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1. Introduction 
 
This handout deals with stock control models for one product in one stock location, 
the (s,nQ) model. We will derive expressions for performance measures most 
frequently used in practice. Thereby we observe the framework of concepts and 
notations defined by Silver, Pyke & Peterson [1998], SPP for short. Why a handout in 
addition to SPP? The reason is simple to explain: the formulae derived in SPP have a 
too limited validity. Extensions or adaptations of these formulae, in SPP presented via 
footnotes, appeared in practice essential for their applicability. 
 SPP is making assumptions, implicitly or explicitly, about the behaviour 
of the demand process, the order process and the delivery process. In this handout 
these assumptions first are made explicit, in order to determine the validity of the SPP 
formulae. Next we will replace the derivations of SPP by an analysis that is valid 
without restrictive assumptions. In this way we obtain formulae with a general 
applicability.    
 Furthermore, we distinguish between the derivation of formulae on the 
one hand and the numerical processing of the formulae on the other. In our opinion 
industrial engineers should be able to derive these formulae themselves. Such a 
derivation gives them insight in the mechanisms behind the control rules. Once the 
formulae have been derived, for an industrial engineer numerical processing becomes 
less interesting. For this reason the handout is accompanied by a spreadsheet. It 
enables numerical analysis of stock control models on the basis of the formulae 
derived. By analysing various operational situations, we obtain insight in the effects 
of uncertainty in demand process, supply performance, order costs, stock-keeping 
costs and the flexibility or speed of the delivery processes. 
 The structure of this handout is as follows. First we define the relevant 
parameters and variables, in Section 2. Next, in Section 3, we list the assumption 
made by SPP. In Section 4 we give a detailed analysis of the ( )Qs, model. Here the 
assumptions of SPP still play an important part. But in Section 5 we drop these 
assumptions one after the other, which leads to results that have a wide applicability 
to real-life problems. Then we analyse the (R,S)  model in a similar way (Section 6). 
Finally, in Section 7, we present the essential formulae of related models, namely the 
(s,S), (R,s,S) and (R,s,Q) model, without giving the analysis. 
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2. Definitions 
 
   : =  net stock at time  )(tX t
 

)( −tX    : =  net stock just before time t   = lim  ; )( −tX ( )tX
                  −

↑ tt  
               

   : =  inventory position at time t  ( )tY
 

D    : =  demand per customer  or demand per period 
 
  : =  demand during the interval ( ]21 , ttD ( ]21 , tt , with 
 
     ( ] { }2121 x, ttxtt ≤<=  
 
 s   : =  reorder point 
 
   : =  order quantity Q
 
 iτ   : =   replenishment order moment after time t = 0 thi
     (i  = 1,2,…) 
 

0τ   : =  0, time origin at which the first replenishment order is 
placed 

 
   : =  delivery time of the replenishment order placed at time t 
     = i

iL
τ  (i = 0,1,…) 

 
 υ   : = expected net stock immediately before the arrival of a  
     replenishment order (safety stock) 
 
            : =  demand backordered in ( ]21 , ttB ( ]21 , tt
  
   : =  max (0, x) +x
 
 { }...P   : =  Probability {…} 
 

[ ]...E   : =  Expectation […] 
 

( )2 ...σ   : =  Variance […] 
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  : probability of not being out-of-stock just before a  
    replenishment order arrives 

1P

 
  : long-run fraction of total demand, which is being  
    delivered from stock on hand (also known as fill-rate) 

2P
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3. Assumptions 
 
In SPP the following assumptions lie at the basis of all formulae derived in Chapters 
7, 8 and 9: 
 

(i)  has a normal distribution with expectation( ]21 , ttD ( )2 1t t µ− and 

variance ( ) 2
2 1t t σ− . 

 
(ii) At the moment of ordering the stock position is exactly equal to s. 

 
(iii) Subsequent orders cannot overtake each other; so: an order placed later 

cannot arrive earlier. 
 

(iv) Delivery times are constant and equal to . L
 

(v) The net inventory after arrival of an order is positive. 
 
Implicitly there is another assumption that we are going to use too: 
 
 (vi) The reorder quantity is constant and equal to Q . 
 
 (vii) All demand which cannot be met immediately from stock is  
   backordered. 
 
In our derivations of expressions for P1, P2 and other performance characteristics we 
will only need assumption (iii) and (vii). For the manual computation of values for 
these expressions the other assumptions are very useful, since they enable the use of 
tables for functions associated with the normal distribution function. However, in 
most practical situations one or more assumptions are violated, so that we need a 
computer for the computation of P1 and P2. Fortunately, the expressions derived are 
relatively simple and are easily implemented in e.g. an Excel spreadsheet (cf. De Kok 
[2002]). 
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4. Analysis of the (s,Q) model 
 
 
4.1 Performance measurement with P1 (SPP, pages 266-268) 
 
We start by defining the performance measure P1: 
  
(1) P1 : = probability of no stock out just before the arrival of an order. 
 
If we consider an order placed at t = 1τ , i.e. the first order after 0=t , we can write 
  

(2) P1 =  ( )( ){ }1 1 0P X Lτ −+ ≥ . 

 
This expression is easy to understand: at time t = ( )11 L+τ  the order arrives. Just 
before that arrival, the net stock is ( )( )−+ 11 LX τ , whereas P1 is the probability that 
this quantity is not negative. Equation (2) gives us an expression for P1. It is not very 
useful yet, because we do not know the probability distribution of ( )( )−+ 11 LX τ . But 
we can rewrite ( )( )−+ 11 LX τ  in terms of a known distribution, namely the probability 
distribution of the demand during the interval ( ]21 , tt . That demand equals , 
with  en  known constants, and according to assumption (i) it has a normal 
distribution.  

