competence profile q and by
weights wi = 2qi − 1, we again a realization of
Fig. 1 depicted in the commutative diagram on
the right (Fig. 3).

5 Markets for Perfect Elections

In this section we show how, by introducing a specific tax scheme, we can mod-
ify Kelly markets to make their equilibrium price implement a perfect weighted
majority. Recall that we refer to perfect majority voting as weighted major-
ity voting in which the weight of each individual is proportional to the natural
logarithm of their competence ratio (recall Theorem 1). The intuition of our
approach is the following: Theorem 4, has shown that Kelly markets correspond
to elections where individuals are weighted proportionally to their competence
in excess of 0.5. In order to bring such weights closer to the ideal values of The-
orem 1 we need therefore to allow more competent agents to exert substantially
more influence on the equilibrium price; we do so by designing a tax scheme
which achieves such effect asymptotically in one parameter of the scheme.

5.1 Taxing Payouts

We modify Eq. (8) by building in the effects of a tax scheme T as follows:

UA
i (p, si) = bi ln T

(

si
1 − p

p
+ 1

)

+ (1 − bi) ln(1 − si), (9)

where

T (x) =
1 − e−kx p

1−p

k p
1−p

, (10)

with k ∈ R>0. Observe that, as parameter k approaches 0, T (x) approaches x
and null taxation is therefore approached.

To gain an intuition of the working of function T , it is useful to observe its
effects on the agent’s optimal investment strategy supposing the price p = 0.5.
For p = 0.5 the optimal strategy of a Kelly trader is 2bi −1 (Lemma 4). Function
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Fig. 4. Left: returns after taxation by T as a function of investment (Equation (9)).

Right: investment strategy (red) approximating ln
(

bi
1−bi

)
1
k

(blue) as k grows when

price equals 0.5. Functions plotted for k ∈ {0.1, 0.2, 1, 2, 10, 20}.

T makes that strategy asymptotically proportional to ln
(

bi
1−bi

)

(Fig. 4) as k
grows.

We call markets under the utility in Eq. (9) taxed markets and denote their
equilibrium prize by pTC (b) for any belief profile b.

5.2 Equilibria in Taxed Kelly Markets

Like for Naive and Kelly markets, we first determine the optimal strategy of the
traders. We do that for A-traders, as the lemma for B-traders is symmetric.

Lemma 6. In Taxed markets, for any i ∈ N , if bi > p, then as k → ∞,

arg max
x∈[0,1]

UA
i (p, x) ∝ ln

(

1 − p

p
· bi

1 − bi

)

.

Proof. We start from i’s utility, given by Eq. (9). By setting dUA
i

dsi
= 0 (first order

condition) we obtain:
bT ′(s 1−p

p ) 1−p
p

1 + T (s 1−p
p )

=
1 − bi

1 − si
(11)

If we replace Eq. (10) into Eq. (11), we obtain:

be−ksi 1−p
p

1 + 1−e−ksi

k p
1−p

=
1 − bi

1 − si
. (12)

and therefore
kbe−ksi

k p
1−p + 1 − e−ksi

=
1 − b

1 − si
. (13)
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As k approaches infinity, si approaches zero. For this reason we rescale strategies
by k and consider a value y = sk. This allows us to understand the form to which
strategies tend as they approach zero. We thus obtain

kbe−y

k p
1−p + 1 − e−y

=
1 − b

1 − y
k

. (14)

As k approaches infinity this approaches

be−y

p
1−p

= (1 − b), (15)

which can be rewritten in turn as

y = ln
(

1 − p

p

b

1 − b

)

, (16)

from which we conclude si = 1
k log(1−p

p
b

1−b ), as desired. �	
As k tends to infinity, the optimal investment strategy will tend to 0 for all
agents. However, it will do so in such a way that as k grows, the optimal invest-
ment strategy tends to be proportional to ln(1−p

p · bi
1−bi

) as desired.
So, as k grows large, a strategy profile s is in competitive equilibrium in a

taxed market with respect to price p(s) whenever Eq. (5) is satisfied together
with the condition identified by Lemma 6. We denote by sTC (b) such competitive
equilibrium and by pTC (b) the price at such equilibrium. We then obtain the
following lemma.

Lemma 7. In Taxed markets, for any profile q and b ∈ Bq, as k → ∞,

ln
(

pTC (b)
1 − pTC (b)

)

∝
n

∑

i

ln
(

bi

1 − bi

)

.

Proof. To lighten notation we write p for pTC (b). From the equilibrium condition
(Eq. (5)) and Lemma 6 we have that

1
p

∑

i∈NA

ln
bi

1 − bi
=

1
1 − p

∑

i∈NB

1 − bi

bi
, (17)

where NA = {i ∈ N | bi > p} and NB = {i ∈ N | bi < p}. From the above we
obtain

0 =
N

∑

i

ln
(

1 − p

p

bi

1 − bi

)

, (18)

which rewrites to

ln
(

p

1 − p

)

=
1
N

N
∑

i

ln
(

bi

1 − bi

)

, (19)

as desired. �	
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That is, the equilibrium price ratio between A and B securities in a taxed market
tends to be proportional, in logarithmic scale, to the average belief ratio.

Theorem 5. In Taxed markets, for any profile q, b ∈ Bq and as k → ∞,

Mw(̂b) = ̂pTC (b),

where w is such that for all i ∈ N wi ∝ ln qi
1−q1

.

Proof. First of all, observe that: ̂pTC (b) = {1} iff ln
(

pTC (b)
1−pTC (b)

)

> 0; ̂pTC (b) =

{0, 1} iff ln
(

pTC (b)
1−pTC (b)

)

= 0; and ̂pTC (b) = {0} iff ln
(

pTC (b)
1−pTC (b)

)

< 0. Then, by
Lemma 7, Eq. (1) and some algebra we obtain the following relations:

ln
(

pTC (b)
1 − pTC (b)

)

∝
n

∑

i

ln
(

bi

1 − bi

)

=
n

∑

i

1(bi > 0.5) · ln
(

qi

1 − qi

)

=
∑

i:bi>0.5

ln
(

qi

1 − qi

)

+
∑

i:bi<0.5

ln
(

1 − qi

qi

)

=
∑

i:bi>0.5

ln
(

qi

1 − qi

)

−
∑

i:bi<0.5

ln
(

qi

1 − qi

)

.

The last expression is: positive whenever weighted voting with optimal weights
returns {1}; negative whenever it returns {0}; and 0 whenever it returns {0, 1}
(Eq. (4)). �	

Fig. 5. As tax parameter
k → ∞, perfect majority
and taxed Kelly markets
commute.

This last result shows that elections that are per-
fect from a truth-tracking perspective (Theorem 1) can
be implemented increasingly faithfully by markets with
Kelly utilities, once the taxation scheme T is applied
and the taxation parameter k in Eq. (10) grows larger
and, therefore, that taxation grows. So, for any belief
profile b induced by a competence profile q and weights
wi = qi

1−qi
, we obtain a realization of Fig. 1 consisting

of the commutative diagram on the right, under the
assumption that k tends to infinity (Fig. 5).

