
BASICS OF INVENTORY MANAGEMENT: PART III - 1 -

REORDER POINT STRATEGY WITH FIXED ORDER QUANTITY

Probably the mostly addressed inventory management policy in the literature is the continuous review (b,Q)-policy. The

(b,Q)-policy operates as follows.

As soon as the inventory position drops below the reorder point b, an amount equal to an integral number times Q is

ordered at the supplier, such that the inventory position after ordering is between b and b+Q.

When we compare the (b,Q)-policy with the (R,S)-policy we observe that the (b,Q)-policy provides flexibility with

respect to the order moment, yet it lacks the flexibility of the (R,S)-policy with respect to the order size. As mentioned

before the more flexibility one has with respect to the order moment and order size, the less inventory is needed to

provide some service. For the moment it is unclear which policy performs best given some particular situations. This

discussion is postponed until chapter 8.

The structure of this chapter is similar to that of chapter 3. We discuss the stationary demand model first, where we

concentrate on service measures. In section 4.2. we derive expressions for the mean physical stock. Section 4.3. is

devoted to the average backlog. In section 4.4. a numerically elegant scheme for computing a cost-optimal policy is

given.

4.1. Stationary demand and service measures

To describe the model situation we distinguish between the customers, the stock keeping facility and the supplier. We

assume that the demand process is a compound renewal process.

D := demand per customer.

A := interarrival time customers.

The stockkeeping facility executes a (b,Q)-policy. The supplier delivers an order after a lead time L. D, A and L are

random variables, of which the first two moment are known.

We want to obtain expressions for the P^ 1-measure, the fill rate, and the P2-service measure. Recall that

P^ 1 := long-run fraction of time the net stock is positive.

P2 := long-run fraction of demand delivered directly from stock on hand.

First we concentrate on the P2-measure.

Assume that at time 0 the inventory position drops below b by an amount U0. Then an amount Q is ordered at the

supplier assuming b+Q-U0>b. Then after some stochastic time ó1 the inventory position again drops below b by an

amount U1, which initiates another order of size Q.

Let us consider the replenishment cycle (L0,ó1+L1). At time L0 the amount Q ordered at time 0 arrives at the

stockkeeping facility. All previous orders have arrived and hence immediately after time L0 the physical inventory

equals the inventory position at time 0 minus the demand during [0,L0]. At time ó1+L1 the next order arrives and the

physical stock has further decreased to b+Q-U0 minus the demand during [0,ó1+L1].
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(4.1)

Along the same lines as the derivation of 3.10 we find

The expression for P2 involves the demand during the interval [0,ó1+L1]. The problem is that ó1 is a random variable

endogenous to the model and not known beforehand. We circumvent this problem as follows. The demand during

[0,ó1+L1] can be rewritten.
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(4.2)

The second term is the demand during the lead time L1, and we will derive expressions for the first two moments of this

random variable in a few moments. The first term is rewritten as follows. D[0,ó1] is the difference between the inventory

position at time 0 and the inventory position immediately before ó1,

Substituting these results we find

We know that D[ó1,ó1+L1] and D[0,L0] are identically distributed, with known first two moments. Also U1 is

independent of D[ó1,ó1+L1] and U0 is independent of D[0,L0]. It remains to find expressions for the first two moments

of U0 and U1. These expressions are obtained using the following assumption.

Q is sufficiently large to guarantee that

Now note that the difference between b+Q-U0 and the inventory position at customer arrival epochs constitute a renewal

process with interrenewal time D. If Q>>E[D] it has been shown in De Kok [1987] that the undershoot of the reorder

level b is distributed according to the stationary residual lifetime associated with D, i.e.
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(4.3)

(4.4)

where

Assuming that (4.3) is correct, U1 is independent of b and Q and hence U0 is also independent of b and Q and distributed

according to (4.3). We conclude that (4.2) can be rewritten as

Z is a generic random variable, for which holds,

and

We emphasize that (4.4) is an approximation. Extensive experimentation shows that (4.4) performs extremely well, even

for values of Q smaller than E[D]. Before providing insight into this phenomenon we elaborate on (4.4) to obtain an

algorithm based on the PDF-method. We remark that (4.4) can be applied directly by fitting some tractable distribution

to the first two moments of Z and then calculate P2 for a given value of b and Q.
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(4.5)

(4.6)

Application of the PDF-method

As in chapter 3 we note that (4.4) is particularly suited for application of the PDF-method, since P2(b) is a pdf as a

function of b for a given value of Q. Indeed,

Define ã(.) by

Then ã(.) is the pdf of some non-negative random variable Xã, i.e.