( ]21 , ttD

1t 2t

 
 
4.2 The probability distribution of  ( )( )−+ 11 LX τ  
 
To derive the probability density function of ( )( )−+ 11 LX τ  we will study an inventory 
system during two replenishment cycles. We will start analysing the inventory system 
at a moment in time at which the first replenishment order is being placed. This 
moment in time is taken as the time origin. In other words, we start our time-scale at 
this point in time: time 0. The other moments in time, which will be used in our 
analysis, are: 
- , the delivery time of the order placed at time  0L 0
- 1τ  , the moment the second replenishment order is placed 
- 11 L+τ , the moment the second replenishment order is delivered 
These moments in time can be recognised in Figure 1, which shows the net inventory 

as well as the inventory position )(tX ( )tY   as a function of time for a (s,Q)-
controlled inventory system. 
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Figure 1 - The inventory in a (s,Q)-system as a function of time. 
 
 
In order to derive the probability distribution function of ( )( )−+ 11 LX τ , we first state 
the general ‘inventory balance equation’. For any  we have:  12 tt ≥

 
(3)  plus all orders arriving in ( ) ( )12 tXtX = ( ]21 , tt  minus all demand in . ( ]21 , tt
 
Next we note that all orders placed after t = 0 will arrive after time t =  (assumption 
(iii)). Hence:  

0L

 
(4) all orders arriving in  = all orders outstanding at time 0, ( ]0,0 L
 
and so 
 
(5)  =  plus all outstanding orders at time 0 minus all demand in  ( 0LX )

−

)

−

( )0LX ( ]0,0 LDQs −

( )0X ( ]0,0 L
 
         = Y . . ( ) ( ]0,00 LD
  
With assumption (ii) this yields: With assumption (ii) this yields: 
  
(6a)    = (6a)    = ( 0LX ( ]0,0 LDQs −+ . 
 
This is the inventory level after the arrival of the order quantity Q. So just before that 
arrival we have: 
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(6b) ( )( ) ( ]00 ,0 LDsLX −=− . 
 

Intermezzo 

Apparently, ( )0LX  and ( )( )−0LX  have a normal distribution if the demand D  is normally 

distributed. Then their mean value and variance are easily derived from those of . For ( ]0,0 LD
( 11 LX + )τ  the situation is more complicated. 

 
We return to the performance measure P1. Between L0  and 11 L+τ  no orders arrive, 
because of assumption (iii). So we have:  
 
(7) ( )( ) ( ) ( ]110011 , LLDLXLX +−=+ − ττ .  
 
Using expression (6a) for we get: )( 0LX

 
(8) ( )( )−+ 11 LX τ   = ( ] ( ]1100 ,,0 LLDLDQs +−−+ τ  
 

       = ( ]11,0 LDQs +−+ τ . 
 
Here a new difficulty arises: 1τ  and  are random variables and so 1L 11 L+τ  is a 
random variable too, and we do not know the probability distribution of ]11,0( LD +τ . 
This problem can be solved in the following way. We rewrite ]11,0( LD +τ : 
 
(9) ( ] ( ] ( ]111111 ,,0,0 LDDLD ++=+ ττττ . 
 
The first term on the right hand side is the demand during a replenishment cycle: 
 
(10) ( ]1,0 τD  = – )0(Y )( 1τY . 
 
Assumption (ii) tells us that ( )0Y s Q= +   and ( ) sY =1τ , and so  

 
(11) ( ]1,0 τD  = Q. 
  
Substitution of (9) and (11) into (8) yields: 
 
(12) ( )( ) ( ]11111 , LDsLX +−=+ − τττ .  
 
Returning to (2) and substituting (12) we obtain: 
 
(13)   P1 =  ( ]{ }1 1 1,P D L sτ τ + ≤ . 
 
Note that this formula has been derived without any assumption on the number of 
outstanding orders at the moment an order is placed, i.e. at nτ , with n = 1, 2, .... In 
case there is no outstanding order at the moment an order is placed, equation (13) can 
easily be derived from a simple drawing: see Figure 2. 
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igure 2 – The inventory level during the interval from
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F  1τ=t  until 11 Lt += τ .  

man , )LThe service measure P1 is equal to the probability that de d 1(D 1 1τ +  does not τ
exceed the reorder level s . 
 
 
More illustrations, showing how inventory level and number of outstanding orders, 

.3 Calculations for demand with a normal distribution 

he reorder level s

develop in time can be found in Appendices A and B. 
 
 
4
 
T  

 now drop the index ofFor convenience we  1τ  and . Accepting assumptions (i) and 1L
(iv) we know that ( ]LD +ττ ,  has a normal distribution with mean Lµ and variance 

2Lσ . Therefore we can write (13) as:  
 

(14)  P1 = ( ],D L L s LP
L L

τ τ µ µ
σ σ

⎧ ⎫+ − −
≤⎨ ⎬

⎩ ⎭
 = ⎟

⎠

⎞
⎜
⎝

⎛ −
Φ

L
Ls

σ
µ ,    

 
ith  the standard-normal probability distribution function. 

Intermezzo

w (.)Φ
 

 
 is related to expressions used by SPP by a simple equation: The function )(kΦ : = 

 
 we require that P1 = 

)(1 kpu≥− . 

If α , then we have 
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(15)  ⎟
⎠

⎞
⎜
⎝

⎛ −
Φ

L
Ls

σ
µ = α . 

 
If we write this as ( ) αα =Φ k , we find 
 

(16)  ασ
µ k

L
Ls

=
− . 

This leads us an expression for the reorder level s (c.f. SPP, page 255): 
 
(17)  s = LkL σµ α+ . 
 
So if P1= α  is given, we can determine the corresponding value for . This number 
follows from 

αk
α  = ( αk )Φ , by using a table or a computer program such as Excel, in 

which the function  is available. Finally, if 1−Φ µ,L  and σ  are known, we can 
substitute all these values into (17) and obtain a value for the reorder level s. 
 