6 Numerical Examples

Assume N = {1, . . . , 5} with competence profile q = (0.9, 0.7, 0.6, 0.6, 0.6).
Assume further that only the first and last agent receive signal A while the
rest receives signal B. This gives us the following belief profile by Bayesian
update: b = (0.9, 0.3, 0.4, 0.4, 0.6). These beliefs result in the voting profile
v = (1, 0, 0, 0, 1), from which we obtain:
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– M1(v) = {0}, that is, standard majority selects B;
– Mw(v) = {1}, where w = (0.8, 0.4, 0.2, 0.2, 0.2) (weight profile given by 2qi −

1), as 0.8 + 0.2 − (0.4 + 0.2 + 0.2) > 0, that is, the sum of weights of the first
and last agents are larger then the sum of weights of the others;

– Mw(v) = {1}, where w =
(

ln 0.9
0.1 , ln 0.7

0.3 , ln 0.6
0.4 , ln 0.6

0.4 , ln 0.6
0.4

)

(optimal
weights), as the following expression is positive:

ln
0.9
0.1

+ ln
0.6
0.4

−
(

ln
0.7
0.3

+ 2 · ln
0.6
0.4

)

. (20)

We move now to the choices made by the markets based on equilibrium
prices. We have that: by Algorithm 1, pNC (b) = 2

5 (Naive market equilibrium)
where the two agents who received the A signal invest all their endowment in A-
securities, and the remaining agents invest all their endowment in B-securities;
pKC (b) = 2.6

5 (Kelly market equilibrium) corresponding to the mean belief in
b. So, a Naive market given the above beliefs selects B while the Kelly market
selects A by a very small margin. As to the taxed markets, our results do not give
us a closed expression for pTC (b) but rather determine whether the price favors
A- or B-securities based on the logarithm of the ratio between the two prices,
which is proportional to the logarithm of the weighed support for A and for B
when the taxation parameter k tends to infinity (Theorem 5). In this example,
we thus have that ln pTC (b)

1−pTC (b) is proportional to Eq. (20) and therefore points to
security A.

Assume N = {1, . . . , 4} with competence profile q = (0.8, 0.6, 0.6, 0.6) and
that only the first agent receives signal A while the rest receives signal B. This
gives us the following belief profile: b = (0.8, 0.4, 0.4, 0.4). These beliefs result in
the voting profile v = (1, 0, 0, 0), from which we obtain:

– M1(v) = {0}, that is, standard majority selects B
– Mw(v) = {0, 1} where w = (0.6, 0.2, 0.2, 0.2) (weight profile given by 2qi −1)

as 0.6 − (0.2 + 0.2 + 0.2) = 0. That is, we have a split weighted majority.
– Mw(v) = {1} where w =

(

ln 0.8
0.2 , ln 0.6

0.4 , ln 0.6
0.4 , ln 0.6

0.4

)

(optimal weights) as

ln
0.8
0.2

− 3 · ln
0.6
0.4

(21)

is positive.

As to equilibrium prices, by applying Algorithm 1, we have that also in this
case pNC (b) = 2

5 (Naive market equilibrium). This price equals the posterior
beliefs of the three agents that receive signal B. By the algorithm, the agent
receiving signal A invests all its wealth in A, one of the agents receiving signal
B invests 1

3 of their wealth in A (to guarantee market clearing at that price, line
10 of Algorithm 1), and the remaining agents invest all their endowment in B-
securities. The equilibrium price in Kelly markets is in this case 0.5 (mean belief).
So, a Naive market given the above beliefs selects B while the Kelly market
remains undecided. In taxed markets, we have that ln pTC (b)

1−pTC (b) is proportional
to Eq. (21) and therefore points to security A.
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7 Discussion and Outlook

Our paper is the first one to establish a formal link between voting and infor-
mation markets from an epistemic social choice perspective. The link consists
specifically of correspondence results between weighted majority voting on the
one hand, and information markets under three types of utility on the other.
Such results open up the possibility, in principle, to implement weighted major-
ity voting with strong epistemic guarantees even without having access to indi-
vidual competences, because such information becomes indirectly available in
the market via the equilibrium price. Notice that, in particular, while it may be
difficult to elicit truthful weights from agents, investment strategies are subject
to the natural incentive of maximizing investment returns. Whether this can
prove advantageous also in practice, for instance in the setting of classification
markets [4] or voting-based ensembles [8], should be object of future research.

The study we presented is subject to at least four main limitations. First, our
analysis inherits all assumptions built into standard jury theorems, in particu-
lar: jurors’ independence; homogeneous priors; equivalence of type-1 and type-2
errors in jurors’ competences; binary events. Future research should try to lift
our correspondence to more general settings relaxing the above assumptions
(see [9] for a recent overview, and [17,18] for more general frameworks for epis-
temic social choice). Second, our study limited itself to one-shot interactions.
However, markets and specifically Kelly betting make most sense in a context of
iterated decisions. Extending our results to the iterated setting, along the lines
followed for instance in [5], is also a natural avenue for future research. Third,
our market model makes use of the notion of competitive equilibrium. Although
such notion of equilibrium is standard in information markets, it responds to
the intuition that individuals operate in a large group and, therefore, behave as
price takers. We consider it interesting to study how different notions of equilib-
rium that do not make such assumption (e.g., Nash equilibrium), would behave
within our framework. Fourth, our analysis assumes very stylized utility func-
tions which are identical for all agents. This is of course highly restrictive and
our results would be substantially strengthened if lifted to more general, and
possibly heterogeneous, classes of utilities.
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Abstract. We study the complexity of a fundamental algorithm for
fairly allocating indivisible items, the round-robin algorithm. For n
agents and m items, we show that the algorithm can be implemented
in time O(nm log(m/n)) in the worst case. If the agents’ preferences are
uniformly random, we establish an improved (expected) running time
of O(nm + m log m). On the other hand, assuming comparison queries
between items, we prove that Ω(nm + m log m) queries are necessary to
implement the algorithm, even when randomization is allowed. We also
derive bounds in noise models where the answers to queries are incor-
rect with some probability. Our proofs involve novel applications of tools
from multi-armed bandit, information theory, as well as posets and linear
extensions.

1 Introduction

A famous computer science professor is retiring soon, and she wants to distribute
the dozens of books that she has accumulated in her office over the years as
a parting gift to her students. As one may expect, the students have varying
preferences over the books, depending on their favorite authors or the branches
of computer science that they specialize in. How can the professor take the
students’ preferences into account and distribute the books in a fair manner?