We must compute the first two moments of Xã. The first moment of Xã is derived as follows.

First we write E[Xã] as

Substituting (4.5) and (4.6) we obtain
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(4.7)

(4.8)

(4.9)

Rearranging terms in the above equation we find

Substituting w=x-Q in the last term we find

In a similar fashion we obtain

Next we fit a gamma distribution ã^(.) to the first two moments of Xã. Suppose we want to solve the following equation

for b*,

Then b* can be found by

We still have not given the first two moments of Z. These can be computed from the following set of equations and the

independence of D[0,L0] and U~ 1 (cf. (2.37) and (2.38)).
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(4.10)

(4.11)

(4.12)

(4.13)

Exact analysis and synthesis

The analysis has been approximative, since we assumed that each order consisted of one Q only and Q was considerably

larger than E[D]. In Hadley and Whitin [1963] a rigorous treatment has been given of the (b,Q)-model. The essential

result obtained there is.

The inventory position immediately after an arrival of a customer is homogeneously distributed in the interval (b,b+Q).

This result holds for both discrete and continuous demand distributions.

This result can be exploited as follows. With each arrival epoch a pseudo-replenishment cycle can be associated, since

each arrival epoch is a potential order moment.

Assume a customer arrives at time 0. Let Y0 denote the inventory position immediately after time 0. Sample a lead time

L0 from the probability distribution function of L, the generic lead time. Then at time L0 the net stock equals Y0-E[0,L0].

The pseudo-replenishment cycle lasts until the potential arrival of the next order. This order is initiated at time A1, the

first interarrival time and, if initiated, arrives at time A1+L1. The net stock immediately before A1+L1 equals Y0-

D[0,A1+L1]. Then we find an alternative (exact) expression for P2(b,Q),
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(4.15)

It is easy to see that

where D1 is the demand of the customer arriving at A1. Then we can further elaborate on these expressions applying

the Hadley and Whitin result, that Y0 is homogeneously distributed between b and b+Q.

Define Z1 and Z2 by

Z1 := D1 + D[A2,A1+L1]

Z2 := D[0,L0]

Note that

P{Z1 # z} = P{D + Z2 # z}.

Letting Fi(.) denote the pdf of Zi we obtain after some algebra

Fitting tractable pdf's to Z1 and Z2, e.g. mixtures of Erlang distributions, we can calculate P2(b,Q) for given b and Q.

We might compare the approximation resulting from (4.4) with the approximations resulting from (4.15): We stress

the fact that, though (4.15) is exact, any result obtained from this equation is inevitably an approximation, because of
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(4.16)

(4.17)

the intractability of the exact distribution of Z1 and Z2. The approximation is caused by the two- or three-moment fit

used.

The computations involved with (4.15) are considerably more complex than the computations involved with (4.4). Since

the approximations resulting from direct application of (4.4) perform well we advise to apply (4.4) instead of (4.15).

Another comment is in order here. In the derivation of (4.15) we implicitly assume that the sequence of pseudo-lead

times do not include overtaking lead times. This is quite restrictive, since the time between the initiation of the pseudo-

lead times may be small compared to the lead times themselves, so that overtaking might occur frequently when lead

times are stochastic. With large Q even for stochastic lead times overtaking of the real lead times hardly occurs.

Therefore the analysis yielding (4.4) is applicable to that case. Apparently the assumptions leading to (4.4) and (4.15)

yield results that are applicable, even when the assumptions are not valid. We now provide insight into the robustness

of (4.4), for all Q in spite of the fact that the derivation of (4.4) is based on Q>>E[D].

We observe that (4.15) is fit for application of the PDF-method as well. Let us define ã^(.) by

ã^(x) = P2(x-Q,Q) , x$0 ,

where P2(b,Q) is given by (4.15). Then ã̂(.) is a pdf of some random variable X ã̂. For application of the PDF-method

the first two moments of X ã̂ are required. Along the usual lines we obtain after some algebra,

Next we substitute Z1 = D + Z2. This yields

Let us return to equations (4.7) and (4.8), which give the first two moments of Xã associated with approximation (4.4)

of P2(b,Q).
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(4.18)

(4.19)

From the definition of Z and Z2 we find

Z = Z2 + U~ 1

and hence

Substituting the first two moments of è1 we find that (4.16) and (4.17) are identical to (4.18) and (4.19), respectively!