The safety stock 
We define the safety stock ν as the expected net stock just before the arrival of an 
order. We have:  
 

(18)  ν  : = ( )( )E X Lτ −⎡ ⎤+
⎣ ⎦ . 

 
Using (12) we get: 
      
  ν    = ( ],E s D Lτ τ⎡ ⎤− +⎣ ⎦  
 
     = ( ],s E D Lτ τ⎡ ⎤− +⎣ ⎦  

 
or 
 
(19)  ν    = µLs −  = k Lασ . 
 
Because of this result,  is called the safety factor. αk
 
Numerical example (SPP, page 267) 
Suppose we know that 58.3Lµ =  units and Lσ = 13.1 units. We require a 
performance level P1= 0.90. From a table for ( )αkΦ , or one for ( )( ) 1up k kα≥ = −Φ , 
we find kα = 1.28 so that ν = 1.28x13.1 = 16.8  17 units and s = 58.3 + 16.8 = 75.1 

 76 units. 
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Average inventory 
Consider the order placed at time 0 and the next one, placed at time 1τ . They will 
arrive respectively at  and 0Lt = 11 Lt += τ . In between no orders arrive, because of 
assumption (iii). So for the average inventory during the replenishment cycle2 we can 
write: 
 

(20)  [ ] [ ] ( )( )( )0 1 1
1 ( )
2

E X E X L E X Lτ −⎡ ⎤= + +
⎣ ⎦

. 

 
We substitute (6a) and (12) into (20) and find: 
 

(21)  [ ] ( ] ( ]( )0 1 1
1 0, ,
2

E X s Q E D L s E D Lτ τ⎡ ⎤ ⎡= + − + − +⎣ ⎦ ⎣ 1 ⎤⎦  

 

     LsQ µ−+=
2
1 . 

 
Using (19) we get: 
 

(22)  [ ] 1
2

E X Q kασ= + L . 

 

So on average the inventory equals 1
2

Q  plus the safety stock ν. 

 
Numerical example (SPP, page 267), continued 
Suppose again that 58.3Lµ =  units, Lσ = 13.1 units, and the required performance 
level  

P1= 0.90. Then [ ] 1 17
2

E X Q= +  units.  

 
 
4.4 Performance measurement with P2 (SSP, page 268-269) 
 
We start with two definitions: 
 
(23)  P2 : = fraction of demand satisfied directly from the shelf, 
 
and 
 
(24)  P2 : =  1 fraction of demand delivered as a backorder.  −
 

                                                 
2  Note the difference between [ ]E X and ( )E X t⎡ ⎤⎣ ⎦ ; ( )E X t⎡ ⎤⎣ ⎦  is the expected net stock in a 

particular period t, while [ ]E X is the average net stock during the entire replenishment cycle. 
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In (23) and (24) the word “fraction” refers to the long-term behaviour of the stochastic 
processes involved, i.e. the demand process and the net inventory position. 
Mathematically we have then: 
 

(25)  P2 = 
( ]
( ]⎟⎟⎠

⎞
⎜⎜
⎝

⎛
−

∞→ tD
tB

t ,0
,01lim . 

   
Since we are considering infinite time, ( ]0,0 LB  and ( ]0,0 LD  are not relevant for the 
long-term fraction. So we can also write: 
 

(26)  P2 = 
( ]
( ]⎟⎟⎠

⎞
⎜⎜
⎝

⎛
−

∞→ tLD
tLB

t ,
,

1lim
0

0 . 

   
Now we take t  very large and equal to NN L+τ  with very large too. Then we get:  N

(27)  
( ]
( ]

( ]
( ]

( ]

( ]∑

∑

=
−−

=
−−

++

++
=

+
+

= N

i
iiii

N

i
iiii

NN

NN

LLD

LLB

LLD
LLB

tLD
tLB

1
11

1
11

0

0

0

0

,

,

,
,

,
,

ττ

ττ

τ
τ , 

with 00 =τ . Substitution of (27) into (26) gives 
 

  P2 = 
( ]

( ]⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

++

++
−

∑

∑

−
−−

=
−−

∞→ N

i
iiii

N

i
iiii

N
LLD

LLB

1
11

1
11

,

,
1lim

ττ

ττ
 

(28) 

    = 
( ]

( ]∑

∑

−
−−∞→

=
−−∞→

++

++
− N

i
iiiiN

N

i
iiiiN

LLD

LLB

1
11

1
11

,lim

,lim
1

ττ

ττ
  . 

 
We are allowed to make this step, because the series in (28) are bounded. P2 can be 
rewritten as: 

(29)    P2 =
( ]

( ]∑

∑

−
−−∞→

=
−−∞→

++

++
− N

i
iiiiN

N

i
iiiiN

LLD
N

LLB
N

1
11

1
11

,1lim

,1lim
1

ττ

ττ
. 

 
The argument ( ]iiii LL ++ −− ττ ,11  represents the  replenishment cycle after t = 0. All 
replenishment cycles are stochastically identical. They start with the arrival of a 
replenishment quantity Q. Just before that arrival the net stock equals = 

thi

( ) )( −+ ii LX τ
( ]iii LDs +− ττ , , in accordance with equation (6b) if 0=i  and with (12) if .  1=i

 X denotes the stock immediately after the arrival of the replenishment 
quantity Q . So the cycle i begins with a net stock of size  
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X ( ) ( ]11111 , −−−−− +−+=+ iiiii LDQsL τττ , and ends with a net stock of size 

( )( ) ( ]iiiii LDsLX +−=+ − τττ , . According to the Law of Large Numbers, if  are 
identically distributed stochastic variables, then  

iZ

 

  [ ]1
1

1lim 
N

N

i
i

Z E Z

N
=

=

→∞

∑  

 
So we have 
 

(30)  P2 =  
( ]
( ]

0 1 1

0 1 1

,
1

,
E B L L
E D L L

τ
τ

⎡ ⎤+⎣ ⎦−
⎡ ⎤+⎣ ⎦

. 