The problem of fairly allocating scarce resources has long been studied under
the name of fair division [12,35] and received significant interest in recent
years [1,3,31,36,37]. A simple and well-known procedure for allocating discrete
items—such as books, clothes, or household items—is the round-robin algorithm.
In this algorithm, the agents take turns picking their most preferred item from
the remaining items according to a cyclic agent ordering, until all items have been
allocated. The algorithm is sometimes known as the draft mechanism for its use
in allocating sports players to teams [14]. Despite its simplicity, the allocation
chosen by the round-robin algorithm satisfies a surprisingly strong fairness guar-
antee called envy-freeness up to one item (EF1) provided that the agents have
additive utilities over the items. EF1 means that if an agent envies another agent,
this envy can be eliminated by removing some item from the latter agent’s bun-
dle. Furthermore, round-robin can be implemented using only the agents’ ordinal
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Schäfer and C. Ventre (Eds.): SAGT 2024, LNCS 15156, pp. 520–537, 2024.
https://doi.org/10.1007/978-3-031-71033-9_29
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rankings over individual items. This stands in stark contrast to other important
fair division algorithms such as envy-cycle elimination, which requires eliciting
the agents’ rankings over sets of items, or maximum Nash welfare, for which the
agents’ cardinal utilities for items must be known.1

It is clear that the round-robin algorithm can be implemented in time poly-
nomial in the number of agents and items. However, despite being one of the very
few basic algorithms in discrete fair division and used, adapted, and extended
numerous times to provide various fairness guarantees, its complexity has not
been analyzed in detail to our knowledge. A moment of thought reveals two sen-
sible approaches for implementing round-robin.2 Firstly, we can find each agent’s
ranking over all individual items—this allows us to determine the item picked in
every turn, no matter who the picker is. Since sorting m numbers can be done in
O(m log m) time, this approach takes O(nm log m) time, where n and m denote
the number of agents and items, respectively. Secondly, we can instead, for the
picking agent at each turn, find the agent’s most valuable item from the remain-
ing items. As there are m turns and finding the maximum among m numbers
takes O(m) time, the time complexity of this approach is O(m2). Hence, the
first approach is better when n grows at a slower rate than m/ log m, while the
second approach is more efficient if n has a higher growth rate. Are these two
approaches already the best possible, or are there faster ways—that is, faster
than O(m · min{n log m,m}) time—to implement the fundamental round-robin
algorithm?

1.1 Overview of Results

Fix the agent ordering 1, 2, . . . , n, and assume that each agent has a strict ranking
over the m items, where m ≥ n. Hence, the round-robin allocation is uniquely
defined, and the task of an algorithm is to output this allocation. Note that we
do not require the algorithm to output the item that each agent picks in each
turn—this makes our lower bounds stronger, while for the upper bounds, our
algorithms can also return this additional information. We consider two models
for eliciting agent preferences. In the comparison query model, an algorithm can
find out with each query which item an agent prefers between a pair of items;
in the value query model, it can find out the utility of an agent for an item.

In Sect. 3, we consider the noiseless setting, where the answers to queries
are always accurate. We present a deterministic algorithm that runs in time
O(nm log(m/n)) in both query models. Since nm log(m/n) is less than both
nm log m and m2, our algorithm is more efficient than both of the approaches
mentioned earlier, for any asymptotic relation between n and m. We then show
that when the preferences are uniformly random—meaning that each agent has
a uniformly random and independent ranking of the items—we can obtain an
improved (expected) running time of O(nm + m log m). We complement these

1 For descriptions of these algorithms, we refer to the survey by Amanatidis et al. [1].
2 We remain informal with the query model for this discussion, but will make this

precise later.
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Table 1. Summary of our results on the query complexity of round-robin allocation.
In the noisy setting, δ is the allowed error probability. The uniformly random lower
bounds hold because the proof of Theorem 3 (and Corollary 3) uses uniformly ran-
dom preferences. Our algorithms also offer running time guarantees that match the
comparison query upper bounds.

Noise Preferences Queries Upper Bound Lower Bound

Noiseless Worst-case Comparison O(nm log(m/n)) Ω(nm + m log m)

Value O(nm) Ω(nm)

Uniformly random Comparison O(nm + m log m) Ω(nm)

Value O(nm) Ω(nm)

Noisy Worst-case Comparison O(nm log(m/δ)) Ω(nm log(1/δ) + m log(m/δ))

Value O(nm log(m/δ)) Ω(nm log(1/δ) + m log(m/δ))

results by establishing lower bounds: Ω(nm + m log m) and Ω(nm) queries are
necessary in the comparison and value model, respectively. Since the entire pref-
erences can be elicited via O(nm) queries in the value model, the latter bound
is tight. Our lower bounds hold even against algorithms that may fail with
some constant probability; proving the former bound entails leveraging results
on posets and linear extensions.

In Sect. 4, we turn our attention to the noisy setting. For comparison queries,
we assume that the answer to each query is incorrect with probability ρ inde-
pendently of all other queries, where ρ ∈ (0, 1/2) is a given constant. For value
queries, the answer to each query is the true utility with probability 1−ρ and an
arbitrary value with probability ρ, where this value can be chosen adversarially.
We focus on algorithms that are correct with probability at least 1−δ for a given
parameter3 δ. We show that for both types of queries, there exists a determinis-
tic algorithm running in time O(nm log(m/δ)). On the other hand, we provide
a lower bound of Ω(nm log(1/δ) + m log(m/δ)) on the number of queries even
for randomized algorithms;4 the proof involves novel applications of tools from
multi-armed bandit and information theory and may be of independent interest
to researchers in different areas.

A summary of our results can be found in Table 1.

1.2 Related Work

The fair division literature typically considers fairness guarantees (such as EF1)
that are feasible in different settings along with algorithms that achieve these
guarantees [1,12,31]. We take a central algorithm in the literature—the round-
robin algorithm—and analyze its complexity. Query complexity in discrete fair

3 We assume that δ ∈ (0, 1/2 − c) for some constant c > 0.
4 Note that if δ ∈ O(m−d) for some constant d > 0, the upper and lower bounds

asymptotically match.
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division has previously been studied by Plaut and Roughgarden [33] and Oh
et al. [32]. For instance, Oh et al. showed that for two agents, it is possible to
compute an EF1 allocation using O(log m) queries. However, all of these authors
assumed a query model such that with each query, an algorithm can find out an
agent’s utility for any set of items. Since determining this value for a large set
can be quite demanding, our query models, in which each query only involves
one or two items, are arguably more realistic.

The vast majority of work in fair division assumes that accurate information
on the agent preferences is available to the algorithms. Nevertheless, in reality
there may be noise or uncertainty in these preferences, possibly due to the limited
time or high cost for determining the true preferences. Aziz et al. [4] and Li
et al. [28] investigated uncertainty models for item allocation. For example, in
their “compact indifference model”, each agent reports a ranking over items
that may contain ties; the ties indicate that the agent is uncertain about her
preferences among the tied items. Note that this approach to uncertainty is
very different from ours; in our approach, the uncertainty does not appear in the
initial input to the problem, but instead arises as noise in answers to queries. Our
noisy comparison model has been used for several algorithmic problems including
searching, sorting, and selection [8,13,20–22], and our noisy value model has also
been studied for similar problems [16], though the use of these models in fair
division is new to the best of our knowledge.

Not surprisingly given its wide applicability, the round-robin algorithm has
been examined from various angles, including strategic considerations [5,10],
equilibrium properties [2], and monotonicity guarantees [15].

2 Preliminaries

Let N = [n] be the set of agents and M = [m] be the set of items, where
[k] := {1, 2, . . . , k} for any positive integer k. Denote by ui(j) ≥ 0 the utility
(also referred to as the value) of agent i for item j, and assume for convenience
that ui(j) �= ui(j′) for all i ∈ N and distinct j, j′ ∈ M . For X,Y ⊆ M , we write
X �i Y if ui(x) > ui(y) for all x ∈ X and y ∈ Y . The round-robin allocation
is the allocation that results from letting agents take turns picking items in the
order 1, 2, . . . , n, 1, 2, . . . , where in each turn, the picking agent picks the item
for which she has the highest utility. Since each agent has distinct utilities for all
items, this allocation is uniquely defined. We sometimes refer to each sequence
1, 2, . . . , n as a round, where the last round might not include all agents. Assume
without loss of generality that m ≥ n (otherwise, we may simply ignore the
agents who do not receive any item) and n ≥ 2.