Hence application of the PDF-method to either (4.4) or (4.14) leads to exactly the same results. Assuming the PDF-

method performs well (which is true), we thereby have an explanation for the robustness of approximation (4.4).

It is interesting to note that as Q 6 4, ã(.) becomes an uniform distribution on (0,Q). This can be shown by the use of

Laplace-Stieltjes transforms. This implies that for Q large, Q$20E[D], say, we must fit a uniform distribution to ã(.).

This yields even a simpler scheme than given in section 2.6.

Another feasible approach for Q large and b>0 is to approximate P2(b,Q) by

and apply the PDF-method to ã^(.), with
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(4.20)

It remains to show that the PDF-method performs well applied to the P2-measure in the (b,Q)-model. The results of

extensive simulations are depicted in table 4.1.

The average order size

In the definition of the (b,Q)-strategy we stated that upon decreasing below b the inventory position is increased by a

multiple of Q, such that the inventory position immediately after ordering is between b and b+Q. If Q is large compared

with E[D], then the probability that two or more minimal batches of size Q are ordered, is negligible. However, in

present day's industry there is a trend towards smaller batch sizes in order to have frequent replenishments on Just In

Time basis. This is not only a difference in terms of magnitude of Q. The batch size Q gets a completely different

function: Q is no longer an economic lot size, which is determined based on cost considerations. From now on Q is a

transportation batch which size is based on material handling considerations. Q is a pallet, a box or a truck load.

Typically, the batch size Q based on cost consideration, like the EOQ in the deterministic inventory management model,

is much larger than the batch size Q based on material handling considerations and other logistic notions, such as

throughput time and pipeline stock.

This discussion poses a problem. In most literature it is assumed that the order size equals Q. This no longer holds for

small values of Q. Is it possible to get some exact expression or accurate approximation for the order size distribution?

This is indeed possible along the following lines.

Recall that Y0 is the inventory position immediately after an arrival of a customer. Y0 is homogeneously distributed on

(b,b+Q). The next customer arriving at the stock keeping facility causes an undershoot of the reorder level b if D>Y0-b.

Let us denote the undershoot by U. Then the probability distribution function of U is given by

Note that taking limits for Q90 and Q64 we have

which is consistent: If Q=0 then the (b,Q)-model becomes a lot for lot ordering model. The undershoot is identical to

the order size, which in turn is equal to the demand size. If Q64 then our approximation è1 of U(.) is exact and

consistent with the above result.
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Let us concentrate on the batch ordered. This batch is a multiple K of Q, where K is a random variable. It follows that
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Define the order size Q^  by

Q^  = K.Q

We want to have an expression for E[Q^ ]. It suffices to derive an expression for E[K]. We proceed as follows.

Next we substitute (4.20) into the above equation.

The numerator is further elaborated on and we end up with the remarkable result that

and therefore
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(4.21)

(4.22)

The nominator can routinely be evaluated fitting a mixture of Erlang distributions to D. To check consistency we again

take limits for Q90 and Q64. It follows that

It turns out that higher moments of Q^  cannot be written as simple formulas like (4.21). We therefore restrict to the first

moment of Q^ , only.

The fill rate

Another practically useful service measure we discuss is the fill rate. Recall that the fill rate P^ 1 is defined by

P^ 1 := the long-run fraction of time the net stock is positive.

As in section 3.1. it turns out that a derivation of an expression for the fill rate is considerably more complex than a

derivation of an expression for the P2-measure. Only for the special case of deterministic interarrival times and constant

lead times we find a simple expression along the following lines. The inventory position immediately after an arrival

epoch equals Y0. As before let L0 be the pseudo-lead time associated with the present arrival. At the moment of the

pseudo-replenishment the net stock equals Y0-D[0,L0] and remains constant until the next pseudo-replenishment, which

is at A+L0, since both A and L0 are constant. Then it is easy to see that

This equation is not valid for stochastic interarrival times and/ or stochastic lead times, due to the fact that the net stock

is no longer constant during replenishment cycles.