 
This means that 
 

(31) P2 =  (the expected quantity backlogged in a replenishment cycle)1
(the expected demand in a replenishment cycle)

−  

 
It is easy to see that:  
 
(32)  ( ]0 1 1,E D L Lτ⎡ ⎤+⎣ ⎦  =  ( ] ( ]1 1 00, 0,E D L D Lτ⎡ ⎤+ −⎣ ⎦  
 
        =  ( ] ( ] ( ]1 1 1 1(0, , 0,E D D L D Lτ τ τ 0⎡ ⎤+ + −⎣ ⎦  
 
        =  ( ] ( ] ( ]1 1 1 10, , 0,E D E D L E D Lτ τ τ 0⎡ ⎤ ⎡ ⎤ ⎡+ + − ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . 
 
Using assumption (ii) we can now write: 
 
(33)  ( ][ ]110 , LLDE +τ  =  ( ]10,E D τ⎡ ⎤⎣ ⎦  = . Q
 
Note that this result has a general validity, because (33) describes an input-output 
balance equation: the average demand during a replenishment cycle should equal the 
average amount replenished during a replenishment cycle. 
 Finally, we have to find an expression for ( ]0 1 1,E B L Lτ⎡ ⎤+⎣ ⎦ , the expected 

quantity in backlog during the interval ( ]110 , LL +τ . We consider three situations, 
namely: 
 

(i)   ( ) 0)( 11 ≥+ −LX τ
 

(ii) and( ) 0)( 11 <+ −LX τ ( ) 00 ≥LX  
 

(iii) and( ) 0)( 11 <+ −LX τ ( ) 00 <LX . 
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Note that at time  we consider the net stock after arrival of the order placed at 
, whereas at time 

0L
0=t 11 L+τ  the order placed at 1τ=t  has not yet arrived. In 

situation (i) there is no backlog, in situation (ii) there is a backlog of size 
, and in situation (iii) all demand in ( ) )( 11

−+− LX τ ( ]110 , LL +τ  is backlogged, i.e. 
D ( ]110 , LL +τ . These three situations can be expressed in one formula: 
 
(34)  ( ] ( ]( ) ( ] ( )( )++ +−−−+=+ QsLDsLDLLB 0111110 ,0,, τττ .  
 

Intermezzo: 
 
Before proving this formula, we generalise it (this generalised result will be used in paragraph 5). 
To do so, we copy two formulae from Section 4.2: 
 
(12)  ( )( ) ( ]11111 , LDsLX +−=+ − τττ , 
 
(6a)    = . ( 0LX ) ( ]0,0 LDQs −+
 
With these formulae, we can also write (34) as 
 

(34b) ( ] ( )( )( ) ( )( )0 1 1 1 1 0,B L L X L X Lτ τ
+ +−+ = − + − −  

 
We proof formula (34) by using equation (12) and (6a), mentioned in the Intermezzo 
above, and by looking at each of the three situations. 
 
Situation (i):   ( ) 0)( 11 ≥+ −LX τ
 
Since ( ) ≥0LX ( )( ) 011 ≥+ −LX τ , we have 
 
(35a)  ] QsLD +≤0,0(  
(35b)   ( ] sLD ≤+ 111 ,ττ , 
 
and so 
 
(36a)   ( ] ( )( ) 00, 0 =+− +QsLD
(36b)  . ( ]( ) 0, 111 =−+ +sLD ττ
 
Formula (34) then yields ( ] 0, 10 =+ LLB τ , as it should because in situation (i) there is 
no backlog. Conclusion: formula (34) correct for Situation (i). 
 
Situation (ii):  and ( ) 0)( 11 <+ −LX τ ( ) 00 ≥LX  
In equation (34) we substitute (12) and (6a). Then we get: 
 
(37)   ( ] ( )( )( ) ( )( )++− −−+−=+ 011110 , LXLXLLB ττ
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As  we have ( ) 0)( 11 <+ −LX τ ( )( )( ) ( )( )−+− +−=+− 1111 LXLX ττ .  In the same way it 
follows from  that ( ) 00 ≥LX ( )( ) 00 =− +LX . And so  
 
(38)  ( ] ( )11110 , LXLLB +−=+ ττ . 
 
This indeed is the backlog for situation (ii). Conclusion: equation (34) is correct for 
situation (ii). 
 
Situation (iii): and ( ) 0)( 11 <+ −LX τ ( ) 00 <LX . 
We return to (37). Now this can be written as: 
 
(39)   ( ]110 , LLB +τ  = ( )( ) ( )( )011 LXLX −−+− −τ  
 
        = ( ) ( )( )−+− 110 LXLX τ  
 
        = ( ]110 , LLD +τ . 
 
In situation (iii) all demand in ( ]110 , LL +τ  is backlogged, i.e. equal to D ( ]110 , LL +τ .  
Conclusion: equation (34) is correct for situation (iii). 
 
After this analysis, we can state that (34) is an expression for the backlog in 
( ]110 , LL +τ  valid in all relevant situations. Now we can return to (30), the expression 
for P2. Substitution of (33) and (34) gives: 
 

(40)  P2 =  ( ]( ) ( ] ( )( )( )1 1 1 0
11 , 0,E D L s E D L s Q
Q

τ τ
+ +⎡ ⎤ ⎡− + − − − +

⎣ ⎦ ⎣
⎤
⎦

. 