We consider two models of how an algorithm can discover information about
agents’ utilities. In the comparison query model, an algorithm can specify an
agent i ∈ N and a pair of distinct items j, j′ ∈ M , and find out whether agent i
prefers item j to j′. In the value query model, an algorithm can specify i ∈
N and j ∈ M , and find out the value of ui(j). We assume that each query
takes constant time and the algorithm can be adaptive. In the noiseless setting
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(Sect. 3), the answer to each query is always accurate. Observe that with no
noise, each comparison query can be simulated using two value queries, so a
lower bound for value queries implies a corresponding one for comparison queries
with an extra factor of 1/2. In the noisy setting (Sect. 4), for comparison queries,
there is a constant ρ ∈ (0, 1/2), and the answer to each query is incorrect with
probability ρ, independently of all other queries (including those with the same
i, j, j′).5 For value queries, the answer to each query is the true utility with
probability 1 − ρ and an arbitrary value with probability ρ, independently of
all other queries (including those with the same i, j). The arbitrary value can
be chosen by an adversary, who may choose the value based not only on the
algorithm’s past queries (and their answers), but also on the entire set of utilities
ui(j) for i ∈ N and j ∈ M .

By uniformly random preferences, we refer to the setting where we associate
each agent i with a permutation σi : [m] → [m] chosen uniformly and indepen-
dently at random, and let i prefer j to j′ if and only if σi(j) > σi(j′).

All omitted proofs can be found in the full version of our paper [27].

2.1 Selection and Quantiles Algorithms

Selection. We will use the following classic linear-time algorithm for the so-called
selection problem.

Lemma 1 (Selection algorithm [9]). For every i ∈ N , S ⊆ M , and � ∈
[|S|], there is an O(|S|)-time deterministic algorithm Seli,�(S) that makes O(|S|)
comparison queries and outputs a partition (S↑, S↓) of S such that S↑ �i S↓ and
|S↑| = �.

Quantiles. We next consider the (m,n)-quantiles problem, where we want to
partition a set of m items into subsets of size at most n each, so that every
item in the first set is preferred to every item in the second set, which is in turn
preferred to every item in the third set, and so on. This problem can be solved
in O(m log(m/n)) time (in contrast to O(m log m) for sorting).

Lemma 2 (Quantiles algorithm). For every i ∈ N , there is an O(m log
(m/n))-time deterministic algorithm Quanti that makes O(m log(m/n)) com-
parison queries and outputs a partition (Si

1, . . . , S
i
k) of M for some k ∈ N, with

the property that Si
1 �i · · · �i Si

k and |Si
1|, . . . , |Si

k| ≤ n.

Similar results are known in the literature; see, e.g., Exercise 9.3-6 of Cormen
et al. [17]. For completeness, we provide the proof of Lemma 2.

5 While one could consider an alternative model in which comparison faults are per-
sistent, there is no hope of getting a reasonable success rate for our problem under
that model. For example, even with one persistent error, if that error is on agent 1’s
comparison between the top two items and some other agent has the same favorite
item as agent 1, then the output will be wrong.
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Proof. The algorithm Quanti on input S ⊆ M works as follows:

– If |S| ≤ n, terminate.
– Otherwise, let (S↑, S↓) ← Seli,�|S|/2� (where Sel is from Lemma 1). Then,

recurse on S↑ and S↓.

We start with S = M . Observe that the recurrence relation for both the running
time and the query complexity is

T (�) ≤
{

O(1) if � ≤ n;
O(�) + T (
�/2�) + T (��/2) otherwise,

where � denotes the size of the set S. One can verify using standard methods for
solving recurrence relations (e.g., a recursion tree) that T (�) ≤ O(� log(�/n)). ��

3 Noiseless Setting

We begin in this section by considering the noiseless setting, where every query
always receives an accurate answer.

3.1 Upper Bounds

First, we show that it is possible to achieve a running time of O(nm log(m/n))
for comparison queries.

Theorem 1. Under the noiseless comparison query model, there exists a deter-
ministic algorithm that outputs the round-robin allocation using O(nm log(m/n))
queries and O(nm log(m/n)) time.

Proof. The algorithm is presented as Algorithm 1. Its correctness is due to the
guarantee of Lemma 2 that Si

1 �i · · · �i Si
k, which implies that in each turn,

the picking agent picks her most preferred item among the remaining items.
As for the number of comparison queries, note that there are only two places

that require comparisons: (i) when we call Quanti, and (ii) when we find the
best item for i in Si

bi
∩ S (Line 10). For (i), Lemma 2 ensures that the number

of queries is O(m log(m/n)) for each i, resulting in a total of O(nm log(m/n))
across all i ∈ N . For (ii), since |Si

bi
| ≤ n, we can find the most preferred item

of agent i in Si
bi

∩ S using O(n) queries. Since Line 10 is invoked m times, the
number of queries for this part is O(nm). It follows that the total number of
queries used by the algorithm is O(nm log(m/n)).

Apart from Line 8, it is clear that the running time of the rest of the algorithm
is O(nm log(m/n)). As for Line 8, let us fix i ∈ N . Note that we can check
whether Si

bi
∩ S is non-empty in time O(|Si

bi
|) ≤ O(n). Since we increment bi

each time the check fails and in each round the check passes only once, the total
running time of this step (for this agent i) is at most O

(∑
b∈[k] |Si

b| + �m/n ·
n
)

= O(m). Therefore, in total, the running time of this step across all agents
is O(nm). We conclude that the total running time of the entire algorithm is
O(nm log(m/n)), as desired. ��
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Algorithm 1. For worst-case preferences
Input: Set of agents N , set of items M , utilities ui(j) for i ∈ N, j ∈ M
Output: Round-robin allocation (A1, . . . , An)

1: for i ∈ N do
2: Ai ← ∅

3: (Si
1, . . . , S

i
k) ← Quanti(M) {See Lemma 2}

4: bi ← 1 {First b such that Si
b �= ∅}

5: S ← M {Set of remaining items}
6: for r = 1, . . . , �m/n� do
7: for i = 1, . . . , min{n, m − n(r − 1)} do
8: while Si

bi
∩ S = ∅ do

9: bi ← bi + 1
10: j ← best item for agent i in Si

bi
∩ S

11: Ai ← Ai ∪ {j}
12: S ← S \ {j}
13: return (A1, . . . , An)

For value queries, we can query all nm values and run the algorithm from
Theorem 1.

Corollary 1. Under the noiseless value query model, there is a determinis-
tic algorithm that outputs the round-robin allocation using O(nm) queries and
O(nm log(m/n)) time.