For the general case we must do a more intricate analysis, finally yielding again tractable expressions. The basis for our

analysis is the real replenishment cycle. As in the derivation of (4.4) we assume that Q is large enough to assume that

the undershoot U is distributed as the stationary residual lifetime associated with demand D, i.e.
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(4.23)

Suppose that a batch of size Q is ordered at the supplier at time 0. The lead time of this order is L0. The next order is

initiated at time ó1 and arrives at time ó1+L1.

The random variable T+(b,Q) is defined as

T+(b,Q) := time the net stock is positive during the replenishment cycle (L0,ó+L1].

Then we can express the fill rate P^ 1(b,Q) as follows

We need expressions for E[ó1] and E[T+(b,Q)]. We first consider E[ó1]. The random variable ó1 is determined by the

sum of the interarrival times associated with the customers arriving between 0 and ó1. The number of customers arriving

is completely determined by the inventory position at time 0 and the demands of the arriving customers. Translating

this into formulas, define

N := the number of customers arriving in (0,ó1].

An := nth interarrival time , n$1.

Dn := demand of nth customer arriving after 0 , n$1.

It follows that

We assumed that {Dn} and {An} are independent. Thus N is independent of An, since N is completely determined by

{Dn} and the inventory position at time 0. This implies that

We need an expression for E[N]. Let us consider the total demand during (0,ó1]. It is clear that



- 16 -

Applying the mathematical concept of stopping times we obtain

On the other hand D(0,ó1] equals the difference between the inventory immediately after 0 and at time ó1. Hence
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(4.24)

(4.25)

Assuming Q>>E[D] we have that E[U0]�E[U1] and therefore E[D(0,ó1]]=Q

Combining the above equations we find

which is intuitively clear.

An expression for E[T+(b,Q)] requires a more intricate analysis. We resort to a result obtained in chapter 2. Define T+(x)

as follows

T+(x,t) := the time the net stock is positive during (0,t], given the net stock at time 0 equals x, x$0.

Here it is assumed that both time 0 and time t are arbitrary points in time from the point of view of the arrival process

{An}, i.e. assumption (B) holds for both time 0 and t. Of course T+(x,t) depends on {Dn} and {An}. In chapter 2 we

derived an approximation for E[T+(x,t)], which is repeated for the reader's convenience

where E[A^ ] is the stationary residual lifetime associated with the renewal process {An} (cf. 2.53).

Conditioning on ó1+L1-L0, U0 and D(0,L0] we can express E[T+(b,Q)] in terms of E(T+(x,t)],
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(4.26)

(4.28)

Substituting (4.25) into (4.26) we find

Using standard probabilistic arguments we can further simplify this equation to

Now note that

Hence

Substitution of (4.28) into (4.27) yields
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(4.29)

(4.30)

The first term on the rhs of (4.29) can be routinely evaluated by fitting mixtures of Erlang distributions or a gamma

distribution to the first two moments of U0+D(0,L0]. Of course U1+D[ó1,ó1+L1] is identically distributed as

U0+D(0,L_0]. The second term on the rhs of (4.29) can be simplified considerably.

In general the renewal function M(.) cannot be given explicitly. At first sight the second term on the rhs of (4.29) seems

intractable, since it involves M(.). Here we are rescued by another basic result from renewal theory. Let U be the

stationary residual lifetime associated with M(.). In this case U is associated with {Dn}. Then we have the following

fundamental result.

Let us consider the first integral in the second term on the rhs of (4.29).

The above equation is just using the fact that FU0+D(0,L0]
 is the convolution of FU0 and FD(0,L0]

. Then (4.30) tells us

that
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(4.31)

(4.32)

(4.33)

Our final result for E[T+(b,Q)] combines (4.29) and (4.31) to yield

Then the fill rate P^ 1 can be derived from

In several publications in the literature it is assumed that the fill rate P^ 1 can be expressed in terms of the P2-measure

along the following lines. Suppose the average shortage at the end of a replenishment cycle is E[B]. Since the average

demand rate is E[D]/E[A] it follows that the average time that the stock was negative during the replenishment cycle

equals E[B]E[A]/E[D]. We approximately have

Hence P^ 1 = P2. It is clear that these arguments are erroneous. Putting the expressions for P^ 1 and P2 alongside the

difference is apparent.
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(4.34)

We observe that equality holds if (E[A^ ]-E[A])E[A] is negligible and also the undershoot of the reorder level b is

negligible. The latter condition ensures that Z1 �
d  Z2. This holds in the case of demand at high rate and incremental

demand per customer. It is clear that for this case the heuristic arguments are valid. Also if demand is compound

Poisson with constant demand, equality holds.