 
With this expression we can calculate P2, if we know s , Q and the distribution of two 
stochastic variables:  and ( ]0,0 LD ( ]1, LD +ττ . These variables are distributed 
identically. Now using assumption (v), i.e. the net inventory after arrival of an order is 
positive, we have 
 
(41)  P ( ]{ } 1,0 0 =+≤ QsLD . 
 
Therefore, the second expectation in (40) is zero and so 
 

(42)  P2 =  ( ]( )1 1 1
11 ,E D L s
Q

τ τ
+⎡ ⎤− +

⎣ ⎦
− . 

 
 
4.5 Calculations for demand with a normal distribution 
 
With assumptions (i) and (iv), ( ]111 , LD +ττ  is normally distributed with mean Lµ and 
variance 2Lσ . So it makes sense to modify P2 into: 
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(43)  P2 =  
( ] ( )1 1 1,

1
D L L s LL E

Q L L
τ τ µ µσ

σ σ

+⎡ ⎤⎛ ⎞+ − −
⎢ ⎥− −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

 

    
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −
−−=

+

L
LsZE

Q
L

σ
µσ1 . 

 
Here Z  has a standard-normal distribution. Therefore, Z is connected with two 
probability functions: 
 

(44)   : = P{ }( )xΦ ∫
∞−

⎟
⎠
⎞

⎜
⎝
⎛−=≤

x

dyyxZ 2

2
1exp

2
1
π

 

and 

(45)   : = ( )kG ( )E Z k +⎡ ⎤−⎣ ⎦  = ( ) dyyky
k

⎟
⎠
⎞

⎜
⎝
⎛−−∫

∞
2

2
1exp

2
1
π

. 

 
 
Next we define a quantity : βk
 

(46)  : βk
L
Ls

σ
µ−

= . 

 
Then, also using (45), we can write (43) as: 
 

(47)  P2  ).(1 β
σ kG

Q
L

−=  

 
If we are looking for a value of s such that P2 = β , then  
 

(48)  ( )β
σβ kG

Q
L

−=1  

or 

(49)  ( ) ( )
L

QkG
σ
β

β
−

=
1 . 

 
Now, if ,β ,µ ,σ L and Q  are known, we can calculate the right-hand side of (49). It 
is a numerical value, say . Then we have 1C ( ) 1CkG =β  and from a table we obtain a 
numerical value for . Finally, with (46) we get the re-order level s: βk
 
(50)  LkLs σµ β+= . 
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There is an important difference with the safety factor kα  for the P1 measure:  
depends for a given 

βk
β  not only on ,L µ and σ , but also on . If  increases,  

decreases and so do 
Q Q βk

s  and the safety stock. 
 
Numerical example 1 
Like in Section 4.3 we suppose that 58.3Lµ =  units and Lσ = 13.1 units. We 
require a performance level  P2 = 0.90 and we take  = 10 pieces. Then (48) gives Q
( )βkG = 0.07634.  

From a table for ( )βkG we find by interpolation = 1.045, so that s = 58.3 + 13.8 = 
72.1  73 units. Apparently, in this situation the P

βk

2-measure produces values for s  
and the safety stock slightly lower than with the P1-measure. 
 
Numerical example 2 (SPP, page 269) 
Now we have 50Lµ = gallons and Lσ = 11.4 gallons. Management requires a P2-
level of 0.99, whereas Q =200 gallons. Now (49) gives ( )βkG = 0.175. From the table 
we obtain = 0.58 so that s = 50 + 0.58 (11.4) = 56.6  57 gallons. βk
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5. Elimination of assumptions 
 
In the previous chapters, our analysis was based on five assumptions, listed in Chapter 
3. They made it easy to obtain results that have proven to be useful in practical 
situations until 1980. However, owing to changing conditions, in particular smaller 
order quantities and higher demand variability than in the past, the assumptions tend 
to lose their validity in modern practice. In this chapter we will remove them one after 
the other, in order to obtain results with a broader validity than those of SPP. 
 
 
5.1 Assumption (i) 
 
Assumption (i) says that demand has a normal distribution. It can easily be eliminated, 
for instance by assuming that  and ( ]0,0 LD ( ]1, LD +ττ  have the same gamma 
distribution. In many cases this turns out to be realistic. Then the problem is reduced 
to finding an expression for ( ]00,E D L⎡⎣ ⎤⎦  and one for ( ]( )2

00,D Lσ , because they 
determine the parameters of the correct gamma distribution. Such expressions depend 
on the assumptions made about the demand process. In practice we can estimate the 
value of the variables ( ]00,E D L⎡ ⎤⎣ ⎦  and ( ]( )2

00,D Lσ by measuring demand during 
the delivery times of orders and subsequently calculating mean value and variance of 
the sample data. This approach has an important consequence: the expressions are 
only valid for the measured delivery times, so that these measurements lose their 
value as soon as the measurements change. We return to this subject in Section 5.4, 
where we elaborate the expressions for ( ]00,E D L⎡ ⎤⎣ ⎦  and ( ]( )2

00,D Lσ  under 
different assumptions on the demand process and lead time distributions. 
 
 
5.2 Assumption (ii)  
 
According to assumption (ii), the stock position at the moment of ordering is exactly 
equal to s . This assumption is only valid if all customers order the same quantity, say 

units. Then it is obvious to take  as a multiple of , so that at the moment of 
ordering the stock position indeed always equals 
c Q c

s . In all more realistic cases, 
however, the stock position at the moment of ordering will be Us − , with U  a non-
negative stochastic variable called the “undershoot”.  See Figure 3. 
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Net stock Inventory position
In

ve
nt

or
y

s Q+
( )Y t

1 1( )X Lτ +

( )X t

1 1Lτ +1τ

L

Time

( )( )X Lτ −+

s

0

undershoot
U1

 
Figure 3 - The undershoot  
 
 
 If demand per customer is equal to  we can find good approximations for cD
[ ]E U  and , the mean value and the variance of the undershoot (see Tijms 

[1994]): 

2E U⎡⎣ ⎤⎦

 

(50)  [ ] ( )2 2

2

c c

c

D E D
E U

E D

σ ⎡ ⎤+ ⎣ ⎦≈
⎡ ⎤⎣ ⎦

 

 

(51)  
( )3

2

3

c

c

E D
E U

E D

⎡ ⎤
⎢ ⎥⎣⎡ ⎤ ≈⎣ ⎦ ⎡ ⎤⎣ ⎦

⎦ .      