Next, we consider uniformly random preferences, which constitute a standard
stochastic model in fair division [19,25,29,30]. For these preferences, we present
an improvement over the worst-case bound. We remark that the round-robin
algorithm on random preferences has been studied by Manurangsi and Suksom-
pong [30, Thm. 3.1] and Bai and Gölz [7, Prop. 2]. Since both of these papers
used preference models that imply uniformly random ordinal preferences,6 our
result can be applied for the running time analysis of their algorithms.

Theorem 2. For uniformly random preferences, under the noiseless comparison
query model, there exists a deterministic algorithm that outputs the round-robin
allocation using expected O(nm+m log m) queries and expected O(nm+m log m)
time.

Proof. The algorithm (Algorithm 2) proceeds by keeping a sorted list Li of the
best remaining items for each agent i, which is initially empty. At i’s turn, if Li

is non-empty, i picks the best item j from Li, and item j is removed from every
other set Li′ that contains it. On the other hand, if Li is empty, the algorithm

6 Specifically, Manurangsi and Suksompong [30] assumed that all agents’ utilities for
all items are drawn independently from the same (non-atomic) distribution, while
Bai and Gölz [7] allowed each agent’s utilities for items to be drawn independently
from an agent-specific (non-atomic) distribution.
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Algorithm 2. For uniformly random preferences
Input: Set of agents N , set of items M , utilities ui(j) for i ∈ N, j ∈ M
Output: Round-robin allocation (A1, . . . , An)

1: for i ∈ N do
2: Ai ← ∅

3: Li ← ∅ {Sorted list of i’s best remaining items}
4: S ← M {Set of remaining items}
5: for r = 1, . . . , �m/n� do
6: for i = 1, . . . , min{n, m − n(r − 1)} do
7: if Li = ∅ then
8: � ← �|S|/n�
9: (S↑, S↓) ← Seli,�(S) {See Lemma 1}

10: Find the sorted list Li of S↑ for agent i, using a standard sorting algorithm
(e.g., merge sort).

11: j ← best item for agent i in Li

12: Ai ← Ai ∪ {j}
13: S ← S \ {j}
14: for i′ ∈ N do
15: Li′ ← Li′ \ {j}
16: return (A1, . . . , An)

first finds the best 1/n fraction of the remaining items (rounded up) for i using
Lemma 1, sorts these items, and inserts them into Li.

The correctness of the algorithm is again trivial. Furthermore, the running
time does not add extra asymptotic terms on top of the query complexity, so
we will only establish the latter. In particular, we will show that the expected
number of queries made by the first agent is at most O

(
m+ m

n log m
)
; the proof

is similar for the other agents, and the desired statement follows from summing
this up across all agents.

Let Qn(m) denote the number of queries made by the first agent when there
are m items and n agents. Fix n ∈ N. We will show by induction on m that

Qn(m) ≤ C ·
(
m +

⌈m

n

⌉
log m

)
(1)

where C > 0 is a sufficiently large constant. Specifically, let C2 be a constant
such that the re-initialization of Li between Lines 7 and 10 of the algorithm
takes at most C2 · (|S| + � log �) comparison queries. Then, we let C = 100C2.

For the base case where m ≤ 2n, note that there are at most two rounds and
each round only takes at most C2 · (m + �m/n log m) comparisons for the first
agent.

Next, we address the induction step. Suppose that for some m∗ > 2n, inequal-
ity (1) holds for all m < m∗; we will show that it also holds for m = m∗.

Consider running the algorithm for m = m∗. Let R∗ = �m∗/n ≥ 3 be the
total number of rounds to be run. Let r ≥ 1 denote the first round such that
L1 becomes empty after the end of the round; for notational convenience, we let
r = m∗/n instead of �m∗/n in the case that this happens in the last round.
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Note that r is a random variable. Observe that from round r + 1 onward, the
expected number of queries made by the agent is the same as if the algorithm
is run on m∗ − rn items—this is because, conditioned on the items selected so
far by all agents, the remaining items admit uniformly random preferences. In
other words, we have

Qn(m∗) ≤ C2 · (m∗ + R∗ log m∗) + Er[Qn(m∗ − rn)],

where we use the convention Qn(0) = 0.
Plugging the inductive hypothesis into the inequality above, we get that

Qn(m∗) is at most

C2 · (m∗ + R∗ log m∗) + Er [C · ((m∗ − rn) + (R∗ − r) log m∗)]
= C · (m∗ + R∗ log m∗) + C2 · ((m∗ − 100nX) + (R∗ − 100X) log m∗) ,

where X := E[r]. Hence, to show (1) for m = m∗, it suffices to prove that X ≥
R∗/100. In turn, to prove this, it is sufficient to show that P[r ≥ R∗/50] ≥ 0.5,
or equivalently, P[r < R∗/50] ≤ 0.5.

To show that P[r < R∗/50] ≤ 0.5, let r0 := 
R∗/50�. Let Xi′,r′ be an
indicator variable that equals 1 if and only if both of the following are true: (i)
agent i′ takes an item from L1 in round r′, and (ii) L1 has not been re-initialized
by round r′. Notice that

P

[
r <

R∗

50

]
= P

⎡
⎣R∗ =

∑
r′∈[r0]

∑
i′∈N

Xi′,r′

⎤
⎦ ≤ 1

R∗ · E

⎡
⎣ ∑

r′∈[r0]

∑
i′∈N

Xi′,r′

⎤
⎦ ,

where the equality follows from the fact that we start with L1 of size R∗, and the
inequality follows from Markov’s inequality. Thus, to show that P[r < R∗/50] ≤
0.5, it suffices to show that E

[∑
r′∈[r0]

∑
i′∈N Xi′,r′

]
≤ 0.5R∗.

To calculate this expectation, let us make the following observations on Xi′,r′ .
If i′ �= 1, then since each agent i′ removes an item from S most preferred by her
at that point, the probability that this item belongs to L1 is exactly |L1|

|S| ≤ R∗
|S| ,

where the inequality follows from the fact that L1 starts with size R∗. In other
words, we have E[Xi′,r′ ] ≤ R∗

|S| when i′ �= 1. Note also that for r′ ≤ r0, we
always have |S| ≥ m∗/3. Indeed, since there are R∗ − r0 > R∗/3 + 1 rounds
remaining (not including the current round), the number of items left is at least
n · R∗/3 ≥ m∗/3. From this, we can derive

E

⎡
⎣ ∑

r′∈[r0]

∑
i′∈N

Xi′,r′

⎤
⎦ ≤ r0 + E

⎡
⎣ ∑

r′∈[r0]

∑
i′∈N\{1}

R∗

m∗/3

⎤
⎦ ≤ r0

(
1 +

3nR∗

m∗

)

≤ r0 · 10 ≤ 0.5R∗,

which concludes our proof. ��
Similarly to Corollary 1, for value queries, we can query all nm values and

run the algorithm from Theorem 2.
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Corollary 2. For uniformly random preferences, under the noiseless value
query model, there exists a deterministic algorithm that outputs the round-robin
allocation using O(nm) queries and expected O(nm + m log m) time.

3.2 Lower Bounds

We now turn to lower bounds. First, we present a lower bound of Ω(nm) for
comparison queries.

Theorem 3. Under the noiseless comparison query model, any (possibly ran-
domized) algorithm that outputs the round-robin allocation with probability at
least 2/3 makes Ω(nm) queries in expectation.

