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Modelling short-term manufacturing flexibility by human intervention 

and its impact on performance 

Short-term manufacturing flexibility is the capability to respond to unforeseen 

short-term and immediate events during operation. Explicitly modelling short-

term manufacturing flexibility is extremely hard as it implies that it is possible to 

prescribe responses to all possible events in all possible states of the system 

under consideration. We propose an implicit modelling approach where we only 

model the frequency of responses to unforeseen events and the impact of the 

response on the evolution of the process under consideration. This allows us to 

dramatically reduce model complexity while preserving empirical validity of the 

model. We introduce the concepts of intervention-independent performance (IIP) 

and intervention-dependent performance (IDP). We present a methodology to 

gather IIP and IDP indicator information. We propose another process to use this 

information together with historical transactional data and forecasts to make 

tactical trade-offs that result in control policy parameters. We illustrate our 

modelling approach by a generic inventory control model with replanning of 

replenishment orders. We apply the model in a case study characterized by highly 

utilized production lines, high set-up times and dynamic demand. We provide 

empirical evidence of the validity of the proposed methodologies. 

Keywords: flexibility, performance measurement, rescheduling, inventory 

management, human intervention 
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1 Introduction 

 

Flexibility in manufacturing has been subject of extensive research since the mid 1980s, 

when it was identified as a key means for business success (cf. Bertrand (2003), Beach 

et al. (2000), and Jain et al. (2013)). Most authors conclude that manufacturing 

flexibility has not been defined conclusively. We follow Olhager (1993) in defining 

short-term manufacturing flexibility as the ability to adapt to changing conditions using 

the existing set and amount of resources. The ability to adapt depends on the capabilities 

of the human planners and schedulers, the information systems they use, and the pro-

active investment in slack resources (i.e. safety stocks, excess processing capacity, 

safety times). In Barad and Sipper (1988) various flexibility types are defined that affect 

short-term manufacturing flexibility: machine set-up flexibility, process flexibility, 

transfer flexibility, system set-up flexibility, and routing flexibility. They use Petri nets 

to model the various flexibility types quantitatively. Barad (2013) distinguishes between 

a bottom-up perspective where elements of flexibility are modelled, and a top-down 

perspective, where flexibility is seen as strategic instrument. Our paper fits into the 

bottom-up perspective, though we do not explicitly define the type of short-term 

manufacturing flexibility considered.  

 

In this paper we aim to quantitatively model the impact of short-term manufacturing 

flexibility on manufacturing system performance, measured in both customer service 

and capital invested in on-hand inventory, without being specific on the way this 

flexibility has been created. This quantitative approach compels to measure short-term 

flexibility and to relate the flexibility level to the performance of the manufacturing 

system. We empirically validate our quantitative modelling approach in a real-life 
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situation, where we use an analytical model in conjunction with discrete event 

simulation. 

 

The International Journal of Production Research has been a prominent platform for 

advancing the knowledge on operational (or manufacturing) flexibility. We found 126 

papers published in IJPR on the subject. Seebacher and Winkler (2013) found that IJPR 

published most papers on flexibility in comparison with other journals. In their 

extensive discussion of literature until the late 1990s, De Toni and Tonchia (1998) 

conclude that “the measure of flexibility is still an under-developed subject, both for its 

multi-dimensionality and the lack of indicators for its direct measurement”. In this paper 

we propose the replanning frequency as a directly measurable flexibility indicator. 

Zhang and Tseng (2009) introduce customer flexibility as a means to reduce costs in a 

high mix low volume environment. Customer flexibility is key in such circumstances, 

as holding inventory in such environments is not an economically viable option. We 

found that customer flexibility is also of importance in high-volume capacity 

constrained environments. In our paper we model customer flexibility explicitly 

assuming a positive customer lead time. In their extensive survey of more recent 

publications on flexibility, Jain et al. (2013) discuss a wide range of flexibility 

measures. When considering these measures in more detail, they represent a priori 

measures of flexibility, i.e. (relatively) high scores on these measures indicate the 

capability to be flexible. However, these measures do not capture the actual exploitation 

of flexibility. The replanning frequency is such an a posteori measure of flexibility.   

 

The added value of human planners is their capability to identify contingencies that 

enable to mitigate the impact of unforeseen events. To some extent human planners find 
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unique solutions to unique problems caused by a unique combination of events. This 

observation implies that it is impossible to model the behaviour of the planner at the 

detailed level of causal chains of events. In contrast, most quantitative models assume 

some standard response to events. In the context of scheduling typical standard 

responses to customer order arrivals are FCFS or Operation Due Date scheduling. In the 

context of inventory management, typical responses are reorder when the (echelon) 

inventory position is below the reorder point or reorder at the start of next week. Such 

standard procedures fail to model the contingencies, or inherent flexibility options, that 

are typical for real-life multi-item multi-resource environments. By definition, actual 

actions taken depend on the specific state of the system to be managed and in most 

cases create dependence between on the one hand the demand process and on the other 

hand the production process. Analysis of stochastic models with high-dimensional state 

spaces and dependence between different stochastic processes is infamous for its 

complexity. Conversely, in the presence of short-term manufacturing flexibility, 

resorting to application of standard inventory and queueing models may yield far too 

pessimistic estimates of actual performance. 