 
In the formulae derived in the previous sections, we now need to account for the fact 
that the stock position equals  at the moment of ordering. We can do so by 
means of the relations (cf. (6a) and (12)): 

Us −

 
(52a) ( ) ( ]000 ,0 LDUQsLX −−+= ,    

(52b) ( )( ) ( ]1 1 1 1 1 1,X L s U Dτ τ−+ = − − + Lτ , 

 
where  and  are the undershoots at times 0 and 0U 1U 1τ . After substitution of these 
relations the analysis can proceed in the same way as before. It starts by making an 
assumption about the probability distribution for ( ] 00,0 ULD + , and taking the same 
one for ( ]1 1 1 1,D L Uτ τ + + . For a normal distribution of , i.e. cD ( ),c

c cD N µ σ∼  we 
get, with ccv σ µ=  the coefficient of variation: 
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(53a)  [ ] ( )21 1
2 cE U cv µ= +  

(53b)  ( )2 21 1 3
3 cE U cv 2µ⎡ ⎤ = +⎣ ⎦ . 

 
However, a gamma distribution is preferable because it is more realistic. So if  
 

  { } ( )
( )

1

0

expx
c x x

P D x dx
α αλ λ

α

−−
≤ =

Γ∫ , 

with 
 

  
( )

2

2

c

c

E D

D
α

σ

⎡ ⎤⎣ ⎦=  and 
cE D

αλ =
⎡ ⎤⎣ ⎦

, 

 
equations (50) and (51) produce: 

(54a)  [ ] ( )1
2

E U
α
λ
+

=  

(54b)  ( )( )2
2

1 2
3

E U
α α

λ
+ +

⎡ ⎤ =⎣ ⎦ . 

 
Once we have determined the first two moments for U, we know the mean and 
variance of  (note that var 1U ( ) ( ) ( )2 2

1U E U E U= − ). Since we also know the mean 

and variance of ( ]1 1 1,D Lτ τ + , we can add them to the mean and variance of  to get 

the mean and variance of 
1U

( ]1 1 1 1,D L Uτ τ + + . 
Next, we choose which pdf (normal, gamma or ...) we consider most appropriate for 
( ]1 1 1 1,D L Uτ τ + + and we fit this pdf to the mean and variance of ( ]1 1 1 1,D L Uτ τ + + . 

Next, we have to combine the general formulas for P1 (formula (2)), the safety stock 
(18), the average inventory (20), the backorders (34) and P2 (40) with formulas (52a) 
and (52b) to take into account the undershoot. This results in the following formulas: 
 
( ) ( ]{ }
( ) ( ] [ ]

( ) [ ] ( ] [ ]

( ) ( ] ( ]( ) ( ]( )
( ) ( ]( ) ( ]( )

1 1 1 1 1

1 1 1 1

1 1 1 1

0 1 1 1 1 1 0 0

2 1 1 1 1 0 0

2 ' ,

18 ' ,

21' ,
2

34b ' , , 0,

140 ' 1 , 0,

P P D L U s

v s E D L E U

QE X s E D L E U

B L L D L U s D L U s Q

P E D L U s E D L U s Q
Q

τ τ

τ τ

τ τ

τ τ τ

τ τ

+ +

+ +

= + + ≤

⎡ ⎤= − + −⎣ ⎦

⎡ ⎤= + − + −⎣ ⎦

+ = + + − − + − −

⎡ ⎤⎡ ⎤ ⎡= − + + − − + − − ⎤
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 
Given the pdf for ( ]1 1 1 1,D L Uτ τ + + , these formulas enable us to determine all 
relevant logistics variables. 
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Numerical analysis has revealed that it is indeed crucial to take U into account. See, 
for instance, the Excel spreadsheet Classical Inventory Models (De Kok [2002]).  
 
 
5.3 Assumption (iii) 
 
Orders cannot overtake each other, according to assumption (iii). Elimination of this 
assumption is not sensible in the framework of our present model. So assumption (iii) 
has a general validity. Indeed, we order one product at one supplier. There is no 
reason whatsoever for the supplier to change the sequence in which he carries out the 
deliveries of the same product for the same customer. At most will the supplier 
combine orders to improve efficiency during production or transport. 
 
 
5.4 Assumption (iv) 
 
This assumption says that delivery times are constant and equal to . If we assume 
furthermore that  equals an integer number of periods, say K, we can find 
expressions for 

L
L

( ]0,E D L⎡ ⎤⎣ ⎦  and  ( ]( )2 0,D Lσ  in the following way. Define:  
 
(55)   : = demand in period , kD k
 

then . Note that  has the dimension “time” whereas ( ] ∑
=

=
K

k
kDLD

1
,0 L K  is a 

dimensionless number. Suppose that { }kD are mutually independent and identically 
distributed stochastic variables. Then:  
 
(56a) ( ] [ ]0,  E D L K E D⎡ ⎤ =⎣ ⎦ , 
 
(56b) ( ]( ) ( )2 20,D L K Dσ σ= . 
 
For convenience we define  too as a number of periods. Then L KL =  and  
 
(57a) , ( ][ ] [DELLDE  ,0 = ]
 
(57b) ( ]( ) (DLLD 22  ,0 σσ = ) . 
 