We remark that all of our lower bounds in this section hold even when 2/3
is replaced by any constant strictly larger than 1/2.

Before we proceed, we introduce some additional notation. Let Alg be an
algorithm for the round-robin problem. A triplet a = (i, j, j′) represents a query
in which Alg asks if agent i prefers item j to j′. Let A be the set of all such triplets,
with |A| = n

(
m
2

)
; since querying (i, j1, j2) is equivalent to querying (i, j2, j1) and

flipping the answer, we omit such “duplicate” triplets from A without loss of
generality.

Define an instance ν of our problem to be a setting of the agent preferences,
and let Lν be the correct round-robin allocation when the instance is ν. For any
instance ν and agent i, let Ji(ν) be the set of all items j such that in the correct
round-robin procedure, item j is not allocated to any of the agents 1, 2, . . . , i−1
in the first round and is not allocated to agent i in any round. We will use the
following lemma.

Lemma 3. Let ν be an arbitrary instance of our round-robin problem. Then,∑
i∈N |Ji(ν)| ≥ nm/4.

Proof. We write ki := 1 + 
(m − i)/n� to denote the number of items allocated
to agent i across all rounds. Since i − 1 items are allocated to agents 1, . . . , i − 1
in the first round, and ki items are allocated to agent i across all rounds, we
have |Ji(ν)| ≥ m − (i − 1) − ki. Summing this over all i ∈ N , we get

∑
i∈N

|Ji(ν)| ≥ nm − n(n − 1)
2

− m = (n − 1)
(
m − n

2

)
≥ n

2
· m

2
=

nm

4
,

as desired. ��
For brevity, we say that an algorithm Alg is α-correct if PAlg[Alg(ν) = Lν ] ≥ α

for any instance ν, where the probability is taken over the randomness of Alg.
Moreover, for a distribution D over instances, we say that Alg is (α,D)-correct
if Pν∼D,Alg[Alg(ν) = Lν ] ≥ α, where the probability is taken over both the
random instance ν drawn from D and the randomness of Alg. We will also use
the following lemma, which is in the spirit of Yao’s principle. The proof of this
lemma and the next can be found in the full version of our paper [27].
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Lemma 4. If there exists a 2/3-correct algorithm using at most q queries in
expectation for some q ∈ R

+, then for any distribution D of instances, there
exists a deterministic algorithm that makes O(q) queries in the worst case and
is (0.99,D)-correct.

Given Lemma 4, to prove Theorem 3, the following lower bound against
deterministic algorithms is sufficient.

Proposition 1. Under the noiseless comparison query model, there exists a dis-
tribution D over instances such that any deterministic (0.99,D)-correct algo-
rithm makes Ω(nm) queries in the worst case.

Proof. Let D be the distribution based on uniformly random preferences. Sup-
pose for contradiction that there exists a deterministic algorithm Alg that is
(0.99,D)-correct and makes at most q := 0.01nm queries in the worst case.

For any instance ν, agent i ∈ N , and item j ∈ M , let qi,j(ν) be the indicator
variable of whether the pair (i, j) is involved in any query made by Alg when
run on ν. Furthermore, let νi,j denote the instance that is the same as ν except
that item j is made the most preferred item of agent i. To help with the proof
of Proposition 1, we will use the following lemma.

Lemma 5. For any algorithm Alg, it holds that qi,j(ν) = 1 or j /∈ Ji(ν) or
Alg(ν) �= Lν or Alg(νi,j) �= Lνi,j .

Next, observe that if we pick ν ∼ D, i ∈ N , and j ∈ M uniformly and inde-
pendently at random, then νi,j has the same distribution as D, due to symmetry.
Hence, picking ν, i, j in this way, we have

2Pν [Alg(ν) �= Lν ] = Pν [Alg(ν) �= Lν ] + Pν,i,j [Alg(νi,j) �= Lνi,j ]

= Eν,i,j

[
1 [Alg(ν) �= Lν ] + 1

[
Alg(νi,j) �= Lνi,j

]]
≥ Eν,i,j [1 − qi,j(ν) − 1[j /∈ Ji(ν)]]
= Eν,i,j [1[j ∈ Ji(ν)] − qi,j(ν)]

≥ 1
nm

Eν

[∑
i∈N

|Ji(ν)|
]

− 2q

nm
≥ 1

4
− 0.02 > 0.2,

where the first and third inequalities follow from Lemma 5 and Lemma 3, respec-
tively, and the factor of 2 in the second inequality arises because each query
(i, j, j′) can contribute to both qi,j(ν) and qi,j′(ν). This contradicts our assump-
tion that Alg is (0.99,D)-correct. ��

The proof of an analogous bound for value queries is essentially the same.
Note that since nm value queries are clearly sufficient, this bound cannot be
improved.

Corollary 3. Under the noiseless value query model, any (possibly randomized)
algorithm that outputs the round-robin allocation with probability at least 2/3
makes Ω(nm) queries in expectation.
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Next, we prove a bound of Ω(m log m) for comparison queries—by Theo-
rem 1, this bound is tight for constant n.

Theorem 4. Under the noiseless comparison query model, any (possibly ran-
domized) algorithm that outputs the round-robin allocation with probability at
least 2/3 makes Ω(m log m) queries in expectation.

Given Lemma 4, to prove Theorem 4, it suffices to show the following bound
against deterministic algorithms.

Proposition 2. Under the noiseless comparison query model, there is a dis-
tribution D over identical-preference instances such that any deterministic
(0.99,D)-correct algorithm makes Ω(m log m) queries in the worst case.

Since the proof of Proposition 2 only uses identical preferences, we do not
distinguish between queries for different agents and view each comparison simply
as a tuple (j, j′) of items. Further, we represent an identical-preference instance
ν by a permutation σ : [m] → [m], where item j is preferred to j′ (by all
agents) exactly when σ(j) > σ(j′). Let Lσ be the correct round-robin allocation
when the instance is σ. Let R denote the complete set of comparison results,
i.e., R = {(j, j′, r) | 1 ≤ j < j′ ≤ m, r ∈ {0, 1}}, where (j, j′, 1) means that
j is preferred to j′ and (j, j′, 0) indicates the opposite preference. For any set
R ⊆ R of comparison query results, let X (R) be the set of all permutations on
[m] that are compatible with R. We write σ ∼ X (R) to signify a permutation
drawn uniformly at random from X (R). Notice that |X (R)| = 1 if and only if
the comparison results in R completely determine the ordering of items. Our
main lemma is that, unless this is the case, we cannot find an allocation that
agrees with almost all permutations in X (R).

Lemma 6. For any R ⊆ R, if |X (R)| > 1, then for any allocation A, we have
Pσ∼X (R)[Lσ �= A] ≥ 3/44.

The proof of Lemma 6 involves showing that we can find an item j ∈ M such
that, for a random σ ∼ X (R), the value σ(j) is sufficiently random. We show
this by leveraging results from the theory of posets and linear extensions [23,34].
The full proof is deferred to the full version of our paper [27].

Lemma 6 implies that we have to determine σ with sufficiently high prob-
ability using the comparison queries. Without the “sufficiently high probabil-
ity” part, this is exactly the sorting problem, for which it is well-known that
Ω(m log m) queries are required. To establish Proposition 2, we show that a
similar number of queries is still necessary even with the “high probability”
relaxation.