 

Here we propose an approach to avoid the curses of dimensionality, while taking short-

term manufacturing flexibility into account. Instead of modelling the actual actions and 

the resulting process evolution over time, we only model the effect of the interventions 

of the human planners and the intervention frequency.  Though we illustrate our 

approach by a specific inventory management problem, we expect that the approach is 

generic and a possible route to apply basic OM models in a real-life context. In order to 

model the effect of interventions of human planners, we must measure this effect using 

transactions systems, such as Enterprise Resource Planning (ERP) systems and 
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Manufacturing Execution Systems (MES). This measurement must be such that it 

measures both the performance of the system without (or before) the human 

intervention, and the performance with (or after) the human intervention. This leads to 

the concepts of intervention-independent performance (IIP) and intervention-dependent 

performance (IDP). The approach illustrated in this paper can only be applied if both 

performances can be measured in quantitative terms and the system without human 

interventions can be quantitatively modelled. 

 

Short-term manufacturing flexibility under stochastic demand and supply is primarily 

discussed in the context of spare part systems. Verrijdt (1997) proposed a short-term 

manufacturing flexibility framework for spare parts systems. Repairable items pipeline 

flexibility is modelled in Dada (1992) and Verrijdt et al. (1998). Pooling of spare parts 

inventories by allowing for transhipments is discussed in Axsäter (1990, 2003). We 

refer to Van Houtum and Kranenburg (2015) for an extensive overview of short-term 

manufacturing flexibility in service supply chains.  

 

In the context of product supply chains Simpson (1958), and Inderfurth and Minner 

(1998) study multi-echelon inventory systems with short-term manufacturing flexibility 

under uncertainty. They assume that any demand causing a stockout at some stockpoint 

is satisfied by some implicit flexibility, e.g. by expediting or outsourcing. The main 

difference between this modelling approach and ours is that we explicitly measure the 

frequency of human interventions in response to (potential) stockouts and incorporate 

this frequency into the customer service level determined by the mathematical model. 

We assume that the frequency of interventions is an explicit measure of flexibility. 

Related to our work is the model discussed in Minner et al. (2003). They study a two-



7 
 

echelon supply chain, where it is assumed that in case of stockouts at the warehouse, 

one or more outstanding warehouse orders can be expedited with some probability to be 

received immediately. The assumption of a probabilistic mechanism underlying the 

expedition of an item work order or not is similar to the assumption underlying our 

modelling: from the point of view of a single sku the selection of its work order to be 

expedited is contingent on the status of other items’ work orders and inventory 

availability, whereby no explicit mechanism other than a probability of success can be 

inferred.  

 

The contribution of our paper is as follows. Firstly we provide an extensive description 

of the practice of planning and scheduling under uncertainty based on intense 

collaboration with industry over a period of three decades. This leads to the introduction 

of the concept of intervention-independent and intervention-dependent performance 

measures. We apply these concepts to a generic single-item single-echelon inventory 

model and derive expressions for customer service levels. Finally we provide empirical 

evidence of the applicability of our modelling approach in the context of the real-life 

case, which is characterized by multiple end-items produced on a number of highly 

utilized and inflexible production lines. 

 

The paper is organised as follows. In section 2 we discuss the concept of intervention-

dependent and intervention-independent performance indicators and argue that only the 

latter ones can be used for application and calibration of mathematical models. In 

section 3 we describe the mathematical model considered. In section 4 we present a 

heuristic analysis of the model. In section 5 we apply the model to a real-life case, thus 
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providing empirical evidence of the validity of the approach. In section 6 we present 

conclusions and ideas for further research. 

 

2 Performance indicators and human interventions 

In this section we provide a description of responses to unforeseen events enabled by 

information about the status of item work orders and short term item availability. We 

distinguish between the Make-To-Stock situation where customers expect immediate 

availability and situations where customers expect some nominal positive customer 

order lead time. We argue that the appropriate human interventions can substantially 

improve customer service, but that performance of supply chains with human 

interventions is mathematically intractable. As we need mathematical models to set 

control parameters, such as safety stocks, safety times and nominal lead times, we need 

to identify supply chain performance without human intervention from transactional 

data. On the one hand this enables formal tactical trade-offs to set control parameters, 

and on the other hand enables calibration of performance targets before human 

intervention in relation to performance targets after human intervention. 