Intermezzo 
In case assumption (i) is true, demand has a normal distribution with [ ]E D µ=  and 

( )2 D 2σ σ= , so that equations (57) change into:  
 

( ]0,  E D L L µ⎡ ⎤ =⎣ ⎦  
( ]( )2 20,  D L Lσ σ= . 
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Next we drop the assumption that L is constant, but we continue to assume that it 
equals an integer number of periods, say K. Then we can write 
 

(58) ( ]0,E D L⎡ ⎤⎣ ⎦  =   ⎥
⎦

⎤
⎢
⎣

⎡∑
=

K

k
kDE

1

 

       =  { }
0 1

n

k
n k

E D P K n
∞

= =

⎡ ⎤
=⎢ ⎥⎣ ⎦

∑ ∑  

 

       =  [ ] { }
0n

nE D P K n
∞

=

=∑  

 

       =  [ ] { }
0n

E D nP K n
∞

=

=∑  

 
       =  [ ] [ ]E D E K  
 
and  

(59)    ( ][ ]LDE ,02  =   
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛∑
=

2

1

K

k
kDE

 

          =  { }
2

0 1

n

k
n k

E D P K n
∞

= =

⎡ ⎤⎛ ⎞ =⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑  

 

          =  { }2 2

0 1 1

n n

k k
n k k

D E D P K nσ
∞

= = =

⎛ ⎞⎛ ⎞ ⎡ ⎤+ =⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠
∑ ∑ ∑   

 

          =  ( ) [ ]( ) { }2 2 2

0n

n D n E D P K nσ
∞

=

+ =∑  

 

          =   ( ) { } [ ] { }nKPnDEnKPnD
nn

=+= ∑∑
∞

=

∞

= 0

2

0

22  σ

 
          =  ( ) [ ] [ ]2 2D E K E D E Kσ 2⎡ ⎤+ ⎣ ⎦ . 
 
 
Since ( ]( ) ( ][ ] ( ][ ]LDELDELD ,0,0,0 222 −=σ  we find after substitution of (57) and 
(58): 
 
(60)    ( ]( )LD ,02σ  = [ ] ( ) [ ] [ ] [ ] [ ]DEKEDEKEDKE 22222 −+σ  
 
          = [ ] ( ) [ ] [ ]2 2 2E K D K E Dσ σ+ . 
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This formula can also be found in SPP, on page 283, whereby K  has been replaced 
by . So in order to keep dimensions correct, it is essential to interpret  as a number 
of periods and not as delivery time. 

L L

 In case of stochastic delivery times, we first have to calculate 
and ( ][ ]LDE ,0 ( ]( )LD ,02σ . Next we have to make an assumption about the 

probability distribution of . For normal distributions and using the P( ]LD ,0 1 measure, 
we obtain for the re-order level  
 
(61)    ( ][ ] ( ]( )LDkLDEs ,0,0 σ+= . 
 
Instead of departing from information about demand per period, we also can base our 
analysis on , demand per customer, and cD A , the time between the arrivals of 
customers. An often used assumption is { } 1 ,xP A x e λ−≤ = −  . This means that A
has an exponential distribution. That is equal to saying that the arrival process of 
customers is a Poisson process. For such an arrival process, the following expressions 
for 

0x ≥  

( ]0,E D L⎡ ⎤⎣ ⎦  and ( ]2 0,D Lσ ⎡⎣ ⎤⎦  can be derived: 
 
(62a)   ( ] [ ]0, cE D L E L E Dλ ⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦  
 
(62b)   ( ]( ) [ ] ( )2 2 2 20, c cD L E L E D L E Dσ λ λ σ 2⎡ ⎤ ⎡= + ⎤⎣ ⎦ ⎣ ⎦ . 
 
It should be noted that these expressions have to be combined with formulae for 
[ ]E U and . 2E U⎡ ⎤⎣ ⎦

 
 

5.5 Assumption (v) 
 
The net inventory after arrival of an order is positive, according to this assumption. 
This is realistic if ( ]00,Q D L>> . It only regards the expression for P2. But an 
expression for P2 has been derived already in Section 4.4:  
 

(40)  P2 =  ( ]( ) ( ] ( )( )( )1 1 1 0
11 , 0,E D L s E D L s Q
Q

τ τ
+ +⎡ ⎤ ⎡− + − − − +

⎣ ⎦ ⎣
⎤
⎦

. 

 
With formula (40), P2 can be determined numerically under the assumption that 
( ]111 , LD +ττ  and  have a normal or gamma distribution. Calculation of the 

reorder point 
( ]0,0 LD

s for given P2 β= is also done numerically, by means of bisection or a 
similar method. Here we use the fact that P2 is strictly ascending in s . So assumption 
(v) is only needed in order to use tables for the calculation of the reorder point. It 
should be emphasized here that assumption (v) is nowadays not valid due to the 
reduction of the replenishment batch size Q. It can easily be seen that formula (42) 
becomes negative as Q decreases, which of course should not be the case for a valid 
expression for a service measure like P2.  
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 Again we are able to take the undershoot into account in a simple way 
through the fact that the undershoot is independent of the time during the subsequent 
lead time. We only have to add the mean and variance of the undershoot to the mean 
and variance, respectively, of the demand during the lead time. Thereafter the 
expressions (40) and (42) can be applied. 
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6. Analysis of the (R,S) model 
 

6.1 The P1 measure 
 
The  model implies that after each period we reorder such a quantity that the 
inventory position becomes . Then we find, analogous to the analysis of the (s,Q) 
model (see Section 4.1, equation (2)) that 

( SR, )
S

 

(63)    P1 =  ( )( ){ }1 1 0P X Lτ −+ ≥ . 