Let us apply the PDF-method to P^ 1(b,Q). As usual let ã(.) be defined as

Then ã(.) is the pdf of some random variable Xã. Without going into detail we claim that the first two moments of Xã

are given by
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(4.35)

Then ã^(.) is the gamma distribution with its first two moments given by (4.34) and (4.35). Then we can solve for b* in

P^ 1(b*,Q) = á

by

b* � ã̂-1(á)-Q

for given value of Q.

Conclusions

This concludes our discussion of the service measures. We have shown that some intricate mathematical analysis yields

tractable results for both the P2- and the P^ 1-measure. The PDF-method provides the routine calculations to solve for

appropriate reorder levels in large scale systems, such as warehouses for service parts and purchase systems. We

explained the fact that the P^ 1-measure is in general not the same as the P2-measure as is often claimed in the literature.

We gave intuition for what situations P^ 1 and P2 are approximately the same.

Unlike most of the literature we discussed the general case of compound renewal processes. We think this is

appropriate, since in most cases the demand process does not originate from a large number of independent customers,

which leads to Poissonian arrivals, nor are interarrival times constant, leading to discrete time models. It is clear that

assuming compound Poisson demand, where the interarrival are non-erratic, the target service levels are exceeded.
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(4.36)

(4.37)

(4.38)

4.2. The mean physical stock

Using the expressions for the service measures derived in the last section we are able to compute the reorder level b

satisfying a service level constraint given some order quantity Q. Another important performance criteria is the average

physical stock needed to maintain the required service. In the literature (cf. Silver and Peterson [1985]) usually an

interpolation rule is applied to determine the average net stock. Assuming backorders are negligible the average net

stock equals the mean physical stock. The resulting approximation for E[X+] is given by

Substituting approximations for E[D(0,L0]] and E[U0] from (4.14)-(4.17) we obtain

Here cA and cA denote the coefficient of variation of the interarrival time and demand per customer, respectively.

We attempt a more rigorous mathematical approach. We consider the replenishment cycle (L0,T1+L1]. As in section

3.2.2. we make the following assumption.

From the point of view of the renewal process all replenishment moments are arbitrary points in time.

This assumption enables us to apply basic results from chapter 2 concerning renewal theory.

Assume for the moment that x equals the net stock at time L0 and t equals the length of the replenishment cycle

(L0,T1+L1]. Furthermore assume that $1 is paid per time unit for each item in stock. Then equation (2.60) gives an

approximation for the amount E[H(x,t)] paid during the replenishment cycle (L0,T1+L1],

From the analysis in section 3.1. we know that the net stock at time L0 equals b+Q-U0-D(0,L0]. Conditioning on the net

stock position at time L0 and the length of the replenishment cycle we find an approximation for E[H(b,Q)], the average

amount paid during a replenishment cycle.
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(4.39)

(4.40)

(4.41)

Substitution of (4.37) into (4.38) yields after careful probabilistic analysis

At first sight (4.39) seems intractable, due to the occurrence of M(.) and ó1. We observe that, as in the derivation of an

expression for the fill rate, M(.) only occurs in conjunction with FU0(.) (cf. 4.29). From renewal theory we learn that

Furthermore we know that

Combining (4.39), (4.40) and (4.41) we find a remarkable simple expression for E[X(b,Q)],
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(4.42)

For a compound Poisson demand process the first term of the rhs of (4.42) vanishes due to the fact that E[A~] equals

E[A]. For non-Poisson interarrival times this term can be rewritten into
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(4.43)

(4.44)

(4.45)

For the second term on the rhs of (4.42) we derive an alternative expression along the same lines,

For the moment we do not further elaborate on (4.42)-(4.44) for arbitrary values of b and Q. Let us first consider the

case of  high reorder levels b. The mean physical stock E[X+(b,Q)] is computed from

in conjunction with (4.42)-(4.44) for large values of b.

We have the following asymptotic results
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(4.46)

Substituting these asymptotic results into (4.42) we find from (4.45)

This yields the following approximation for b large.

Here we made use of approximation (4.14) for E[D(0,L0]]. Approximation (4.46) provides an alternative to (4.36),

based on a simple interpolation argument. Both approximations coincide only for incremental demand at high rate, i.e.