In supply chains we distinguish between two operational management processes, 

namely Goods Flow Control (GFC) and Production Unit Control (PUC) (cf. Bertrand et 

al. (1990). GFC accepts customer orders and coordinates the order releases to 

production units (PUs), which process the orders in such a way that the due dates agreed 

with goodsflow control are met with a high probability. By doing so, GFC may consider 

the production units as a black box with a constant delay. GFC operationally 

coordinates the supply chain of a company from purchasing to sales. 
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However, both GFC and PUC are confronted with unforeseen events. GFC must 

cope with uncertainty in customer demand with respect to timing, quantity and 

specification, and uncertainty in lead times of external suppliers. PUC must cope with 

machine break-downs, setup times, and work order releases that differ from 

expectations earlier. The production unit exploits its flexibility created by slack capacity 

and time, and dynamically controls work order priorities to ensure alignment with their 

due dates, e.g. by using an Operation Due Date (ODD) dispatching rule at each work 

station. We note here that flow times in a PU under ODD rules are not mathematically 

tractable. However, if PUC ensures a high due date reliability, we do not need to bother 

about that. 

At GFC level unforeseen changes are absorbed by time and material buffers. At 

the Customer Order Decoupling Point (CODP), ( cf. Hoekstra and Romme (1992) and 

De Kok and Fransoo (2003)), i.e. the echelon that decouples the forecast-driven part of 

the supply chain from the order-driven part, customer orders may require items that are 

not available in stock. Here we must distinguish between Make-To-Stock situations and 

other situations, where the CODP is not at end item level, as is the case for Assemble-

To-Order (ATO), Configure-To-Order (CTO) and Make-To-Order situations (MTO). 

(i) Make-To-Stock, no advance demand information 

Under MTS without advance demand information the customer expects 

immediate availability. As this is not the case, the customer may decide to 

cancel its order and its demand is lost. Or the customer accepts a later delivery 

moment as derived from Available-To-Promise (ATP) information. It may be 

that the PU producing the item is contacted to expedite the item work order to 

ensure timely delivery according to the agreed delivery moment. 
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Note that in case of lost demand we need not change order priorities, but 

we must register the lost sale. If the customer is willing to wait, we see two 

events occurring at the same time: an item work order is expedited and an order 

delivery is postponed. This creates correlation between the demand process and 

the supply process that is hard to analyse mathematically. The mismatch 

between demand and (planned) supply can be identified at the moment the 

customer ordered the item. Such a mismatch is similar to the mismatch between 

demand and supply in classical inventory models. The potential stockout 

occurred before human intervention that created correlation between demand 

and supply. We assume that the potential stockout results from two independent 

processes, as we assume that the original item order lead time was according to a 

preset norm. 

(ii) Make-To-Stock, advance demand information 

Under MTS with advanced demand information end-item work orders 

are released before customer orders are known, yet there is an agreed Customer 

Lead Time (CLT) between the order moment and delivery moment. This 

situation is quite common in capacity-constrained high-setup-time environments 

upstream in most supply chains. Typically in such environments a production 

wheel is used to minimize setup times. Due to large batch sizes substantial cycle 

stocks are created at the CODP from which routinely demand can be satisfied. 

However, occasionally a customer order cannot be delivered from stock due to 

depletion of end-item stock and no work order planned within the customer lead 

time. In that case the production wheel is reconsidered in order to rebalance 

inventory with future demand forecasts. Here GFC provides information about 

desired short-term or mid-term planned on-hand availability and PUC derives 
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from that work-order quantities to be produced. PUC uses its (limited) 

flexibility, the customer order information and the required planned on-hand 

availability to create a new schedule that eventually should enable the PU to 

both satisfy the customer orders and to get back to the production wheel rhythm 

as soon as possible. Again we observe that a customer order triggers a complex 

set of events in the PU that yields flow times that are impossible to derive 

mathematically. Again we can state that before the human intervention we 

identified a mismatch between demand and supply that is similar to the 

mismatch in classical inventory models, such as the multi-item stochastic 

economic lot-sizing problem (SELSP) (cf. Smits et al. (2004)). 

(iii) Not Make-To-Stock 

Under ATO, CTO and MTO the customer order initiates two events: 

a. Consumption of all items at the CODP needed for the customer order to be 

assembled. 

b. Release of a work order to the PU assembling the customer order.  

If all items are available, the work order can be released according to its nominal 

customer lead time, assuming that the customer accepts this lead time. If some 

items are not available GFC needs to communicate with the internal PU 

upstream of the CODP that produces these items or with outside suppliers to 

ensure expedited delivery. In parallel it communicates with the PU downstream 

of the CODP that assembles the customer order to communicate that this order 

needs expedited assembly as well, as soon as all items are available. In both 

PU’s work orders must be rescheduled to enable expedited delivery, while some 

other work orders are delayed. In the upstream PU the latter may be work orders 



12 
 

for items with sufficient short-term availability at the CODP. In the downstream 

PU work orders which are ahead of schedule may be delayed. 