 
But now we have 1 Rτ =  and 
  
(64a)   ( ) ( ]0 00,X L S D L= −   

(64b)   ( ) ( ]1 10,X R L S D R L+ = − + , 
 
so that  
  
(65)    P1 = ( ]{ }10,P D R L S+ ≤ . 
 
With assumptions (i) and (iv) we find that 
 
(66)    ( )S R L k Rµ σ= + + + L . 
 
In general we have: 
 
(67)    ( ] ( ]( )1 10, 0,S E D R L k D R Lσ⎡ ⎤= + + +⎣ ⎦  
 
If  i.e. if equals an integer and possibly stochastic number of periods, we 
get for demand that is mutually independent and identically distributed:  

*1,L K= L

 
 
 
(68a)   ( ] [ ]( ) [ ]10,E D R L R E K E D⎡ ⎤+ = +⎣ ⎦  
 
(68b)   ( ]( ) [ ]( ) ( ) ( ) [ ]2 2

10, ,D R L E K R D K E Dσ σ σ+ = + + 2 2  
 
where  is the number of periods that expresses the length of the review period. Like 
before, we can replace 

R
K  by , if we ignore the dimension of .   L L
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6.2  The P2 measure 
 
In the same way as for the P1 measure, and using the expressions (64), we find  
 

(69)  P2 = ( ][ ] ( ]( )[ ] ( ]( )[ ]( )++ −−−+− SLDESLRDE
RDE 01 ,0

,0
11 . 

 
The problem now is that assumption (v) is mostly not valid any more, unless 

or 0LR >> ( ]0,0 LDS >> . In many cases this is not true. This means that in fact we 
cannot use the approximation that follows from SPP, equation (7.41), which ignores 
the last expectation in (69) and yields:  
 

(70)  P2 ( ][ ] [ ]( )[ ]+−+−≈ SLRDE
RDE 1,0

11 . 

 
Nevertheless, if we do ignore this restriction, then the assumptions (i) and (iv) lead to 
 

(71)  P2 = ( )1
S L RL R G

R L R
µσ

µ σ
− +⎛ ⎞+

− ⎜ ⎟
+⎝ ⎠

. 

 
If we use this formula to find  for a given S β  via   
 

(72)   ( ) ( )1R
G k

L R
µ β
σ

−
=

+
, 

 
we get a value for that is too high. It is also possible that we do not find a solution at 
all, since (71) becomes negative for small values of R. Once more we can say that the 
problem to use the correct expressions is only of a numerical nature. Such problems 
can easily be solved by computer software. We refer to the aforementioned Excel 
spreadsheet “Classical Inventory Models” (De Kok [2002]).  

S

 If we apply assumptions (i) and (v) to the correct formula (69), we obtain 
 

(73)  P2 = 
( )11

S L R S LL RG LG
R L R L

µ µσ σ
µ σ σ

⎛ ⎞⎛ ⎞− + −⎛ ⎞− + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠⎝ ⎠
. 

 
It is clear that formula (73) can easily be applied using the tables for the function 

in SPP if S is given. The opposite, i.e. computing ( )...G ( ).G given a target value for 
P2, requires a computerized algorithm like bisection. 
 Finally we note that assumption (ii) is not relevant for the ( ),R S  model.  
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7. Essential elements from the analyses of the (s,S), 
(R,s,Q) and (R,s,S) models 

 
The essence of the analysis is contained in the expressions for ( )0X L  and 

. Given these expressions and e.g. assumptions (i) and (iv), we can derive 

expressions for P
( 1 1 X Lτ + )

1, P2 and [ ]E X . This approach has been implemented in the 
spreadsheet “Classical Inventory Models” (De Kok [2002]). 
 
The (s,S) model 
For this model we have, c.f. equations (64a) and (52b): 
 
(74a)  , ( ) ( ]00 ,0 LDSLX −=
  
(74b)  ( ) ( ]111111 , LDUsLX +−−=+ τττ , 
 
where  is the undershoot of the reorder level s. 1U
 
The (R,s,Q) model 
Similarly, c.f. equation (52): 
 
(75a)  ( ) ( ]0,00 ,0 LDUQsLX R −−+= , 
 
(75b)  ( ) ( ]111,111 , LDUsLX R +−−=+ τττ . 
 
The(R,s,S) model 
Finally, for this model we have: 
 
(76a)  , ( ) ( ]00 ,0 LDSLX −=
 
(76b)  ( ) ( ]111,111 , LDUsLX R +−−=+ τττ . 
 
In expressions (75) and (76),  and  are the undershoots in the periodic 
reorder models that are derived from the demands per review period. Under 
assumption (i), i.e. demand during intervals is normally distributed, we find: 

0,RU 1,RU

 

(77a)  [ ] ( )21 1
2RE U c Rµ= + , 

   

(77b) 
2

2 21 31
3R

cE U R
R

2µ
⎛ ⎞

⎡ ⎤ = +⎜ ⎟⎣ ⎦
⎝ ⎠

. 

 
Again  a gamma distribution is preferable because it is more realistic. So if  
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  { } ( )
( )

1

0

exp
(0, ]

x x x
P D R x dx

α αλ λ
α

−−
≤ =

Γ∫ , 

with 
 

  
( ]
( ]( )

2

2

0,
0,

E D R
D R

α
σ

⎡ ⎤⎣ ⎦=  and 
( ]0,E D R
αλ =

⎡ ⎤⎣ ⎦
, 

 
we find 

(78a)  [ ] ( )1
2RE U
α
λ
+

=  

(78b)  ( )( )2
2

1 2
3RE U

α α
λ

+ +
⎡ ⎤ =⎣ ⎦ . 
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Appendix A – Sample paths for the case of a single outstanding order 
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Appendix B – Sample paths for the case of multiple outstanding 
orders 
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