Proof (of Proposition 2). Let D be the distribution based on identical prefer-
ences such that the preference order of items is uniformly random. Suppose for
contradiction that there exists a deterministic algorithm Alg that is (0.99,D)-
correct and makes at most q := 0.1m log2 m queries in the worst case. We use
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the standard representation of Alg as a binary decision tree:7 each internal node
of the tree corresponds to a comparison query (j, j′), and the left and right chil-
dren correspond to the query answer being 0 and 1, respectively. Let Λ denote
the set of leaves of the tree; since Alg makes at most q queries, |Λ| ≤ 2q. Each
leaf λ ∈ Λ corresponds to the algorithm’s termination, at which point it outputs
some allocation Aλ. We use Rλ ⊆ R to denote the set of comparison results
leading to the leaf λ. Finally, let λ(σ) denote the leaf that Alg ends up in when
run on σ.

We can now bound the probability that Alg is incorrect on a random σ ∼ D
as follows:

Pσ∼D[Lσ �= Alg(σ)] = Pσ∼D[Lσ �= Aλ(σ)]

=
∑
λ∈Λ

Pσ∼D[λ(σ) = λ] · Pσ∼D[Lσ �= Aλ | λ(σ) = λ]

=
∑
λ∈Λ

|X (Rλ)|
m!

· Pσ∼X (Rλ)[Lσ �= Aλ]

≥
∑
λ∈Λ

|X (Rλ)|
m!

· 3
44

· (1 − 1[|X (Rλ)| = 1])

=
3
44

− 3
44

∑
λ∈Λ

1[|X (Rλ)| = 1]
m!

≥ 3
44

(
1 − |Λ|

m!

)
≥ 3

44

(
1 − 2q

m!

)
> 0.01,

where the first inequality follows from Lemma 6 and the last inequality from
q = 0.1m log2 m. This contradicts our assumption that Alg is (0.99,D)-correct. ��

4 Noisy Setting

In this section, we turn our attention to the noisy setting. Because of the noise,
we cannot expect algorithms to always output the correct answer. Therefore,
we will instead require them to be correct with probability at least 1 − δ, for a
given parameter δ. Throughout the section, we adopt the mild assumption that
δ ∈ (0, 1/2 − c) for some constant c > 0, and we treat the noise parameter ρ as
a fixed constant in (0, 1/2) (not scaling with n and m).

4.1 Upper Bounds

We start with a simple upper bound for comparison queries.

Theorem 5. Under the noisy comparison query model, there exists a determin-
istic algorithm that outputs the round-robin allocation with probability at least
1 − δ using O(nm log(m/δ)) queries and O(nm log(m/δ)) time.
7 See, e.g., Sect. 8.1 of Cormen et al. [17].
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Proof. For each agent, sort the items according to her preferences using a noisy
sorting algorithm; then, allocate the items using the n resulting sorted lists.
Noisy sorting is a well-studied problem, and for our proof, it suffices to use the
algorithm of Feige et al. [20, Thm. 3.2], which requires O(m log(m/δ0)) queries
and time8 to correctly sort m items with probability at least 1 − δ0, for any
δ0 ∈ (0, 1/2).

Since we have n lists to be sorted, we set δ0 = δ/n, so that a union bound
yields an overall success probability of 1 − δ. Hence, the overall complexity is
O(nm log(nm/δ)), which is equivalent to O(nm log(m/δ)) due to the fact that
m/δ ≤ nm/δ ≤ m2/δ2 (recall our assumption n ≤ m). ��

For value queries, we query each agent’s utility for each item a sufficient
number of times and run our noiseless algorithm based on the majority values.

Theorem 6. Under the noisy value query model, there exists a deterministic
algorithm that outputs the round-robin allocation with probability at least 1 − δ
using O(nm log(m/δ)) queries and O(nm log(m/δ)) time.

While the proofs of our upper bounds are simple, based on our current under-
standing, it is conceivable that these bounds are already optimal. In the full
version of our paper [27], we discuss some challenges that we faced when trying
to improve the bounds.

4.2 Lower Bounds

Next, we shift our focus to lower bounds. We derive a bound of Ω(nm log(1/δ))
for comparison queries.

Theorem 7. Under the noisy comparison query model, any (possibly random-
ized) algorithm that outputs the round-robin allocation with probability at least
1 − δ makes Ω(nm log(1/δ)) queries in expectation.

Proof. We use the same notation as in Sect. 3.2. We interpret the query model
as a multi-armed bandit problem [26] (with a highly unconventional objective)
in which each a ∈ A is an “arm” or “action”. If the t-th query made is at =
(i, j, j′), then the resulting observation is denoted by yt, and is drawn from the
distribution Bernoulli(1 − ρ) if i prefers j to j′, and Bernoulli(ρ) otherwise. Let
Pa denote the (Bernoulli) distribution associated with action a, i.e., it holds for
any query index t and y ∈ {0, 1} that Pa(y) = P[yt = y | at = a].

Let P
ν and E

ν denote the probability and expectation (with respect to the
randomness in the algorithm and/or the query answers), respectively, when the
underlying instance is ν. By assumption, we have P

ν [Alg(ν) = Lν ] ≥ 1 − δ for
all ν. Note that the number of queries taken when Alg terminates is a random
variable, as this may depend on the observed yt values (which are themselves
random) and moreover Alg itself may be randomized.
8 Feige et al. [20] did not make an explicit claim on time. However, one can observe

that the time complexity of their algorithm is the same as its query complexity.
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With the actions {at} and query responses {yt} being interpreted under a
bandit framework as above, we can make use of a highly general result from the
bandit literature that translates into an information-theoretic lower bound on the
number of times certain actions are played (in expectation). These bounds are
expressed in terms of the KL divergence D(P‖Q) =

∑
x P (x) log P (x)

Q(x) for proba-
bility mass functions P,Q, and its binary version d(a, b) = a log a

b +(1−a) log 1−a
1−b

for real numbers a, b ∈ [0, 1] (i.e., d(a, b) is the KL divergence between
Bernoulli(a) and Bernoulli(b) distributions). This result and similar variations
have been used in numerous bandit works—for example, see Lemma 1 of Kauf-
mann et al. [24] and Exercise 15.7 of Lattimore and Szepesvári [26].

Lemma 7. Let ν and ν′ be any two bandit instances defined on the same
(finite) set of arms A, with corresponding observation distributions {Pa}a∈A
and {P ′

a}a∈A. Let τ be the (random) total number of queries made when the
algorithm terminates, and let E be any probabilistic event that can be deduced
from the resulting history (a1, y1, . . . , aτ , yτ ), possibly with additional random-
ness independent of that history. Then, we have∑

a∈A
E

ν [Ta]D(Pa‖P ′
a) ≥ d(Pν [E ], Pν′

[E ]), (2)

where Ta is the (random) number of times action a is queried up to the termi-
nation index τ .