Again, this interaction between GFC and PU’s is mathematically intractable: 

orders are expedited and delayed given their due dates and given availability of 

items in stockpoints. But the initial imbalance between demand and supply, and 

consequential out of stocks, can be captured by multi-item multi-echelon 

inventory systems under stochastic demand and nominal lead times.  

 

In all of the above situations we are confronted with human interventions that restore 

the balance between demand and supply by expediting work orders and, if needed, 

delaying customer orders. In order to do so, detailed real-time information on the status 

of all work orders in a PU is used, whereby the state space of the system is extremely 

large. Human planners and schedulers only implicitly are aware of this, as they 

developed routines to cope with imbalances between demand and supply: their mental 

models. We postulate that it is impossible to formally model both the state space, the 

action space and the transition probabilities that allow optimization using stochastic 

dynamic programming. Though planning and scheduling algorithms can support the 

planner and scheduler, these algorithms usually assume deterministic demand and 

processing times, and do not capture the tactical trade-offs to be made that create the 

required flexibility in the first place: trade-offs between customer service, capital 

invested in equipment and inventory, and costs of labor and equipment usage, under 

uncertainty in demand, production and supply. 

 

The impact of human interventions on system performance can be huge compared with 

the performance derived from mathematical models based on transactional data on 
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supply and demand. We came across situations where customer service levels computed 

from classical inventory models were below 90%, while actual service was above 95%. 

Work order lead times may show high volatility, which translates in high safety times 

and stocks when using mathematical models, while this volatility may be deliberately 

created in response to unforeseen events, and does not affect item availability 

downstream of the PU under consideration. We propose to rely on nominal lead times 

used in planning, as the resulting due dates are the targets to be met. Thus blackboxing 

the PU’s simplifies control at GFC level, while leaving the exploitation of flexibility to 

the PUC level. In De Kok (2015) evidence is provided of the empirical validity of 

multi-item multi-echelon inventory systems with nominal lead times to explain the 

actual customer service from average item inventories, stationary i.i.d. demand and 

average lot sizes. Essential to this empirical validity is the availability of customer 

service performance that is not impacted by human interventions. Above we already 

indicated how such information could be gathered. Let us describe this in more detail 

with the support of figure 1. 

 

Firstly, we assume that norms for nominal customer order lead times, work order lead 

times, lot sizes, safety times and safety stocks have been determined. Secondly, we 

assume that GFC and PUC policies are in place. The GFC policies allow for routine 

work order releases to the PU’s. The PU policies allow for routine work order execution 

in line with due dates set. At GFC level routine customer order acceptance policies are 

in place as well, such as FCFS or priorities according to some customer classification 

scheme. 
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Figure 1. Measuring intervention-independent and intervention-dependent performance 

 

The GFC process is periodic, typically weekly. Due to forecast updates and information 

about actual work order completions that may differ from the planned work order 

completion according to last week’s plan, issues may be identified, such as material and 

capacity shortages, both short-term and mid-term. All these issues should be reported in 

the form of a GFC issues list. From this list we can determine the internal IIP indicators 

related to material availability, such as item fill rates and item non-stockout probability, 

and IIP indicators related to capacity availability, such as probability of capacity 

overload per resource type. The resulting immediate and planned order releases are 

communicated with PUC and work orders are replanned in order to restore the balance 

between demand and supply. This results into a Work Order Replanning (WOR) issue 

list from which the internal IDP indicators can be determined, such as due date 

reliability, resource utilization and overtime. We note here that we should not only 

measure the planned performance after replanning, but also the frequency of replanning, 

as this provides us with valuable information about the effort spent on replanning. 

Similarly it is valuable to record additional costs incurred due to replanning, e.g. 

inefficiencies in processing, outsourcing, expedited shipments. Note that we focus on 

the GFC level, as here the balance between demand and supply is managed. At PUC 
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level, only due date adherence is relevant. Still, the PUC enables replanning by 

providing relevant information about the current capability to reschedule particular 

work orders, and executing the work orders according to the new due dates agreed.  

 

After the work order release decisions have been taken, the resulting ATP is 

communicated to the order desk. Order acceptance is a real-time process and manages 

external performance to the customers. Each customer order accepted is documented 

regarding its arrival time, nominal due date and agreed due date after negotiation with 

the customer and possible rescheduling of work orders. The IIP indicators are based on 

the nominal due dates and the ATP before negotiation. Typical examples of external IIP 

indicators are fill rate and non-stockout probability. The IDP performance is based on 

agreed delivery dates and actual delivery dates. A typical example of an IDP indicator is 

fraction of confirmed orders delivered on time. The IDP performance should be close to 

100% for the accepted customer orders, but can overall be substantially below 100% 

due to lost-sales. The IIP performance depends on the particular situation. We have 

come across situations that an IIP performance of 80% in terms of on-time delivery is 

acceptable. Striving for higher IIP targets would be economically infeasible, and 

unnecessary when IDP performance is up to standard. 