E[D] small. We also note that (4.46) would be obtained from the interpolation arguments when ignoring undershoots

of the reorder-level b as well as assuming a fairly constant demand rate (cf. Hadley and Whitin, p. 166, Silver and

Peterson, p. 275). We thus find that ignoring the true stochasticity of the demand process yields an approximation,

which is asymptotically exact for compound Poisson demand and performs quite well for non-Poisson interarrivals (as

will be shown in the sequel), assuming the reorder level b is large. The present derivation of (4.46) has given true insight

into why the widely-applied (and hardly ever motivated) interpolation approximation of the mean physical stock

performs well!

We now derive an approximation for E[X+(b,Q)] for arbitrary values of b. Let us reconsider (4.42) and the auxiliary

equations (4.43) and (4.44). Equation (4.43) involves P2(b,Q) for which we already found an accurate approximation

by applying the PDF-method. Equation (4.44) is suited for application of the PDF-method as well. We define æ(.) by

Then it follows that
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(4.47)

(4.48)

æ(4) = 0.

Define ã(.) by

Then ã(.) is a pdf of some random variable Xã. Applying the routines of the PDF-method we find

Until now we only needed the first two moments of D(0,L0]. Equation (4.48) involves the third moment of D(0,L0].

Instead of computing this third moment we assume that D(0,L0] is gamma distributed. Then we have
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(4.49)

(4.50)

(4.51)

Here cD(0,L0] denotes the coefficient of variation of D(0,L0], which can be computed from (4.14) and (4.15).

Next we fit the gamma distribution ̂ã(.) to E[Xã] and E[X2
ã] to get an approximation of ã(.). Synthesis of all of the above

yields

Note that (4.46) and (4.50) are consistent as should be expected when letting b64. Thus we found a simple-to-compute

approximation for the mean physical stock, which considerably improves on the interpolation approximation (4.46) even

for moderately variable demand.

4.3. Mean backlog

As in chapter 3 we derive an expression for the mean backlog, based on the relation between inventory position, net

stock, pipeline stock and backorders. The random variables Y, X+, O are defined as in section 3.3. The key equation

to compute the P3-measure, the long-run average backlog, is

The cost argument based to obtain E[O] applies here as well. Thus

The mean physical stock is given by (4.50). The average inventory position is obtained from the exact result (cf. Hadley

and Whitin [1963]) that the inventory position is homogeneous distributed between b and b+Q. Then an expression for

P3(b,Q) follows.

Substituting (4.46) into the above equation yields after rearranging terms
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(4.52)

(4.53)

(4.54)

(4.55)

Since both ã^(.) and P2(.,Q) approach 1 as b64, we have consistently

4.4. Cost considerations

We now have expressions for both the average physical stock and the average backlog. This enables us to comment on

some conjectures in the literature about average-cost optimal (b,Q)-policies. Assume h and p are the holding cost per

item per unit and the penalty cost per item backordered per unit time. Furthermore assume a fixed cost K per order. We

want to solve the following problem

i.e. minimize the average holding, ordering and penalty cost per time unit. The minimization involves taking partial

derivatives of the above cost function with respect to b and Q. Equation (4.42) and relation (4.51) yield an expression

for g(b,Q). Without going into details, we claim that the following results hold
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We emphasize that (4.54) and (4.55) yield (accurate) approximate expressions, since we applied approximations for

U0 and U1 and made the assumptions with respect to the replenishment moments. Yet assuming approximate exactness

we can derive the following striking result from (4.54).

Minimization of average holding and penalty costs implies that the fill rate equals p/(p+h).

This is indeed striking since it the literature it is generally believed that the above result holds for the P2-measure instead

of for the fill rate. This is only true when P2 and P^ 1 are identical, i.e.,

(i) compound Poisson demand process with fixed demand per customer.

(ii) continuous demand.

In fact (ii) is the deterministic model. Case (i) is covered in Hadley and Whitin [1963], yet in the literature, e.g. in Silver

and Peterson, this is erroneously generalized to arbitrary demand processes.

From (4.54) we might find b as a function of Q. Then the problem could be solved by finding a root of (4.55),

Yet it is just as simple to minimize g(b(Q),Q) directly from (4.53), since g(b(Q),Q) is convex as a function of Q. Some

standard approach might be used, which need not to be time consuming because of the simplicity of the approximations.