Intuitively, the right-hand side of (2) identifies an event E that (ideally)
occurs with significantly different probabilities under the two instances (e.g., the
algorithm outputting Lν when Lν′ �= Lν). The left-hand side indicates that in
order to permit such a difference in probabilities, actions with sufficient distin-
guishing power (i.e., high D(Pa‖P ′

a)) must be played sufficiently many times
(i.e., high E

ν [Ta]).
Let ν be any instance of our round-robin problem. Recall Lemma 3 (and the

notation Ji(ν)), which asserts that
∑
i∈N

|Ji(ν)| ≥ nm

4
. (3)

Now, for fixed i and j ∈ Ji(ν), consider a different instance ν′ in which j
is made the most preferred item for agent i, and all other preferences remain
unchanged. This means that j is allocated to i in Lν′ , in particular implying
that Lν �= Lν′ . Moreover, in (2), we observe the following:

– Unless the action a corresponds to agent i and item j (along with some other
arbitrary item), the quantity D(Pa‖P ′

a) is zero; this is due to our construction
of ν′ and the fact that D(P‖P ) = 0 for any P .

– For any action a, the quantity D(Pa‖P ′
a) is either zero or d(ρ, 1 − ρ)

(which is equal to d(1 − ρ, ρ)), since our observation distributions are always
Bernoulli(ρ) or Bernoulli(1 − ρ).
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– Let E be the event that Alg outputs Lν′ . The success condition on Alg
implies that P

ν [E ] ≤ δ and P
ν′

[E ] ≥ 1 − δ. Since δ < 1/2, this in turn
implies d(Pν [E ], Pν′

[E ]) ≥ d(δ, 1 − δ) by a standard monotonicity property of
d(a, b) [24].

Combining the above findings, and defining Ãij to be the set of all actions
involving agent i and item j, we obtain

∑
a∈ ˜Aij

E
ν [Ta]d(ρ, 1−ρ) ≥ d(δ, 1−δ), or

equivalently,
∑

a∈ ˜Aij
E

ν [Ta] ≥ d(δ,1−δ)
d(ρ,1−ρ) . Since this holds for all pairs (i, j) such

that j ∈ Ji(ν), we can sum over all such pairs and apply (3) to obtain

∑
i∈N

∑
j∈Ji(ν)

∑
a∈ ˜Aij

E
ν [Ta] ≥ nm

4
· d(δ, 1 − δ)
d(ρ, 1 − ρ)

. (4)

Next, we claim that the left-hand side of (4) is upper-bounded by 2E
ν [τ ],

where τ is the (random) total number of queries. To see this, we upper-bound
the summation

∑
j∈Ji(ν)

by
∑

j∈M , apply linearity of expectation, and observe
that

∑
i∈N

∑
j∈M

∑
a∈ ˜Aij

Ta is exactly 2τ ; the factor of 2 arises because each
query (i, j1, j2) is counted twice (once when j = j1 and once when j = j2). It
follows that E

ν [τ ] ≥ nm
8 · d(δ,1−δ)

d(ρ,1−ρ) . The proof is completed by recalling that ρ

is a fixed constant in (0, 1/2), and noting that d(δ, 1 − δ) ∈ Ω(log(1/δ)) since
δ ≤ 1/2 − c. ��

Next, we establish an analogous result for value queries.

Theorem 8. Under the noisy value query model, any (possibly randomized)
algorithm that outputs the round-robin allocation with probability at least 1 − δ
makes Ω(nm log(1/δ)) queries in expectation.

Finally, we derive a lower bound of Ω(m log(m/δ)) for both query models.

Theorem 9. Under the noisy comparison query model, for two agents, any (pos-
sibly randomized) algorithm that outputs the round-robin allocation with proba-
bility at least 1−δ makes Ω(m log(m/δ)) queries in expectation. The same holds
for the noisy value query model.

5 Conclusion and Future Directions

In this paper, we have analyzed the round-robin algorithm, one of the most
widespread algorithms in the fair division literature, and presented several
bounds on its complexity in the potential presence of noise. Besides tightening
the bounds themselves, our work opens up a number of appealing conceptual
directions. First, it would be interesting to explore the complexity of other fair
division algorithms that rely only on ordinal rankings of items [6,11]; such algo-
rithms are cognitively less demanding for agents than algorithms that require
either cardinal utilities or ordinal information on sets of items. In addition, one
could consider questions on fulfilling certain fairness notions in the presence of



536 Z. Li et al.

noise. Another intriguing avenue is to consider other noise models, for example,
a comparison query model in which the probability of error depends on how
differently the relevant agent ranks the two queried items [18].
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We prove that the classic problem of finding a(n approximate) competitive equi-
librium in an exchange economy with indivisible goods, money, and unitdemand
agents is PPAD-complete. In this “housing market”, agents have general prefer-
ences over the house and amount of money they end up with; they can experience
income effects and their willingness to pay for a house might depend on their
level of wealth. Surprisingly, a competitive equilibrium allocation always exists,
a result shown (under various assumptions) by Quinzii (1984), Gale (1984) and
Svensson (1984).

Our results contrast with the existence of polynomial-time algorithms for
related problems: Top Trading Cycles for the “housing exchange” problem in
which there are no transfers, and the Hungarian algorithm for the “housing
assignment” problem in which agents’ utilities are linear in money. We show
that the housing market problem is computationally equivalent to the Rainbow-
KKM problem, a total search problem based on a generalization by Gale (1984)
of the Knaster-Kuratowski-Mazurkiewicz (KKM) lemma, and then prove that
Rainbow-KKM is PPAD-complete. Our reductions also imply exponential lower
bounds on the query complexity of finding equilibria with four or more agents.

We leave open several avenues for further work including the complexity of
finding equilibria under stronger existence assumptions (e.g., Quinzii (1984)), as
well as connections to envy-free cake-cutting.
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Abstract. A probabilistic approach to the stable matching problem has
been identified as an important research area with several important
open problems. When considering random matchings, ex-post stability
is a fundamental stability concept. A prominent open problem is charac-
terizing ex-post stability and establishing its computational complexity.
We investigate the computational complexity of testing ex-post stabil-
ity. Our central result is that when either side has ties in the prefer-
ences/priorities, testing ex-post stability is NP-complete. The result even
holds if both sides have dichotomous preferences. On the positive side,
we give an algorithm using an integer programming approach, that can
determine a decomposition with a maximum probability of being weakly
stable. We also consider stronger versions of ex-post stability (in partic-
ular robust ex-post stability and ex-post strong stability) and prove that
they can be tested in polynomial time.

Keywords: Matching theory · Stability Concepts · Fairness · Random
Assignment
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Abstract. We study approval-based committee voting in which a target
number of candidates are selected based on voters’ approval preferences
over candidates. In contrast to most of the work, we consider the setting
where voters express uncertain approval preferences and explore four
different types of uncertain approval preference models. For each model,
we study the problems such as computing a committee with the highest
probability of satisfying axioms such as justified representation.

Keywords: Approval preferences · Committee voting · ABC voting

We initiate work on problems where voters’ uncertain approval preferences are
taken into account to compute desirable committees that satisfy representation
with high probability. We consider four different types of uncertain approval
preferences: Joint Probability model, Lottery model, and Candidate-Probability
model. We also consider a restricted version of the latter model. For each of the
uncertain approval models, we consider problems such as computing a commit-
tee with the highest probability of being JR. We undertake a detailed computa-
tional complexity analysis of several problems with respect to the four preference
uncertainty models.
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