 

In figure 2 we show how IIP and IDP indicators can be used to derive control policies 

for future use. We focus on the GFC problem, but a similar approach can be applied to 

develop models for the PU problem, e.g. queueing network models. The GFC problem 

of coordination of work orders across PU’s and customer order acceptance can be 

described by multi-item multi-echelon (MIME) inventory models. Transactional data 

concerning work order lead times, actual demand, actual lot sizes and actual inventory 
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levels can be used as input for these models. Current control policies can be used as 

well, but we should be cautious as in most cases the formally described control policies 

are often not adhered to. Instead we can infer the control policies from the average 

inventory levels and average lot sizes computed from the transactional data. 

 

 

Figure 2.  Empirical validation and calibration of mathematical model to derive  

control policies for future use 

 

By comparing the model IIP indicators with the actual IIP indicators we can check 

empirical validity of the MIME model, and if needed we can calibrate the MIME model 

to improve the correspondence between model and actual IIP indicators. Clearly such 

calibration is an art that should be done with care and understanding. Using statistical 

modelling we can infer the relationship between actual IIP and actual IDP indicators. 

Note that IDP indicators should include frequency of replanning as a measure of 

flexibility. We expect that a higher planning frequency leads to higher intervention-

dependent customer service for the same intervention-independent customer service. 

Note that in global supply chains many end-items across many stockpoints provide 
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actual IDP indicators that can be compared against actual IIP indicators. Next we can 

set future IDP targets from which the IIP targets can be derived, using the statistical 

model. Finally we can use the MIME model to derive new control policies and their 

parameters for future use. As inputs we can use forecasts on demand, but also nominal 

lead times determined from new targets for the PU, possibly derived from a PUC 

model. We probably need historical demand data to determine reasonable values for 

forecast errors and coefficients of variation. 

 

This concludes our discussion of planning and control processes in real-life situations, 

the role of the human planner and scheduler, and the importance of the distinction 

between IIP and IDP indicators for the use of mathematical models in practice. In the 

next sections we present a mathematical model and its application to a real-life case to 

illustrate the viability of the proposed approach. 
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3 Model description 

 

We illustrate our approach by considering a single PU multi-item MTS situation with a 

positive customer lead time (cf. De Kok (2011)). For each item an (R, s, Q)-policy is 

used as routine control rule. I.e. at the beginning of each review period of R time units 

the inventory position is monitored. If the inventory position is below s, we release a 

work order consisting of a multiple of Q items to the PU, such that the item inventory 

position is raised to a value between s and s+Q. If the inventory position is above s no 

order is initiated. The normal production lead time equals L, where L is a multiple of R. 

Without loss of generality we assume R=1. This implies that each production order 

initiated at the beginning of review period t is assumed to be produced in period t+L. 

Here period t is the interval (t-1, t]. We assume that customer orders arrive at the 

beginning of period t. These orders must be delivered in period t+ Lc with 0 ≤ Lc ≤ L, 

i.e. Lc is the customer lead time.  We assume that customer demand in subsequent 

periods is i.i.d.. Let D denote the demand for the item in an arbitrary period. 

Furthermore we define D(t,t+n] as the cumulative item demand during the time interval 

(t,t+n]. At the beginning of period t the following quantities are determined. 

 

( )tI t n+   :=  forecast of on-hand stock at the start of period t+n, n ≥ 0. 

( )tp t n+  :=  forecast of amount produced during period t+n, n ≥ 0. 

( )t t nµ +  :=  forecast of demand during period t+n, n ≥ 0. 

 

Note that the index t in the above definitions emphasizes the fact that at the start of 

period t forecasts are made of future on-hand stocks, production quantities, and demand. 
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It follows from the definition of ( )t t nµ + , D, ( ),D t t n+  and Lc that 

 

( 1, ]; 0
( )

[ ]t

D t n t n n Lct n
E D n Lc

µ
+ − + ≤ ≤+ =  >

 

Thus, the forecast ( )t t nµ +  equals the known demand within the customer lead time Lc, 

and equals the average demand E[D]  beyond the customer lead time, as we assume 

demand is i.i.d.. Furthermore we have 

 

( 1) ( ) ( ) ( ), n 0t t t tI t n I t n p t n t nµ+ + = + + + − + ≥  

 

Here ( )tI t is the actual stock at the beginning of period t, i.e. at time t-1. The planner 

observes ( ) , n 0tI t n+ ≥ . If ( )   0tI t n+ < for some n, the planner may be able to replan 

( ) , 0tp t m m+ ≥ , such that ( ) 0tI t n+ ≥ after replanning. 