A straightforward approximate procedure is as follows.

(i) Let Q be the Economic Order Quantity.

(ii) Determine b from (4.54).

This procedure yields reasonable results, since the average costs given a service level constraint are usually quite flat

around the optimum order quantity.

4.4. Dynamic demand

As is pointed out in Silver and Peterson [1985] dropping the assumption of stationary demand dramatically impacts the

analysis. In fact, the analysis does not go through at all in contrast with the analysis of the (R,S)-model. The main reason

for this is that at decision moments, i.e. moments at which one might decide to order an amount Q, it is not clear when

the next decision moment will be. In the (R,S)-model decision moments are R time units apart, no matter what the

demand process is.
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(4.56)

In Silver [1978] a heuristic analysis is given for the (s,S)-model with dynamic demand. It is based on a combination

of the deterministic dynamic demand model, to which the Silver-Meal heuristic is applied, and a probabilistic analysis

based on temporary stationarity.

First of all we have to determine decision moments in time. These might be any moment in time, where one is convinced

of major changes in the demand process, causing previously calculated b and Q values to be wrong. Since this

conviction is usually based on changes in either the demand per customer or the arrival rate, it seems reasonable to

restrict decision moments to customer arrival moments.

Suppose we have prefixed the order quantity Q. The decision we have to make in this point in time is:

Do we order or don't we order an amount Q.

This decision can be made once we know the reorder level b.

Let us assume that we decide to set the reorder level equal to b.

Y(t) := inventory position at time t (now).

X(t) := net stock at time t.

-T := time elapsed since the last order has been initiated.

L0 := lead time of last order initiated at time T.

L1 := lead time of order at time 0 if initiated.

We consider the replenishment cycle (-T+L0,L1]. We suppose that if an order is initiated then Y(0) = b - U, where U

is the undershoot of b. Then we can distinguish between the following cases.

(i) -T + L0 < 0

In this case the replenishment cycle has started already. The net stock at time -T+L0 is known and equals X+(-

T+L0]. The projected net stock at time L1 equals Y(0)-D(0,L1] = b-U-D(0,L1]. Hence

where d(-T+L0,0] is the demand during (-T+L0,0] (which is known by now).

(ii) -T + L0 > 0

In this case the replenishment cycle has not yet started. We know that L0>T. Therefore we consider L^ 0, defined

by
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(4.57)

L^ 0 = L0*L0 > T.

We then compute the P2-measure from

Both (4.43) and (4.44) involve the same kind of expressions as obtained in the preceding sections. In both equations

the decision variable b occurs in E[(D(0,L1]+U-b)+]. We rewrite (4.43) and (4.44) as follows

(i) -T + L0 < 0

Solve for b in
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(4.58)

(ii) -T + L0 $ 0

Solve for b in

The PDF-method can be applied to equations of this type.

for some c>0.

Let æ(x) be defined as

æ(x) = E[(D(0,L1]+U-x)+], x$0

æ(0) = E[D(0,L1]+U]

æ(4) = 0

Define ã(.) by

Then ã(.) is the pdf of some random variable Xã for which we have the following first two moments,
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We assume that D(0,L1]+U is gamma distributed to obtain an expression for E[X2
ã]. Then (4.44) is solved as follows.

ã^  is the gamma distribution with has E[Xã] and E[X2
ã] as its first two moments.

We note that forecasts are needed for D(0,L1] and D(0,L^ 0]. D(0,L1] can be derived from previously gathered data about

lead time demand. D(0,L^ 0] depends on L^ 0, which in turn depends on L0 and T. The first two moments of L^ 0 might be

derived from
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and some convenient fit for FL(.), e.g. a gamma distribution. Then                                0

the first two moments of D(0,L^ 0] might be derived from (4.14) and (4.15) assuming independent demand per customer

and the known estimates of the first two moments of D(0,L1].

These equations only make sense for non-erratic lead times, since otherwise E[L^ 0]>E[L1] and ó2(L^ 0)ó
2(L1). This would

be conflicting with our assumption that orders do not overtake.

The above sketched procedure is truly dynamic. To reduce the computational burden one might decide to leave b

constant unless demand and lead time information prescribe recalibration of b.

Another practical approach is to apply the stationary analysis to the latest demand and lead time information to find b.

This approach is advocated by Silver and Peterson [1985] and performs well in practice.
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