 

Define 

 

π  := probability that a replanning action is decided upon. 

 

A successful replanning action eliminates negative It(t+n). Given the model parameters 

R, s, Q, L, Lc and π  we want to determine the service levels P1 and P2 achieved, 

 

P1 := the probability of a stockout at the end of a replenishment cycle 

P2  := long-run fraction of demand satisfied in time. 
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Here a replenishment cycle is defined as the time between arrival of two consecutive 

replenishments. Once we have an expression for P1 and P2 as a function of the model 

parameters we can conversely determine e.g. s* as a function of the other model 

parameters, such that P1 (P2) is equal to a target value P1* (P2*). We claim that through 

the introduction of π  a target value of 1 can be realised with a finite average on hand 

stock. This contrasts with results for the classical single echelon one-product inventory 

models like (s,S), (s,nQ), (R,s,S) and (R,s,nQ) for e.g. normally distributed or gamma 

distributed lead time demand (cf. Silver et al. (1998)). 

4 Analysis of the model 

 

In this section we derive expressions for P1 and P2 as a function of the model 

parameters (cf. De Kok (2011)). The analysis consists of two steps. First of all we give 

an expression for P1 and P2 in case no replanning is possible. This is equivalent to the 

classical inventory model assumption. Secondly we use a number of assumptions 

through which we can use the results for the model without replanning to derive an 

expression for P1 and P2 in the model with replanning. To make a distinction between 

characteristics for the model with and without replanning we use upper indices (r) and 

(nr), respectively. Thus,  

 

Let us first assume that replanning is not possible. In that case we have a classical 

(R,s,Q)-policy with the only difference that we have to account for the fact that at the 

beginning of period t the future demand ( ],  cD t t L+ is exactly known. Hence we have 

only uncertainty in lead time demand during  ( ],ct L t L+ + . In case Lc=0 the appropriate 

control variable is Y(t), 
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Y(t)  := inventory position at the beginning of period t. 

 

In case Lc>0 we propose to use W(t) as a control variable, 

 

W(t)  := Y(t) - D(t, t+Lc] 

 

and to adapt the (R, s, Q)-policy such that an order of Q is initiated when W(t) < s. Here 

we assume that the undershoot of s is small compared to Q, implying that the order 

quantity equals exactly Q. In that case it can be shown that 

 

1 { ( , ] }cP P D L L U s= + >  

 

 2
1 [( ( , ] ) ] [( ( , ] ( ) ]c cE D L L U s E D L L U s Q

P
Q

+ +− + − − + − +
=  

 

Here 

 

U  := undershoot of reorder level s. 

 

By fitting mixtures of Erlang distributions to the first two moments of ( ]0,    cD L L U− +

(cf. Janssen et al. (1999), we can numerically obtain an excellent approximation for P1 

and P2. 
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Now let us assume replanning is possible and π is given. Then we observe the 

following: 

 

The number of stockouts in the model without replanning equals the number of potential 

replanning actions in the model with replanning. 

 

Here we assume that Q is large compared to [ ]E D , so that replanning a quantity Q at the 

beginning of period t eliminates all planned stockouts in period t+n, 0 ≤ n ≤ L, i.e. 

( ) 0tI t n+ ≥ . 

 

The number of stockouts per time unit in the model without replanning equals the 

number of replenishment cycles per time unit multiplied by the probability of a stockout 

at the end of a replenishment cycle. We assume that a replanning action eliminates a 

stockout at the end of a replenishment cycle. To give an expression for the number of 

stockouts in the model with replanning we define the following quantities. 

 

( )rN :=  the number of stockouts per time unit in the model with replanning 

( )nrN :=  the number of stockouts per time unit in the model without replanning 

 

Then we find the following relations 

 

( )
1 { ( , ] }nr

cP P D L L U s= + >  

( ) ( )
1 1 (1 )r nrP P π= −  

[ ]( ) ( )
1

E Dr r
QN P=  
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[ ]( ) ( )
1

E Dnr nr
QN P=  

 

Note that [ ]/Q E D equals the average replenishment cycle length. The above relations 

imply that 

 

( )
1 (1 ) { ( , ] }r

cP P D L L U sπ= − + >
 

 

(1 )( ) [ ] { ( , ] }r
cQN E D P D L L U sπ−= + >  

 

From ( )rN  we can derive an expression for the key performance indicator rf , which is 

defined as 

 

rf := the number of replanning actions per time unit. 

 

It is easy to see that 

 

( ) ( )nr r
rf N N= − , 

 

and thus 

 

[ ] { ( , ] }r c
E Df P D L L U s
Q

π
= + >  
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In order to find an expression for ( )
2

rP  we observe that the average shortage at the end of 

a replenishment cycle in the model without replanning equals ( )
2(1 )nrP Q− . The average 

shortage at the end of a replenishment, given that a shortage exists then equals 

( )
2
( )

1

(1 )nr

nr

P Q
P
− . We assume that in the model with replanning this conditional expectation of 

a shortage at the end of a replenishment cycle is the same as in the model without 

replanning. Then the unconditional expectation of the shortage at the end of a 

replenishment cycle in the model with replanning equals 
( )

( )2
1( )

1

(1 )nr
r

nr

P Q P
P
−

⋅ . 

Thus we find 

 

( )
( ) ( ) 1

2 2 ( )
1

(1 ) (1 )
r

r nr
nr

PP Q P Q
P

− = − ⋅ , 

 

which yields 

 

( )
( ) ( )1

2 2( )
1

1 (1 )
r

r nr
nr

PP P
P

= − − . 

 

Using the above derived expressions for ( )
1

rP , ( )
1

nrP  and ( )
2

nrP , we obtain 

 

( )( )
2

(1 )
[( ( , ] ) ] [( ( , ] ( )) ]1

c c

r

Q
E D L L U s E D L L U s QP π + +−

+ − − + − += −  

 

In practice it is often easier to measure rf  than to determine π . Therefore we write ( )
2

rP  

as 
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( ).
1 -

[ ] { ( , ] }

( )
2 [( ( , ] - ) ] - [( ( , ] - ( )) ]1- r

c c
c

f Q

E D P D L L U s

r E D L L U s E D L L U s QP + +

+ >
+ + +

 
 
 

=

 

Finally we assume that the replanning actions do not impact the average stock on hand. 

This yields 

 

2lim [ ( , )] [ ] [ ( , ]] Q
ct

E I t t s E U E D L L
→∞

≈ − − + . 

 

This completes the heuristic analysis of the model. In the next section we discuss the 

application of the model in a real-world situation (cf. De Kok (2011)). 

 

5 Application to the glass bulb case 

 

A glass bulb factory produces 110 different glass bulbs for ordinary lamps. There are 4 

production lines, of which one is only producing the most common glass bulb, while the 

other lines produce a mix of different glass bulbs. Each production line produces 

approximately 6 glass bulbs per second. Due to the characteristics of glass itself and the 

characteristics of the production process, changing over from a production run of one 

product to a production run of another product is time consuming. Change-over times 

range from several hours to several days. Over a range of years the following 

manufacturing, planning and control characteristics have been empirically established. 

The manufacturing throughput time ranges from 2 to 6 weeks, dependent on the item. 

Customer lead time equals 2 or 3 weeks, dependent on the item. This results in a mixed 
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make-to-stock/make-to-order situation. Manufacturing lot sizes are more or less fixed 

and in principle a cyclical schedule (production wheel) is used: glass bulb types are 

produced in a fixed sequence in order to minimise set-up time. A finished goods stock 

of about one month production is held to buffer against uncertainty in demand during 

the manufacturing throughput time. This buffer is mainly used to enable the cyclical 

“minimum change-over time” schedule. Now and then a customer order is received that 

cannot be filled from stock nor from future planned orders. In that case a replanning 

process starts, where the available stock is analysed in detail and the existing production 

plan is adjusted in order to fill all future customer orders. Implicitly information about 

future unknown customer orders, derived from the long history of collaboration with a 

relatively small number of customers, is taken into account in this replanning process. 

The overall result of planning, control and execution of the plans over the last 10 years 

has been a 100% customer service level.  

 

We consider the above case typical for factories producing items for other factories. In 

many cases the customer delivery time is shorter than the manufacturing throughput 

time. This implies uncertainty in demand during the throughput time and therefore 

finished goods stock is required. 

The problem we are faced with in this particular case is the fact that 100% customer 

service is realised. To our knowledge application of almost any classical inventory 

control model to this situation would result in an infinite finished goods stock, unless 

we assume that demand over a finite period is bounded. E.g. assuming normally 

distributed lead time demand and a P1-service measure (cf. Silver et al. (1998)) yields a 

safety factor of ∞, because the safety factor k should satisfy φ(k)=1. Apparently this is 

not the case in this real-world situation. When assuming bounded demand, 100% 
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customer service can be guaranteed, however this is likely to result in prohibitively high 

physical stocks. 

 

Key to the realisation of 100% service level are two aspects. Firstly, customer order 

lead time is positive, which gives the possibility to anticipate possible disservice. 

Secondly, in a multi-product situation one usually has some manufacturing flexibility 

by which possible stockouts for some items can be prevented by replanning without the 

expense of causing stockouts of other items. The combination of cyclic schedules and 

replanning actions in case of future stockouts yields a complex multi-item inventory 

problem. A related model has been studied by Fransoo et al. (1995). We decided to 

decompose the problem into single-item models. The multi-item aspect is dealt with 

through the measurement of rf , the number of replanning actions per time unit, as a 

measure for flexibility. We measured rf  by analysing together with the planner the 

production plans of 9 consecutive weeks. A replanning action was identified by the 

difference in the production planned for an item for the same week in two consecutive 

production plans. We carefully identified with the planner the cause of the replanning 

action. This was very important, since a stockout for one item typically causes changes 

in future production orders for several items. Hence there is a great danger of double-

counting. Through this process we identified 30 replanning actions. Assuming that all 

110 products have equal stockout probability we derived that 

 

30
(9 110) / 0.03 /r xf week week= ≈  

 

Since a 100% fill rate ( )
2

rP  is realised, we conclude that ( )
1 0rP = . This yields 
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[ ]0 { ( , ] } rf Q
c E DP D L L U s= + > − . 

 

Thus the reorder level s can be determined from 

 

[ ]{ ( , ] } rf Q
c E DP D L L U s+ > = . 

 

For each item we used historical data and information from the planner to determine Q, 

E[D], σ(D), Lc and L. We implemented our heuristic into a discrete event simulation 

program. Reason for using discrete event simulation was the dynamics of the model due 

to the fact that customer demand during D(t, t + Lc] is known at time t, and the 

availability of short-term demand forecasts and associated forecast errors for periods 

beyond t + Lc. We modified the stationary demand model with fixed reorder level into a 

stochastic dynamic demand model with dynamic reorder levels. We derived the 

dynamic reorder levels by computing the first two moments of ( ],cD t L t L+ +  using the 

demand forecast information. Finally for the last year we collected data about the 

average on hand stocks for each production group, i.e. the sum of on hand stocks for all 

items produced at the same production line. In the table below we compare the results 

of the simulation with the actual data. 
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production average on hand stock (million glass bulbs) 

group Simulation actual 

1 14.0 33.7 

2 25.6 26.7 

3 32.4 35.7 

4 6.8 8.1 

total 78.8 104.2 

Table 1.Comparison of the model results for stock on hand with actual data (from De 

Kok (2011)) 

 

For production groups 2, 3 and 4 we find acceptable results. For production group 1 we 

see an unacceptably large difference between the model result and the actual result. 

Product group 1 in fact consists of only one product: the most fast moving glass bulb 

(used in households most often). Due to its importance for the total turnover of the glass 

bulb plant, management had decided to maintain a so-called strategic stock of about 20 

Million glass bulbs in order to guard against extraordinary accidents like a glass oven 

breaking down. Based on this and the acceptable results for production groups 2, 3 and 

4 we concluded that our approach was valid. We emphasize here that the complexity of 

the actual situation is extremely high: demand orientations, replanning, customer lead 

times. Even adding each of these elements in isolation to a standard inventory model 

creates mathematical intractability. Our blackbox approach based on measurement of 

the impact of human interventions apparently resolves this intractability, even when a 

combination of complicating factors is added to the basic model. 
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6 Conclusions and further research 

 

In this paper we discussed in detail the nature of short-term manufacturing flexibility in 

practice and the role of human planners and schedulers to exploit this flexibility. We 

argued that explicitly modelling short-term manufacturing flexibility yields stochastic 

dynamic programming problems that suffer from the curse of dimensionality and 

therefore cannot be solved. As an alternative, we propose a generic mathematical 

modelling approach to implicitly take short-term manufacturing flexibility into account. 

We introduced the notions of Intervention-Independent Performance (IIP) and 

Intervention-Dependent Performance (IDP) indicators. We argued that IIP indicators 

can be used to validate and calibrate mathematical models. By identifying the 

relationship between an IIP indicator and its associated IDP indicator, e.g. by statistical 

analysis or by directly measuring auxiliary process indicators, we can derive target IIP 

values from target IDP values. The target IIP values can be used in the mathematical 

model of the system under consideration to set control policies and their parameters.  

 

We illustrated the approach by extending the basic (R,s,nQ)-model with the concept of 

replanning frequency, which is an example of an auxiliary process indicator. The 

replanning frequency is the measure for short-term manufacturing flexibility. In the 

glass bulb case study we used the (R,s,nQ)-model with replanning frequency to explain 

the average inventories needed to meet 100% customer service after human 

intervention. Thus we provided evidence that the proposed implicit modelling of short-

term manufacturing flexibility is empirically valid.  
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The specific case studied should be seen as a typical example of how human 

interventions can be taken into account with tractable quantitative models. Instead of 

detailed modelling, requiring discrete event simulations and detailed specification of 

control mechanisms under different contingent events, we use measurements from 

transactional systems that provide information about the effect of human interventions, 

leading to measurement of intervention-independent performance and intervention-

dependent performance, the latter being typically higher. Further research is needed to 

develop this approach in a generic modelling approach, capable of dealing with causal 

chains of events that create mutual dependency between relevant stochastic processes. 
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